リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The acute effects of vibratory stimuli during exercise on the sensorimotor control of the shoulder complex: A pilot study」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The acute effects of vibratory stimuli during exercise on the sensorimotor control of the shoulder complex: A pilot study

事柴 壮武 広島大学

2022.03.23

概要

The glenohumeral joint has relatively poor osseous and capsuloligamentous stability
and requires more reliance on stabilization and neuromuscular proprioception than any
other joint in the human body [1]. Both the dynamic stability of the shoulder joint and
the fine coordination of the multi-joint motion sequence require rapid and accurate
afferent input from receptors around the shoulder joint and the muscles involved. The
functional stability of the shoulders requires an exquisite balance of active and passive
forces developed by the muscle and joint structures, respectively, and is regulated by the
sensorimotor control system of the shoulder [2-4]. The sensorimotor control is
expressed as static and dynamic stability and can be evaluated in detail by measuring
the associated muscle activity [5]. Physical therapy for patients with shoulder instability
aims to strengthen the rotator cuff to maximize the concavity-compression mechanism
and stabilize the scapula, thus stabilizing the glenoid platform [6]. Thus, the use of
exercises designed to maintain and enhance the integrity and functional stability of the
shoulder joint is considered an important component of the training process for most
training and rehabilitation programs.
Maximizing the benefits of training is an important concept. Recently, the interest
concerning the use of vibrating platforms to increase muscle activation during training
and rehabilitation for high-level throwing athletes has increased. ...

参考文献

[1] Barden JM, Balyk R, Raso VJ, Moreau M, Bagnall K. Dynamic upper limb

proprioception in multidirectional shoulder instability. Clin Orthop Relat Res.

2004; 420: 181–189. doi: 10.1097/00003086-200403000-00025.

[2] Myers JB, Oyama S. Sensorimotor factors affecting outcome following

shoulder injury. Clin Sports Med. 2008; 27(3): 481–490. doi:

10.1016/j.csm.2008.03.005.

[3] Riemann BL, Lephart SM. The sensorimotor system, part I: The physiologic

basis of functional joint stability. J Athl Train. 2002; 37(1): 71–79.

[4] Riemann BL, Lephart SM. The sensorimotor system, part II: The role of

proprioception in motor control and functional joint stability. J Athl Train.

2002; 37(1): 80–84.

[5] Contemori S, Biscarini A, Botti FM, Busti D, Panichi R, Pettorossi VE.

Sensorimotor control of the shoulder in professional volleyball players with

isolated infraspinatus muscle atrophy. J Sport Rehabil. 2018; 27(4): 371–379.

doi: 10.1123/jsr.2016-0183

[6] Bell JE. Arthroscopic management of multidirectional instability. Orthop Clin

North Am. 2010; 41(3): 357–365. doi: 10.1016/j.ocl.2010.02.006.

22

[7] Hazell TJ, Kenno KA, Jakobi JM. Evaluation of muscle activity for loaded and

unloaded dynamic squats during vertical whole-body vibration. J Strength Cond

Res. 2010; 24(7): 1860–1865. doi: 10.1519/jsc.0b013e3181ddf6c8.

[8] Marín PJ, Santos-Lozano A, Santin-Medeiros F, Delecluse C, Garatachea N. A

comparison of training intensity between whole-body vibration and

conventional squat exercise. J Electromyogr Kinesiol. 2011; 21(4): 616–621.

doi: 10.1016/j.jelekin.2010.12.008.

[9] Ashnagar Z, Shadmehr A, Hadian M, Talebian S, Jalaei S. The effects of

whole-body vibration on EMG activity of the upper extremity muscles in static

modified push up position. J Back Musculoskelet Rehabil. 2016; 29(3): 557–

563. doi: 10.3233/bmr-160657.

[10] Hagbarth KE, Eklund G. Tonic vibration reflexes (TVR) in spasticity. Brain

Res. 1966; 2(2): 201–203. doi: 10.1016/0006-8993(66)90029-1.

[11] Mester J, Spitzenfeil P, Schwarzer J, Seifriz F. Biological reaction to vibration Implications for sport. J Sci Med Sport. 1999; 2(3): 211–226. doi:

10.1016/s1440-2440(99)80174-1.

[12] Cardinale M, Lim J. Electromyography activity of vastus lateralis muscle

during whole-body vibrations of different frequencies. J Strength Cond Res.

23

2003; 17(3): 621–624. doi: 10.1519/15334287(2003)017%3C0621:eaovlm%3E2.0.co;2.

[13] Roelants M, Verschueren SMP, Delecluse C, Levin O, Stijnen V. Whole-bodyvibration-induced increase in leg muscle activity during different squat

exercises. J Strength Cond Res. 2006; 20(1): 124–129. doi: 10.1519/r-16674.1.

[14] Martin BJ, Park HS. Analysis of the tonic vibration reflex: influence of

vibration variables on motor unit synchronization and fatigue. Eur J Appl

Physiol Occup Physiol. 1997; 75(6): 504–511. doi: 10.1007/s004210050196.

[15] Maeda N, Urabe Y, Sasadai J, Miyamoto A, Murakami M, Kato J. Effect of

whole-body-vibration training on trunk-muscle strength and physical

performance in healthy adults: preliminary results of a randomized controlled

trial. J Sport Rehabil. 2016; 25(4): 357–363. doi: 10.1123/jsr.2015-0022.

[16] Edouard P, Gasq D, Calmels P, Ducrot S, Degache F. Shoulder sensorimotor

control assessment by force platform: feasibility and reliability. Clin Physiol

Funct Imaging. 2012; 32(5): 409–413. doi: 10.1111/j.1475-097x.2012.01140.x.

[17] Edouard P, Gasq D, Calmels P, Degache F. Sensorimotor control deficiency in

recurrent anterior shoulder instability assessed with a stabilometric force

platform. J Shoulder Elb Surg. 2014; 23(3): 355–360. doi:

10.1016/j.jse.2013.06.005.

24

[18] Westrick RB, Miller JM, Carow SD, Gerber JP. Exploration of the y-balance

test for assessment of upper quarter closed kinetic chain performance. Int J

Sports Phys Ther. 2012; 7(2): 139–147.

[19] Myers H, Poletti M, Butler RJ. Functional performance on the upper quarter Ybalance test differs between high school baseball players and wrestlers. J Sport

Rehabil. 2016; 26(3): 146–154. doi: 10.1123/jsr.2015-0168.

[20] Butler RJ, Myers HS, Black D, Kiesel KB, Plisky PJ, Moorman CT 3rd, et al.

Bilateral differences in the upper quarter function of high school aged baseball

and softball players. Int J Sports Phys Ther. 2014; 9(4): 518–524.

[21] Gorman PP, Butler RJ, Plisky PJ, Kiesel KB. Upper quarter Y balance test:

reliability and performance comparison between genders in active adults. J

Strength Cond Res. 2012; 26(11): 3043–3048. doi:

10.1519/jsc.0b013e3182472fdb.

[22] Buschbacher RM. Anatomical guide for the electromyographer: the limbs and

trunk. Am J Phys Med Rehabil. 2007; 86(3): 204. doi:

10.1097/PHM.0b013e31803217b1.

[23] Norris B, Trudelle-Jackson E. Hip- and thigh-muscle activation during the star

excursion balance test. J Sport Rehabil. 2011; 20(4): 428–441. doi:

10.1123/jsr.20.4.428.

25

[24] Boettcher CE, Ginn KA, Cathers I. Standard maximum isometric voluntary

contraction tests for normalizing shoulder muscle EMG. J Orthop Res. 2008;

26(12): 1591–1597. doi: 10.1002/jor.20675.

[25] Beyranvand R, Mirnasouri R, Mollahoseini S, Mostofi M. The functional

stability of the upper limbs in healthy and rounded shoulder gymnasts. Sci

Gymnast J. 2017; 9(3): 279–290.

[26] Cochrane DJ. The potential neural mechanisms of acute indirect vibration. J

Sport Sci Med. 2011; 10(1): 19–30.

[27] Grant MJ, Hawkes DH, McMahon J, Horsley I, Khaiyat OA. Vibration as an

adjunct to exercise: its impact on shoulder muscle activation. Eur J Appl

Physiol. 2019; 119(8): 1789–1798. doi: 10.1007/s00421-019-04168-9.

[28] Roll JP, Vedel JP, Ribot E. Alteration of proprioceptive messages induced by

tendon vibration in man: a microneurographic study. Exp Brain Res. 1989;

76(1): 213–222. doi: 10.1007/BF00253639

[29] Bove M, Courtine G, Schieppati M. Neck muscle vibration and spatial

orientation during stepping in place in humans. J Neurophysiol. 2002; 88(5);

2232–2241. doi: 10.1152/jn.00198.2002

[30] Choi WJ, Yoon TL, Choi SA, Lee JH, Cynn HS. Different weight bearing pushup plus exercises with and without isometric horizontal abduction in subjects

26

with scapular winging: a randomized trial. J Bodyw Mov Ther. 2017; 21(3):

582–588. doi: 10.1016/j.jbmt.2016.08.018.

[31] Suprak DN, Bohannon J, Morales G, Stroschein J, San Juan JG. Scapular

kinematics and shoulder elevation in a traditional push-up. J Athl Train. 2013;

48(6): 826–835. doi: 10.4085/1062-6050-48.5.08.

[32] Kibler WB, McMullen J. Scapular dyskinesis and its relation to shoulder pain. J

Am Acad Orthop Surg. 2003; 11(2): 142–151. doi: 10.5435/00124635200303000-00008.

[33] Andrade R, Araújo RC, Tucci HT, Martins J, Oliveira AS. Coactivation of the

shoulder and arm muscles during closed kinetic chain exercises on an unstable

surface. Singapore Med J. 2011; 52(1); 35–41.

[34] Park S, Yoo W. Differential activation of parts of the serratus anterior muscle

during push-up variations on stable and unstable bases of support. J

Electromyogr Kinesiol. 2011: 21(5); 861–867. doi:

10.1016/j.jelekin.2011.07.001.

[35] Falsone SA, Gross MT, Guskiewicz KM, Schneider RA. One-arm hop test:

reliability and effects of arm dominance. J Orthop Sports Phys Ther. 2002;

32(3): 98–103. doi: 10.2519/jospt.2002.32.3.98.

27

[36] Roush JR, Kitamura J, Waits MC. Reference values for the closed Kinetic

Chain Upper Extremity Stability Test (CKCUEST) for collegiate baseball

players. N Am J Sports Phys Ther. 2007; 2(3): 159–163.

[37] Basmajian JV. Muscles alive: their functions revealed by electromyography

(5th ed), Williams and Wilkins. Baltimore. 1985: p. 19–64

28

Table 1. Outcome measures in the stabilometric test at pre-exercise and at the end of exercise

Control condition

Variables

Pre

Post

CoP velocity with

eye open [mm/s]

9.7±1.15

9.78±1.29

CoP velocity with

eye closed

[mm/s]

9.71±1.36 9.7±1.3

Interaction effect

(condition × time)

Vibration condition

Pre

Post

ηp2

Stabilometric test

9.66±1.33 9.73±1.17

0.006 0.94

10±1.58

1.092 0.315 0.078

9.77±1.25

CoP, center of pressure; ηp2, partial η2; Pre-, pre-exercise; Post, post-exercise

Table 2. Outcome measures in the UQYBT score at pre-exercise and at the end of exercise

Control condition

Variables

Pre

Post

Interaction effect

(condition × time)

Vibration condition

Pre

Post

ηp2

UQYBT score

(%)

Medial

101.7±6.6 99.9±7

<0.05 101.5±6.2 104.7±6.5 <0.05 21.404 <0.01 0.605

77.4±7.4

75.5±8.6

<0.01 76.3±8.5

Lateroinferior

87.2±9.1

Composite

88.8±6.5

Laterosuperior

80.1±8

<0.01 12.049 <0.01 0.463

85.1±10.3 0.081 85.5±8.1

89.1±7.4

<0.05 13.583 <0.01 0.492

86.9±7.4

91.1±5.3

<0.01 21.362 <0.01 0.604

<0.01 87.8±5.9

ηp2, partial η2; Pre, pre-exercise; Post, post-exercise; UQYBT, Upper Quarter Y Balance Test

Table 3. Outcome measures of shoulder muscle activity at pre-exercise and at the end of exercise

Interaction effect

Control condition

Vibration condition

(condition × time)

Variables

ηp2

<0.01

6.294

<0.05

0.31

94.4±38.6 110.4±48.6 <0.05

4.869

<0.05

0.258

57.7±32.6 62.2±33.3 <0.05

57.3±27.2 72.4±34.2

<0.01

7.655

<0.05

0.353

13.9±6.2

16.3±10.6 17.1±11.5

0.407

7.134

<0.05

0.338

Pre

Post

Pre

Post

Muscle

Activity (%)

Infraspinatus

Medial

45.1±28.6 49.4±31.0 <0.01

Laterosuperior 74.9±31.8 75±32.2

Lateroinferior

0.983

44.1±21.8 55.2±25.9

Posterior

deltoid

Medial

17±7.4

<0.05

Laterosuperior 12.2±6.5

12.4±5.9

11.1±6

12.9±9

2.188

0.161

0.135

Lateroinferior

13.3±5.7

10.4±4.1

13.4±6.1

1.346

0.265

0.088

11.9±5

Serratus

anterior

Medial

54.9±19.7 53.9±16.2 0.678

57.3±23.7 64.1±27.4

<0.01

6.944

<0.05

0.332

Laterosuperior 50.8±16.6 49.9±10.8

48.3±18.8 51.3±22.5

1.217

0.289

0.08

Lateroinferior

78.1±28

76.7±22.8

76.7±30.2 84.4±32.5

2.47

0.138

0.15

6.4±3.5

6.8±2.9

8.2±6

8.3±4.6

0.188

0.671

0.013

Laterosuperior 13.9±9

15.2±9

19.7±16.7 18±12.8

2.471

0.138

0.15

Lateroinferior

14.7±9

14.5±6.8

17.2±11.9 18.3±11.9

1.24

0.284

0.081

11.1±4.1

11.2±5

6.109

<0.05

0.304

Upper

trapezius

Medial

Lower

trapezius

Medial

0.921

11.4±4.9

15.4±6.7

<0.01

Laterosuperior 11.4±4.9

8.7±6

10.6±6.8

10.3±7.2

0.184

0.675

0.013

Lateroinferior

6±3

6.4±3.6

6.8±4.7

0.031

0.863

0.002

8.4±4.6

ηp2, partial η2; Pre, pre-exercise; Post, post-exercise; UQYBT, Upper Quarter Y Balance Test

Table 4. Change of rate in the stabilometric test, UQYBT score, and muscle activity

between the 0-Hz and 50-Hz conditions.

Change of rate [%]

Stabilometric Test

COP velocity with eye open

COP velocity with eye closed

Influence of vision index

UQYBT score

Medial

Laterosuperior

Lateroinferior

Compiste

10

11

12

13

Musle Activity

Infraspinatus

Medial

Laterosuperior

Lateroinferior

Posterior deltoid

Medial

Laterosuperior

Lateroinferior

Serratus anteroir

Medial

Laterosuperior

Lateroinferior

Upper trapezius

Medial

Laterosuperior

Lateroinferior

Lower trapezius

Medial

Laterosuperior

Lateroinferior

UQYBT; upper quarter Y balance test.

Vibration frequency

0Hz

50Hz

0.8 ± 4.8

0.2 ± 6.1

-17.3 ± 316.0

9.8 ± 1.3

9.7 ± 1.3

-0.7 ± 5.1

0.894

0.395

0.458

-1.7 ± 2.4

-2.5 ± 5.1

-2.4 ± 4.0

-2.2 ± 3.2

3.2 ± 3.3

5.2 ± 5.7

4.4 ± 4.9

3.9 ± 3.0

<0.001

<0.001

<0.001

<0.001

11.0 ± 13.4

1.3 ± 13.8

8.2 ± 15.4

27.6 ± 17.1

18.0 ± 19.5

27.8 ± 21.6

0.006

0.011

0.008

25.2 ± 28.3

4.0 ± 18.1

15.7 ± 26.8

4.5 ± 14.7

11.8 ± 17.6

27.7 ± 27.3

0.018

0.237

0.237

0.8 ± 17.3

2.1 ± 18.5

2.1 ± 19.4

11.5 ± 12.8

5.4 ± 14.8

12.4 ± 24.3

0.065

0.591

0.212

19.4 ± 32.3

13.5 ± 24.5

9.7 ± 27.8

68.0 ± 169.7

5.6 ± 34.5

16.2 ± 37.5

0.286

0.480

0.593

0.7 ± 31.4

-0.4 ± 20.3

14.1 ± 44.0

36.7 ± 48.7

-1.1 ± 31.7

6.4 ± 26.9

0.023

0.948

0.566

14

Figure legends

15

Figure 1. Experimental set up for vibration exercise in the modified push-up position

16

17

Figure 2. Experimental set up for the upper limb static stability test in the modified

18

push-up position

19

20

Figure 3. Upper Quarter Y Balance Test reach directions

21

22

23

Figures

24

25

26

27

28

29

30

31

Fig. 1

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

Fig. 2

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

Fig. 3

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る