リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「精神病発症ハイリスク者におけるミスマッチ陰性電位を用いた寛解と神経認知機能の予測に関する検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

精神病発症ハイリスク者におけるミスマッチ陰性電位を用いた寛解と神経認知機能の予測に関する検討

藤岡, 真生 東京大学 DOI:10.15083/0002006967

2023.03.24

概要

[課程-2]
審査の結果の要旨
氏名 藤岡 真生
本研究は聴覚オドボール・パラダイムで得られる事象関連電位の一成分であるミスマッ
チ陰性電位(mismatch negativity, MMN)のなかでも、慢性期や早期段階の統合失調症
で特性が異なる duration MMN(持続時間を逸脱させ得られる MMN)と frequency
MMN(周波数を逸脱させ得られる MMN)が、統合失調症の推定的前駆期でもある精神
病発症ハイリスクの予後を予測するかどうかを明らかにするため行われた。精神病発症ハ
イリスク者 24 人を平均 20 か月追跡し、その予後とベースラインの MMN 振幅との関係を
調べた。予後の指標には、SOPS(the Scale of Prodromal Symptoms, 前駆症状評価スケ
ール)陽性症状と GAF(the Global Assessment of Functioning, 機能の全体的評定)ス
コアにより判断された、症状的かつ機能的な改善を意味する寛解の有無に加え、BACS
(the Brief Assessment of Cognition in Schizophrenia, 統合失調症認知機能簡易評価尺
度)で調べた神経認知機能を用いた。下記のような結果を得ている。
1. ベースラインの Duration MMN 振幅は健常対照と比べ精神病発症ハイリスクで減衰し
ていた。
2. 症状的かつ機能的に予後が改善した寛解群では、精神病発症を含むそれ以外の非寛解
群と比べてベースラインの duration MMN 振幅が有意に大きく、かつ ROC
(Receiver Operating Characteristic)解析の結果、その duration MMN 振幅による
寛解の予測性は中等度の正確度を有していた。
3. 重回帰分析により、神経認知機能のうち「注意と情報処理速度」のドメインをベース
ラインの frequency MMN 振幅が予測することが示された。
この結果から、duration MMN と frequency MMN の双方とも精神病発症ハイリスク者
の予後を予測し、その特性が異なることが明らかになった。なかでも本研究は frequency
MMN が精神病発症ハイリスクにおける精神病発症の有無を問わない予後を予測すること
を報告した初めての報告である。Duration MMN も frequency MMN も精神病発症ハイリ
スク者の予後予測の有望な指標であることが示唆され、精神病発症ハイリスク者への適切
な早期支援につながる重要な貢献であると考えられる。
よって本論文は博士(医学 )の学位請求論文として合格と認められる。

この論文で使われている画像

参考文献

1.

McGrath J, Saha S, Chant D & Welham J. Schizophrenia: a concise overview of

incidence, prevalence, and mortality. Epidemiol. Rev. 30, 67–76 (2008).

2.

福島貴子, 針間博彦. 精神病性障害. 脳科学辞典 https://bsd.neuroinf.jp/wiki/精神

病性障害 (2014) doi:10.14931/bsd.4581.

3.

Ikebuchi E, Nakagome K, Ikezawa S, Miura S, Yamasaki S, et al. Social cognition of

schizophrenia: bridging gap between brain science and psychosocial intervention.

Seishin Shinkeigaku Zasshi 114, 489–507 (in Japanese) (2012).

4.

Ustün B & Kennedy C. What is ‘functional impairment’? Disentangling disability

from clinical significance. World Psychiatry 8, 82–5 (2009).

5.

Yung AR, McGorry PD, McFarlane CA, Jackson HJ, Patton GC, et al. Monitoring and

care of young people at incipient risk of psychosis. Schizophr. Bull. 22, 283–303

(1996).

6.

Perkins DO, Gu H, Boteva K & Lieberman JA. Relationship between duration of

untreated psychosis and outcome in first-episode schizophrenia: a critical review and

meta-analysis. Am. J. Psychiatry 162, 1785–804 (2005).

7.

Marshall M, Lewis S, Lockwood A, Drake R, Jones P, et al. Association between

duration of untreated psychosis and outcome in cohorts of first-episode patients. Arch.

Gen. Psychiatry 62, 975–83 (2005).

8.

American Psychiatric Association (著), 高橋三郎, 大野裕, 染矢俊幸 (訳). DSMⅣ-TR 精神疾患の診断・統計マニュアル 新訂版. (医学書院, 2004).

89

9.

Endicott J, Spitzer RL, Fleiss JL & Cohen J. The Global Assessment Scale. A

procedure for measuring overall severity of psychiatric disturbance. Arch. Gen.

Psychiatry 33, 766–71 (1976).

10.

Penttilä M, Jääskeläinen E, Hirvonen N, Isohanni M & Miettunen J. Duration of

untreated psychosis as predictor of long-term outcome in schizophrenia: systematic

review and meta-analysis. Br. J. Psychiatry 205, 88–94 (2014).

11.

Crumlish N, Whitty P, Clarke M, Browne S, Kamali M, et al. Beyond the critical

period: longitudinal study of 8-year outcome in first-episode non-affective psychosis.

Br. J. Psychiatry 194, 18–24 (2009).

12.

Yung AR, Phillips LJ, Yuen HP, Francey SM, McFarlane CA, et al. Psychosis

prediction: 12-month follow up of a high-risk (‘prodromal’) group. Schizophr. Res. 60,

21–32 (2003).

13.

Miller TJ, McGlashan TH, Rosen JL, Cadenhead K, Cannon T, et al. Prodromal

assessment with the structured interview for prodromal syndromes and the scale of

prodromal symptoms: predictive validity, interrater reliability, and training to

reliability. Schizophr. Bull. 29, 703–15 (2003).

14.

Yung AR, Yuen HP, McGorry PD, Phillips LJ, Kelly D, et al. Mapping the onset of

psychosis: the Comprehensive Assessment of At-Risk Mental States. Aust. N. Z. J.

Psychiatry 39, 964–71 (2005).

15.

Miller TJ, McGlashan TH, Woods SW, Stein K, Driesen N, et al. Symptom

assessment in schizophrenic prodromal states. Psychiatr. Q. 70, 273–87 (1999).

90

16.

McGlashan TH, Walsh BC, Woods SW (著), 水野雅文 (監訳), 小林啓之 (訳). サ

イコーシス・リスクシンドローム―精神病の早期診断実践ハンドブック. (医学

書院, 2011).

17.

Ruhrmann S, Schultze-Lutter F & Klosterkötter J. Early detection and intervention in

the initial prodromal phase of schizophrenia. Pharmacopsychiatry 36 Suppl 3, S162-7

(2003).

18.

Fusar-Poli P, Cappucciati M, Borgwardt S, Woods SW, Addington J, et al.

Heterogeneity of psychosis risk within individuals at clinical high risk: a metaanalytical stratification. JAMA Psychiatry 73, 113–20 (2016).

19.

Fusar-Poli P, Bonoldi I, Yung AR, Borgwardt S, Kempton MJ, et al. Predicting

psychosis: meta-analysis of transition outcomes in individuals at high clinical risk.

Arch. Gen. Psychiatry 69, 220–9 (2012).

20.

Simon AE, Borgwardt S, Riecher-Rössler A, Velthorst E, de Haan L, et al. Moving

beyond transition outcomes: meta-analysis of remission rates in individuals at high

clinical risk for psychosis. Psychiatry Res. 209, 266–72 (2013).

21.

Fusar-Poli P, Bechdolf A, Taylor MJ, Bonoldi I, Carpenter WT, et al. At risk for

schizophrenic or affective psychoses? A meta-analysis of DSM/ICD diagnostic

outcomes in individuals at high clinical risk. Schizophr. Bull. 39, 923–32 (2013).

22.

Schultze-Lutter F, Klosterkötter J, Picker H, Steinmeyer EM & Ruhrmann S.

Predicting first-episode psychosis by basic symptom criteria. Clin. Neuropsychiatry J.

Treat. Eval. 4, 11–22 (2007).

91

23.

de Wit S, Schothorst PF, Oranje B, Ziermans TB, Durston S, et al. Adolescents at

ultra-high risk for psychosis: long-term outcome of individuals who recover from their

at-risk state. Eur. Neuropsychopharmacol. 24, 865–73 (2014).

24.

Beck K, Studerus E, Andreou C, Egloff L, Leanza L, et al. Clinical and functional

ultra-long-term outcome of patients with a clinical high risk (CHR) for psychosis. Eur.

Psychiatry 62, 30–7 (2019).

25.

Cornblatt BA, Auther AM, Niendam T, Smith CW, Zinberg J, et al. Preliminary

findings for two new measures of social and role functioning in the prodromal phase of

schizophrenia. Schizophr. Bull. 33, 688–702 (2007).

26.

Addington J, Cornblatt BA, Cadenhead KS, Cannon TD, McGlashan TH, et al. At

clinical high risk for psychosis: outcome for nonconverters. Am. J. Psychiatry 168,

800–5 (2011).

27.

Hall RCW. Global Assessment of Functioning. A modified scale. Psychosomatics 36,

267–75 (1995).

28.

de Wit S, Wierenga LM, Oranje B, Ziermans TB, Schothorst PF, et al. Brain

development in adolescents at ultra-high risk for psychosis: longitudinal changes

related to resilience. NeuroImage. Clin. 12, 542–9 (2016).

29.

Morosini PL, Magliano L, Brambilla L, Ugolini S & Pioli R. Development, reliability

and acceptability of a new version of the DSM-IV Social and Occupational

Functioning Assessment Scale (SOFAS) to assess routine social functioning. Acta

Psychiatr. Scand. 101, 323–9 (2000).

30.

Näätänen R, Gaillard AWK & Mäntysalo S. Early selective-attention effect on evoked

potential reinterpreted. Acta Psychol. (Amst). 42, 313–29 (1978).

92

31.

Sallinen M, Kaartinen J & Lyytinen H. Is the appearance of mismatch negativity

during stage 2 sleep related to the elicitation of K-complex? Electroencephalogr. Clin.

Neurophysiol. 91, 140–8 (1994).

32.

Hari R, Hämäläinen M, Ilmoniemi R, Kaukoranta E, Reinikainen K, et al. Responses

of the primary auditory cortex to pitch changes in a sequence of tone pips:

neuromagnetic recordings in man. Neurosci. Lett. 50, 127–32 (1984).

33.

Halgren E, Baudena P, Clarke JM, Heit G, Liégeois C, et al. Intracerebral potentials to

rare target and distractor auditory and visual stimuli. I. Superior temporal plane and

parietal lobe. Electroencephalogr. Clin. Neurophysiol. 94, 191–220 (1995).

34.

Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic

counterpart (MMNm) elicited by sound changes. Ear Hear. 16, 38–51 (1995).

35.

Giard MH, Perrin F, Pernier J & Bouchet P. Brain generators implicated in the

processing of auditory stimulus deviance: a topographic event-related potential study.

Psychophysiology 27, 627–40 (1990).

36.

Scherg M, Vajsar J & Picton TW. A source analysis of the late human auditory evoked

potentials. J. Cogn. Neurosci. 1, 336–55 (1989).

37.

Opitz B, Rinne T, Mecklinger A, von Cramon DY & Schröger E. Differential

contribution of frontal and temporal cortices to auditory change detection: fMRI and

ERP results. Neuroimage 15, 167–74 (2002).

38.

Liasis A, Towell A, Alho K & Boyd S. Intracranial identification of an electric frontalcortex response to auditory stimulus change: a case study. Brain Res. Cogn. Brain Res.

11, 227–33 (2001).

93

39.

Rosburg T, Trautner P, Dietl T, Korzyukov OA, Boutros NN, et al. Subdural

recordings of the mismatch negativity (MMN) in patients with focal epilepsy. Brain

128, 819–28 (2005).

40.

Rinne T, Alho K, Ilmoniemi RJ, Virtanen J & Näätänen R. Separate time behaviors of

the temporal and frontal mismatch negativity sources. Neuroimage 12, 14–9 (2000).

41.

Garrido MI, Kilner JM, Kiebel SJ, Stephan KE & Friston KJ. Dynamic causal

modelling of evoked potentials: a reproducibility study. Neuroimage 36, 571–80

(2007).

42.

Garrido MI, Friston KJ, Kiebel SJ, Stephan KE, Baldeweg T, et al. The functional

anatomy of the MMN: a DCM study of the roving paradigm. Neuroimage 42, 936–44

(2008).

43.

MacLean SE & Ward LM. Temporo-frontal phase synchronization supports

hierarchical network for mismatch negativity. Clin. Neurophysiol. 125, 1604–17

(2014).

44.

Tada M, Kirihara K, Mizutani S, Uka T, Kunii N, et al. Mismatch negativity (MMN)

as a tool for translational investigations into early psychosis: a review. Int. J.

Psychophysiol. 145, 5–14 (2019).

45.

Shelley AM, Ward PB, Catts S V., Michie PT, Andrews S, et al. Mismatch negativity:

an index of a preattentive processing deficit in schizophrenia. Biol. Psychiatry 30,

1059–62 (1991).

46.

Erickson MA, Ruffle A & Gold JM. A meta-analysis of mismatch negativity in

schizophrenia: from clinical risk to disease specificity and progression. Biol.

Psychiatry 79, 980–7 (2016).

94

47.

Umbricht D & Krljes S. Mismatch negativity in schizophrenia: a meta-analysis.

Schizophr. Res. 76, 1–23 (2005).

48.

Javitt DC & Zukin SR. Recent advances in the phencyclidine model of schizophrenia.

Am. J. Psychiatry 148, 1301–8 (1991).

49.

Domino EF & Luby ED. Phencyclidine/schizophrenia: one view toward the past, the

other to the future. Schizophr. Bull. 38, 914–9 (2012).

50.

Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, et al. Subanesthetic effects

of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic,

perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry 51, 199–

214 (1994).

51.

Javitt DC, Steinschneider M, Schroeder CE & Arezzo JC. Role of cortical N-methylD-aspartate receptors in auditory sensory memory and mismatch negativity generation:

implications for schizophrenia. Proc. Natl. Acad. Sci. U. S. A. 93, 11962–7 (1996).

52.

Umbricht D, Schmid L, Koller R, Vollenweider FX, Hell D, et al. Ketamine-induced

deficits in auditory and visual context-dependent processing in healthy volunteers:

implications for models of cognitive deficits in schizophrenia. Arch. Gen. Psychiatry

57, 1139–47 (2000).

53.

Rosburg T & Kreitschmann-Andermahr I. The effects of ketamine on the mismatch

negativity (MMN) in humans - A meta-analysis. Clin. Neurophysiol. 127, 1387–1394

(2016).

54.

Toyomaki A, Kusumi I, Matsuyama T, Kako Y, Ito K, et al. Tone duration mismatch

negativity deficits predict impairment of executive function in schizophrenia. Prog.

Neuropsychopharmacol. Biol. Psychiatry 32, 95–9 (2008).

95

55.

Miyanishi T, Sumiyoshi T, Higuchi Y, Seo T & Suzuki M. LORETA current source

density for duration mismatch negativity and neuropsychological assessment in early

schizophrenia. PLoS One 8, e61152 (2013).

56.

Koshiyama D, Kirihara K, Tada M, Nagai T, Fujioka M, et al. Association between

mismatch negativity and global functioning is specific to duration deviance in early

stages of psychosis. Schizophr. Res. 195, 378–84 (2018).

57.

Light GA & Braff DL. Stability of mismatch negativity deficits and their relationship

to functional impairments in chronic schizophrenia. Am. J. Psychiatry 162, 1741–3

(2005).

58.

Kawakubo Y & Kasai K. Support for an association between mismatch negativity and

social functioning in schizophrenia. Prog. Neuro-Psychopharmacology Biol.

Psychiatry 30, 1367–8 (2006).

59.

Kim M, Kim SN, Lee S, Byun MS, Shin KS, et al. Impaired mismatch negativity is

associated with current functional status rather than genetic vulnerability to

schizophrenia. Psychiatry Res. 222, 100–6 (2014).

60.

Rasser PE, Schall U, Todd J, Michie PT, Ward PB, et al. Gray matter deficits,

mismatch negativity, and outcomes in schizophrenia. Schizophr. Bull. 37, 131–40

(2011).

61.

Thomas ML, Green MF, Hellemann G, Sugar CA, Tarasenko M, et al. Modeling

deficits from early auditory information processing to psychosocial functioning in

schizophrenia. JAMA psychiatry 74, 37–46 (2017).

62.

Haigh SM, Coffman BA & Salisbury DF. Mismatch negativity in first-episode

schizophrenia: a meta-analysis. Clin. EEG Neurosci. 48, 3–10 (2017).

96

63.

Nagai T, Tada M, Kirihara K, Yahata N, Hashimoto R, et al. Auditory mismatch

negativity and P3a in response to duration and frequency changes in the early stages of

psychosis. Schizophr. Res. 150, 547–54 (2013).

64.

Bodatsch M, Brockhaus-Dumke A, Klosterkötter J & Ruhrmann S. Forecasting

psychosis by event-related potentials-systematic review and specific meta-analysis.

Biol. Psychiatry 77, 951–8 (2015).

65.

Okano H, Miyawaki A & Kasai K. Brain/MINDS: brain-mapping project in Japan.

Philos. Trans. R. Soc. Lond. B. Biol. Sci. 370, 20140310 (2015).

66.

Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, et al. Improvement in

mismatch negativity generation during d-serine treatment in schizophrenia: correlation

with symptoms. Schizophr. Res. 191, 70–9 (2018).

67.

Kim M, Lee TH, Yoon YB, Lee TY & Kwon JS. Predicting remission in subjects at

clinical high risk for psychosis using mismatch negativity. Schizophr. Bull. 44, 575–83

(2018).

68.

Tang Y, Wang J, Zhang T, Xu L, Qian Z, et al. P300 as an index of transition to

psychosis and of remission: data from a clinical high risk for psychosis study and

review of literature. Schizophr. Res. 226, 74–83 (2020).

69.

Kim M, Lee TY, Lee S, Kim SN & Kwon JS. Auditory P300 as a predictor of shortterm prognosis in subjects at clinical high risk for psychosis. Schizophr. Res. 165, 138–

44 (2015).

70.

Bramon E, Rabe-Hesketh S, Sham P, Murray RM & Frangou S. Meta-analysis of the

P300 and P50 waveforms in schizophrenia. Schizophr. Res. 70, 315–29 (2004).

97

71.

Wada M, Kurose S, Miyazaki T, Nakajima S, Masuda F, et al. The P300 event-related

potential in bipolar disorder: a systematic review and meta-analysis. J. Affect. Disord.

256, 234–49 (2019).

72.

Cui T, Wang PP, Liu S & Zhang X. P300 amplitude and latency in autism spectrum

disorder: a meta-analysis. Eur. Child Adolesc. Psychiatry 26, 177–90 (2017).

73.

Cropley VL, Lin A, Nelson B, Reniers RLEP, Yung AR, et al. Baseline grey matter

volume of non-transitioned ‘ultra high risk’ for psychosis individuals with and without

attenuated psychotic symptoms at long-term follow-up. Schizophr. Res. 173, 152–8

(2016).

74.

Chung Y, Allswede D, Addington J, Bearden CE, Cadenhead K, et al. Cortical

abnormalities in youth at clinical high-risk for psychosis: findings from the NAPLS2

cohort. NeuroImage. Clin. 23, 101862 (2019).

75.

Koike S, Takano Y, Iwashiro N, Satomura Y, Suga M, et al. A multimodal approach to

investigate biomarkers for psychosis in a clinical setting: the integrative neuroimaging

studies in schizophrenia targeting for early intervention and prevention (IN-STEP)

project. Schizophr. Res. 143, 116–24 (2013).

76.

Nagai T, Kirihara K, Tada M, Koshiyama D, Koike S, et al. Reduced mismatch

negativity is associated with increased plasma level of glutamate in first-episode

psychosis. Sci. Rep. 7, 2258 (2017).

77.

Koshiyama D, Kirihara K, Tada M, Nagai T, Koike S, et al. Duration and frequency

mismatch negativity shows no progressive reduction in early stages of psychosis.

Schizophr. Res. 190, 32–8 (2017).

98

78.

Kobayashi H, Nozaki S & Mizuno M. Reliability of the structured interview for

prodromal syndromes Japanese version (SIPS-J). JPN Bull Soc Psychiat 15, 168-74 (in

Japanese) (2007).

79.

Otsubo T, Tanaka K, Koda R, Shinoda J, Sano N, et al. Reliability and validity of

Japanese version of the Mini-International Neuropsychiatric Interview. Psychiatry

Clin. Neurosci. 59, 517–26 (2005).

80.

Matsuoka K, Uno M, Kasai K, Koyama K & Kim Y. Estimation of premorbid IQ in

individuals with Alzheimer’s disease using Japanese ideographic script (Kanji)

compound words: Japanese version of National Adult Reading Test. Psychiatry Clin.

Neurosci. 60, 332–9 (2006).

81.

松岡恵子, 金吉晴. 知的機能の簡易評価 Japanese Adult Reading Test(JART).

(新興医学出版社, 2006).

82.

Inada T & Inagaki A. Psychotropic dose equivalence in Japan. Psychiatry Clin.

Neurosci. 69, 440–7 (2015).

83.

Keefe RSE, Goldberg TE, Harvey PD, Gold JM, Poe MP, et al. The Brief Assessment

of Cognition in Schizophrenia: reliability, sensitivity, and comparison with a standard

neurocognitive battery. Schizophr. Res. 68, 283–97 (2004).

84.

Kaneda Y, Sumiyoshi T, Keefe R, Ishimoto Y, Numata S, et al. Brief assessment of

cognition in schizophrenia: validation of the Japanese version. Psychiatry Clin.

Neurosci. 61, 602–9 (2007).

85.

兼田康宏, 住吉太幹, 中込和幸, 池澤聰, 大森哲郎, 他. 統合失調症認知機能簡

易評価尺度日本語版(BACS-J)標準化の試み. 精神医学 55, 167–75 (2013).

99

86.

Lee TY, Kim SN, Correll CU, Byun MS, Kim E, et al. Symptomatic and functional

remission of subjects at clinical high risk for psychosis: a 2-year naturalistic

observational study. Schizophr. Res. 156, 266–71 (2014).

87.

Delorme A & Makeig S. EEGLAB: an open source toolbox for analysis of single-trial

EEG dynamics including independent component analysis. J. Neurosci. Methods 134,

9–21 (2004).

88.

Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic

curves. Acta Paediatr. 96, 644–7 (2007).

89.

Kanda Y. Investigation of the freely available easy-to-use software ‘EZR’ for medical

statistics. Bone Marrow Transplant. 48, 452–8 (2013).

90.

Jahshan C, Heaton RK, Golshan S & Cadenhead KS. Course of neurocognitive deficits

in the prodrome and first episode of schizophrenia. Neuropsychology 24, 109–20

(2010).

91.

Niendam TA, Bearden CE, Zinberg J, Johnson JK, O’Brien M, et al. The course of

neurocognition and social functioning in individuals at ultra high risk for psychosis.

Schizophr. Bull. 33, 772–81 (2007).

92.

Woodward ND, Purdon SE, Meltzer HY & Zald DH. A meta-analysis of

neuropsychological change to clozapine, olanzapine, quetiapine, and risperidone in

schizophrenia. Int. J. Neuropsychopharmacol. 8, 457–72 (2005).

93.

Fusar-Poli P, Deste G, Smieskova R, Barlati S, Yung AR, et al. Cognitive functioning

in prodromal psychosis: a meta-analysis. Arch. Gen. Psychiatry 69, 562–71 (2012).

94.

Carrión RE, Goldberg TE, McLaughlin D, Auther AM, Correll CU, et al. Impact of

neurocognition on social and role functioning in individuals at clinical high risk for

psychosis. Am. J. Psychiatry 168, 806–13 (2011).

100

95.

Fusar-Poli P, Rocchetti M, Sardella A, Avila A, Brandizzi M, et al. Disorder, not just

state of risk: meta-analysis of functioning and quality of life in people at high risk of

psychosis. Br. J. Psychiatry 207, 198–206 (2015).

96.

Rutigliano G, Valmaggia L, Landi P, Frascarelli M, Cappucciati M, et al. Persistence

or recurrence of non-psychotic comorbid mental disorders associated with 6-year poor

functional outcomes in patients at ultra high risk for psychosis. J. Affect. Disord. 203,

101–10 (2016).

97.

Sawada K, Kanehara A, Sakakibara E, Eguchi S, Tada M, et al. Identifying

neurocognitive markers for outcome prediction of global functioning in individuals

with first-episode and ultra-high-risk for psychosis. Psychiatry Clin. Neurosci. 71,

318–27 (2017).

98.

Carrión RE, McLaughlin D, Goldberg TE, Auther AM, Olsen RH, et al. Prediction of

functional outcome in individuals at clinical high risk for psychosis. JAMA psychiatry

70, 1133–42 (2013).

99.

Velthorst E, Nieman DH, Klaassen RMC, Becker HE, Dingemans PM, et al. Threeyear course of clinical symptomatology in young people at ultra high risk for transition

to psychosis. Acta Psychiatr. Scand. 123, 36–42 (2011).

100. Atkinson RJ, Fulham WR, Michie PT, Ward PB, Todd J, et al. Electrophysiological,

cognitive and clinical profiles of at-risk mental state: the longitudinal Minds in

Transition (MinT) study. PLoS One 12, e0171657 (2017).

101. Lavoie S, Jack BN, Griffiths O, Ando A, Amminger P, et al. Impaired mismatch

negativity to frequency deviants in individuals at ultra-high risk for psychosis, and

preliminary evidence for further impairment with transition to psychosis. Schizophr.

Res. 191, 95–100 (2018).

101

102. Carrión RE, Cornblatt BA, McLaughlin D, Chang J, Auther AM, et al. Contributions

of early cortical processing and reading ability to functional status in individuals at

clinical high risk for psychosis. Schizophr. Res. 164, 1–7 (2015).

103. Kim M, Cho KIK, Yoon YB, Lee TY & Kwon JS. Aberrant temporal behavior of

mismatch negativity generators in schizophrenia patients and subjects at clinical high

risk for psychosis. Clin. Neurophysiol. 128, 331–9 (2017).

104. Higuchi Y, Sumiyoshi T, Seo T, Miyanishi T, Kawasaki Y, et al. Mismatch negativity

and cognitive performance for the prediction of psychosis in subjects with at-risk

mental state. PLoS One 8, e54080 (2013).

105. Molholm S, Martinez A, Ritter W, Javitt DC & Foxe JJ. The neural circuitry of preattentive auditory change-detection: an fMRI study of pitch and duration mismatch

negativity generators. Cereb. Cortex 15, 545–51 (2005).

106. Lee M, Sehatpour P, Hoptman MJ, Lakatos P, Dias EC, et al. Neural mechanisms of

mismatch negativity dysfunction in schizophrenia. Mol. Psychiatry 22, 1585–93

(2017).

107. Phillips HN, Blenkmann A, Hughes LE, Bekinschtein TA & Rowe JB. Hierarchical

organization of frontotemporal networks for the prediction of stimuli across multiple

dimensions. J. Neurosci. 35, 9255–64 (2015).

108. Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig S, et al. Cortical substrates

and functional correlates of auditory deviance processing deficits in schizophrenia.

NeuroImage. Clin. 6, 424–37 (2014).

109. Patterson TL, Goldman S, McKibbin CL, Hughs T & Jeste D V. UCSD PerformanceBased Skills Assessment: development of a new measure of everyday functioning for

severely mentally ill adults. Schizophr. Bull. 27, 235–45 (2001).

102

110. MacLean SE, Blundon EG & Ward LM. Brain regional networks active during the

mismatch negativity vary with paradigm. Neuropsychologia 75, 242–51 (2015).

111. Schmidt SJ, Schultze-Lutter F, Schimmelmann BG, Maric NP, Salokangas RKR, et al.

EPA guidance on the early intervention in clinical high risk states of psychoses. Eur.

Psychiatry 30, 388–404 (2015).

112. Devoe DJ, Farris MS, Townes P & Addington J. Interventions and social functioning

in youth at risk of psychosis: a systematic review and meta-analysis. Early Interv.

Psychiatry 13, 169–80 (2019).

113. Kantrowitz JT, Woods SW, Petkova E, Cornblatt B, Corcoran CM, et al. D-serine for

the treatment of negative symptoms in individuals at clinical high risk of

schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group

mechanistic proof-of-concept trial. The lancet. Psychiatry 2, 403–12 (2015).

114. Cho S-E, Na K-S, Cho S-J & Kang SG. Low d-serine levels in schizophrenia: a

systematic review and meta-analysis. Neurosci. Lett. 634, 42–51 (2016).

115. Kay SR, Fiszbein A & Opler LA. The positive and negative syndrome scale (PANSS)

for schizophrenia. Schizophr. Bull. 13, 261–76 (1987).

116. Light GA, Swerdlow NR, Rissling AJ, Radant A, Sugar CA, et al. Characterization of

neurophysiologic and neurocognitive biomarkers for use in genomic and clinical

outcome studies of schizophrenia. PLoS One 7, e39434 (2012).

117. Garrido MI, Kilner JM, Stephan KE & Friston KJ. The mismatch negativity: a review

of underlying mechanisms. Clin. Neurophysiol. 120, 453–63 (2009).

118. Rissling AJ, Braff DL, Swerdlow NR, Hellemann G, Rassovsky Y, et al.

Disentangling early sensory information processing deficits in schizophrenia. Clin.

Neurophysiol. 123, 1942–9 (2012).

103

119. Kasai K, Yamada H, Kamio S, Nakagome K, Iwanami A, et al. Do high or low doses

of anxiolytics and hypnotics affect mismatch negativity in schizophrenic subjects? An

EEG and MEG study. Clin. Neurophysiol. 113, 141–50 (2002).

104

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る