リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「肺上皮細胞におけるmTOR活性化が肺線維症の病態に及ぼす影響についての解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

肺上皮細胞におけるmTOR活性化が肺線維症の病態に及ぼす影響についての解析

齋藤, 美奈子 東京大学 DOI:10.15083/0002005053

2022.06.22

概要

特発性肺線維症(IPF)は原因不明で慢性かつ進行性の経過をたどり、最終的に不可逆的な線維性病変を形成し高度の拘束性換気障害を呈する極めて予後不良な疾患である。その病態については十分に解明されていない点が多いが、様々な慢性刺激による肺胞上皮細胞の傷害と異常修復の進行、そしてII型肺胞上皮細胞から産生されるサイトカイン・ケモカインや増殖因子による上皮間葉転換(EMT)の進行がIPFの重要な病態であるとされている。

近年、mTOR経路の活性化が肺線維症の病態に寄与することが示唆されてきている。しかし、これまでは、主に線維芽細胞や筋線維芽細胞におけるmTOR経路の役割を解明してきた研究がほとんどであり、肺線維症の発症への関与が示唆されている肺胞上皮傷害及びEMTとmTOR経路の関連についての研究はほとんどない。また、mTOR経路の関与の証明においても、ほとんどがmTOR阻害薬であるラパマイシンを用いた間接的なmTOR経路の関与の証明であり、mTORの直接的な活性化が肺に及ぼす研究はこれまでにない。本研究では肺上皮特異的に恒常的にキナーゼ活性を示す変異型mTORマウスを作成し、ブレオマイシン刺激肺線維症モデルを用いて、mTORの働きを直接的に解析し、IPFの病態及び、mTOR及びその下流遺伝子が治療のターゲットになる可能性について検討することとした。

まず、14週齢の活性型mTORマウスの表現型をコントロールマウスと比較した。病理学的、肺生理学的解析において明らかな違いは認めなかったが、活性型mTORマウス肺から抽出したmRNA発現量では、タイトジャンクションを構成するタンパクであるZO-1とEMTに抑制的に作用するCaveolin-1(Cav-1)の発現が、有意に活性型mTORマウスで低下していることがわかった。

次に肺胞上皮癌細胞株であるA549細胞と初代ヒト肺胞上皮細胞を用いてinvitro実験でも検証した。その結果、蛍光免疫染色において、活性型mTORベクターのトランスフェクションにより有意にZO-1及びCav-1の発現低下が認められ、マウス肺の解析と矛盾しない結果であった。さらに、mTOR活性化がタイトジャンクションを構成するZO-1の発現を低下させ、EMTの制御を抑制する可能性が示唆されたことから、活性型mTORがA549細胞において、EMTを誘導するかを検証したところ、活性型mTOR過剰発現A549細胞では、ウェスタンブロッティングにおいて、TGFβ1刺激後に有意にvimentinの発現が増強しており、EMTを促進することが示唆された。

さらに、肺上皮特異的なmTOR活性化が肺線維症を増強するかを検証するために、12週齢の活性型mTORマウス及びコントロールマウスにブレオマイシンを気管内投与し、14日後に解析した。その結果、ブレオマイシン投与により活性型mTORマウスはコントロールマウスと比較して、病理学的解析ではびまん性に線維性病変の増強を認め、肺生理学的解析では、有意に肺コンプライアンスの低下及び抵抗の上昇を認め、両肺のコラーゲン量も有意に増加しており、ブレオマイシン気管内投与によって肺線維化がより増強されることが示唆された。肺上皮細胞においてmTOR活性化によりZO-1及びCav-1の発現が低下することで、タイトジャンクションが脆弱化しEMT抑制作用が軽減しており、さらにブレオマイシンによる強い上皮傷害によって肺胞上皮細胞の異常修復が進み、再上皮化が機能せず、EMTが促進し線維化の増悪をきたしたと推察された。

肺上皮特異的なmTORの活性化が肺線維症の病態に関与していることが示されたため、さらにその分子生物学的機序を解明するために、マウスのII型肺胞上皮細胞を単離してRNAシークエンス解析による網羅的発現解析を行った。その結果、Angiopoietin-like4(ANGPTL4)の発現が活性型mTORマウスにおいて大きく発現が亢進しており、インフルエンザ感染マウスモデルの先行研究において、ANGPTL4がII型肺胞上皮細胞に発現が上昇し、肺組織透過性を亢進することが示唆されていたことから、本研究ではANGPTL4に注目してさらに解析を行った。

まず、活性型mTORで発現低下がみられたZO-1及びCav-1の発現がmTOR下流に位置するANGPTL4によって発現が制御されているかを検証した。A549細胞と初代ヒト肺胞上皮細胞においてANGPTL4過剰発現ベクターをトランスフェクションしたところ、免疫蛍光染色においてZO-1及びCav-1の発現が有意に低下していた。さらに、初代ヒト肺胞上皮細胞においてANGPTL4をノックダウンすると、ZO-1の発現量は有意な上昇を認め、Cav1は有意な増加は認めなかったが、上昇傾向を認めた。したがって、ANGPTL4の新たな機能として、ZO-1及びCav-1の発現調節に関与している可能性が示唆された。さらに、ANGPTL4過剰発現A549細胞にTGFβ1刺激をしてEMTを誘導し、ウェスタンブロッティングで解析したところ、ANGPTL4過剰発現A549細胞はコントロールと比較して有意にEcadherinの発現低下を認め、ANGPTL4がEMTを促進することが示唆された。

本研究の結果から、肺上皮細胞におけるmTOR経路の活性化が肺胞上皮のタイトジャンクションの脆弱化及び、EMT促進に関与していることが示唆され、IPFの病態に関与している可能性が示された。さらに、mTOR経路下流に位置するANGPTL4が、ZO-1及びCav1の発現調節に関与し、IPF治療のおける新規ターゲットである可能性が示唆された。

この論文で使われている画像

参考文献

1. Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, Flaherty KR, Wells A, Martinez FJ, Azuma A, Bice TJ, Bouros D, Brown KK, Collard HR, Duggal A, Galvin L, Inoue Y, Jenkins RG, Johkoh T, Kazerooni EA, Kitaichi M, Knight SL, Mansour G, Nicholson AG, Pipavath SNJ, Buendia-Roldan I, Selman M, Travis WD, Walsh S, Wilson KC. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am J Respir Crit Care Med; 198: e44-e68; 2018.

2. Natsuizaka M, Chiba H, Kuronuma K, Otsuka M, Kudo K, Mori M, Bando M, Sugiyama Y, Takahashi H. Epidemiologic survey of Japanese patients with idiopathic pulmonary fibrosis and investigation of ethnic differences. Am J Respir Crit Care Med; 190: 773-779; 2014.

3. Raghu G, Rochwerg B, Zhang Y, Garcia CA, Azuma A, Behr J, Brozek JL, Collard HR, Cunningham W, Homma S, Johkoh T, Martinez FJ, Myers J, Protzko SL, Richeldi L, Rind D, Selman M, Theodore A, Wells AU, Hoogsteden H, Schunemann HJ. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: Treatment of Idiopathic Pulmonary Fibrosis. An Update of the 2011 Clinical Practice Guideline. Am J Respir Crit Care Med; 192: e3-19; 2015.

4. Brown KK, Flaherty KR, Cottin V, Raghu G, Inoue Y, Azuma A, Huggins JT, Richeldi L, Stowasser S, Stansen W, Schlenker-Herceg R, Maher TM, Wells AU. Lung function outcomes in the INPULSIS((R)) trials of nintedanib in idiopathic pulmonary fibrosis. Respir Med; 146: 42-48; 2019.

5. Zurkova M, Kriegova E, Kolek V, Lostakova V, Sterclova M, Bartos V, Doubkova M, Binkova I, Svoboda M, Strenkova J, Janotova M, Plackova M, Lacina L, Rihak V, Petrik F, Lisa P, Bittenglova R, Tyl R, Ondrejka G, Suldova H, Lnenicka J, Psikalova J, Snizek T, Homolka J, Kralova R, Kervitzer J, Vasakova M. Effect of pirfenidone on lung function decline and survival: 5-yr experience from a real-life IPF cohort from the Czech EMPIRE registry. Respir Res; 20: 16; 2019.

6. Selman M, Pardo A. Idiopathic pulmonary fibrosis: an epithelial/fibroblastic cross-talk disorder. Respir Res; 3: 3; 2002.

7. Selman M, Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol; 29: S93-97; 2003.

8. Lederer DJ, Martinez FJ. Idiopathic Pulmonary Fibrosis. N Engl J Med; 378: 1811- 1823; 2018.

9. Konigshoff M, Balsara N, Pfaff EM, Kramer M, Chrobak I, Seeger W, Eickelberg O. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One; 3: e2142; 2008.

10. Stewart GA, Hoyne GF, Ahmad SA, Jarman E, Wallace WA, Harrison DJ, Haslett C, Lamb JR, Howie SE. Expression of the developmental Sonic hedgehog (Shh) signalling pathway is up-regulated in chronic lung fibrosis and the Shh receptor patched 1 is present in circulating T lymphocytes. J Pathol; 199: 488-495; 2003.

11. King TE, Jr., Pardo A, Selman M. Idiopathic pulmonary fibrosis. Lancet; 378: 1949- 1961; 2011.

12. Selman M, Pardo A. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc; 3: 364-372; 2006.

13. Demling N, Ehrhardt C, Kasper M, Laue M, Knels L, Rieber EP. Promotion of cell adherence and spreading: a novel function of RAGE, the highly selective differentiation marker of human alveolar epithelial type I cells. Cell Tissue Res; 323: 475-488; 2006.

14. Queisser MA, Kouri FM, Konigshoff M, Wygrecka M, Schubert U, Eickelberg O, Preissner KT. Loss of RAGE in pulmonary fibrosis: molecular relations to functional changes in pulmonary cell types. Am J Respir Cell Mol Biol; 39: 337- 345; 2008.

15. Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol; 2: 285-293; 2001.

16. Neuhaus W, Samwer F, Kunzmann S, Muellenbach RM, Wirth M, Speer CP, Roewer N, Forster CY. Lung endothelial cells strengthen, but brain endothelial cells weaken barrier properties of a human alveolar epithelium cell culture model. Differentiation; 84: 294-304; 2012.

17. Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol; 103: 755-766; 1986.

18. Poritz LS, Garver KI, Green C, Fitzpatrick L, Ruggiero F, Koltun WA. Loss of the tight junction protein ZO-1 in dextran sulfate sodium induced colitis. J Surg Res; 140: 12-19; 2007.

19. Shi YY, Liu TJ, Fu JH, Xu W, Wu LL, Hou AN, Xue XD. Vitamin D/VDR signaling attenuates lipopolysaccharideinduced acute lung injury by maintaining the integrity of the pulmonary epithelial barrier. Mol Med Rep; 13: 1186-1194; 2016.

20. Miyoshi K, Yanagi S, Kawahara K, Nishio M, Tsubouchi H, Imazu Y, Koshida R, Matsumoto N, Taguchi A, Yamashita S, Suzuki A, Nakazato M. Epithelial Pten controls acute lung injury and fibrosis by regulating alveolar epithelial cell integrity. Am J Respir Crit Care Med; 187: 262-275; 2013.

21. Mihai C, Bao S, Lai JP, Ghadiali SN, Knoell DL. PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol; 302: L287-299; 2012.

22. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, Wikenheiser-Brokamp KA, Perl AT, Funari VA, Gokey JJ, Stripp BR, Whitsett JA. Single-cell RNA sequencing identifies diverse roles of epithelial cells in idiopathic pulmonary fibrosis. JCI Insight; 1: e90558; 2016.

23. Hardie WD, Glasser SW, Hagood JS. Emerging concepts in the pathogenesis of lung fibrosis. Am J Pathol; 175: 3-16; 2009.

24. Tanjore H, Xu XC, Polosukhin VV, Degryse AL, Li B, Han W, Sherrill TP, Plieth D, Neilson EG, Blackwell TS, Lawson WE. Contribution of epithelial-derived fibroblasts to bleomycin-induced lung fibrosis. Am J Respir Crit Care Med; 180: 657-665; 2009.

25. Kalluri R, Neilson EG. Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest; 112: 1776-1784; 2003.

26. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol; 166: 1321-1332; 2005.

27. Larsson O, Diebold D, Fan D, Peterson M, Nho RS, Bitterman PB, Henke CA. Fibrotic myofibroblasts manifest genome-wide derangements of translational control. PLoS One; 3: e3220; 2008.

28. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest; 119: 1420-1428; 2009.

29. Strutz F, Zeisberg M, Ziyadeh FN, Yang CQ, Kalluri R, Muller GA, Neilson EG. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int; 61: 1714-1728; 2002.

30. Tourkina E, Gooz P, Pannu J, Bonner M, Scholz D, Hacker S, Silver RM, Trojanowska M, Hoffman S. Opposing effects of protein kinase Calpha and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J Biol Chem; 280: 13879-13887; 2005.

31. Tourkina E, Hoffman S. Caveolin-1 signaling in lung fibrosis. Open Rheumatol J; 6: 116-122; 2012.

32. Kulshrestha R, Singh H, Pandey A, Mehta A, Bhardwaj S, Jaggi AS. Caveolin-1 as a critical component in the pathogenesis of lung fibrosis of different etiology: Evidences and mechanisms. Exp Mol Pathol; 111: 104315; 2019.

33. Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J, Henke CA. Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol; 176: 2626- 2637; 2010.

34. Nho RS, Peterson M, Hergert P, Henke CA. FoxO3a (Forkhead Box O3a) deficiency protects Idiopathic Pulmonary Fibrosis (IPF) fibroblasts from type I polymerized collagen matrix-induced apoptosis via caveolin-1 (cav-1) and Fas. PLoS One; 8: e61017; 2013.

35. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res; 17: 50; 2016.

36. Wang R, Ramos C, Joshi I, Zagariya A, Pardo A, Selman M, Uhal BD. Human lung myofibroblast-derived inducers of alveolar epithelial apoptosis identified as angiotensin peptides. Am J Physiol; 277: L1158-1164; 1999.

37. Waghray M, Cui Z, Horowitz JC, Subramanian IM, Martinez FJ, Toews GB, Thannickal VJ. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. Faseb j; 19: 854- 856; 2005.

38. Kulasekaran P, Scavone CA, Rogers DS, Arenberg DA, Thannickal VJ, Horowitz JC. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol; 41: 484-493; 2009.

39. Della Latta V, Cecchettini A, Del Ry S, Morales MA. Bleomycin in the setting of lung fibrosis induction: From biological mechanisms to counteractions. Pharmacol Res; 97: 122-130; 2015.

40. Tashiro J, Rubio GA, Limper AH, Williams K, Elliot SJ, Ninou I, Aidinis V, Tzouvelekis A, Glassberg MK. Exploring Animal Models That Resemble Idiopathic Pulmonary Fibrosis. Front Med (Lausanne); 4: 118; 2017.

41. Allen RJ, Guillen-Guio B, Oldham JM, Ma SF, Dressen A, Paynton ML, Kraven LM, Obeidat M, Li X, Ng M, Braybrooke R, Molina-Molina M, Hobbs BD, Putman RK, Sakornsakolpat P, Booth HL, Fahy WA, Hart SP, Hill MR, Hirani N, Hubbard RB, McAnulty RJ, Millar AB, Navaratnam V, Oballa E, Parfrey H, Saini G, Whyte MKB, Zhang Y, Kaminski N, Adegunsoye A, Strek ME, Neighbors M, Sheng XR, Gudmundsson G, Gudnason V, Hatabu H, Lederer DJ, Manichaikul A, Newell JD, Jr., O'Connor GT, Ortega VE, Xu H, Fingerlin TE, Bosse Y, Hao K, Joubert P, Nickle DC, Sin DD, Timens W, Furniss D, Morris AP, Zondervan K, Hall IP, Sayers I, Tobin MD, Maher TM, Cho MH, Hunninghake GM, Schwartz DA, Yaspan BL, Molyneaux PL, Flores C, Noth I, Jenkins RG, Wain LV. Genome- Wide Association Study of Susceptibility to Idiopathic Pulmonary Fibrosis. Am J Respir Crit Care Med 2019.

42. Goc A, Choudhary M, Byzova TV, Somanath PR. TGFbeta- and bleomycin-induced extracellular matrix synthesis is mediated through Akt and mammalian target of rapamycin (mTOR). J Cell Physiol; 226: 3004-3013; 2011.

43. Han B, Chu C, Su X, Zhang N, Zhou L, Zhang M, Yang S, Shi L, Zhao B, Niu Y, Zhang R. N(6)-methyladenosine-dependent primary microRNA-126 processing activated PI3K-AKT-mTOR pathway drove the development of pulmonary fibrosis induced by nanoscale carbon black particles in rats. Nanotoxicology: 1- 20; 2019.

44. Sabatini DM, Erdjument-Bromage H, Lui M, Tempst P, Snyder SH. RAFT1: a mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs. Cell; 78: 35-43; 1994.

45. Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell; 168: 960-976; 2017.

46. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell; 149: 274-293; 2012.

47. Dazert E, Hall MN. mTOR signaling in disease. Curr Opin Cell Biol; 23: 744-755; 2011.

48. Yates DH. mTOR treatment in lymphangioleiomyomatosis: the role of everolimus. Expert Rev Respir Med; 10: 249-260; 2016.

49. Vicary GW, Roman J. Targeting the Mammalian Target of Rapamycin in Lung Cancer. Am J Med Sci; 352: 507-516; 2016.

50. Mitani A, Ito K, Vuppusetty C, Barnes PJ, Mercado N. Restoration of Corticosteroid Sensitivity in Chronic Obstructive Pulmonary Disease by Inhibition of Mammalian Target of Rapamycin. Am J Respir Crit Care Med; 193: 143-153; 2016.

51. Nho RS, Hergert P. IPF fibroblasts are desensitized to type I collagen matrix-induced cell death by suppressing low autophagy via aberrant Akt/mTOR kinases. PLoS One; 9: e94616; 2014.

52. Bai L, Bernard K, Tang X, Hu M, Horowitz JC, Thannickal VJ, Sanders YY. Glutaminolysis Epigenetically Regulates Antiapoptotic Gene Expression in Idiopathic Pulmonary Fibrosis Fibroblasts. Am J Respir Cell Mol Biol; 60: 49-57; 2019.

53. Lawrence J, Nho R. The Role of the Mammalian Target of Rapamycin (mTOR) in Pulmonary Fibrosis. Int J Mol Sci; 19; 2018.

54. Bernard M, Yang B, Migneault F, Turgeon J, Dieude M, Olivier MA, Cardin GB, ElDiwany M, Underwood K, Rodier F, Hebert MJ. Autophagy drives fibroblast senescence through MTORC2 regulation. Autophagy: 1-13; 2020.

55. Kuwano K, Araya J, Hara H, Minagawa S, Takasaka N, Ito S, Kobayashi K, Nakayama K. Cellular senescence and autophagy in the pathogenesis of chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF). Respir Investig; 54: 397-406; 2016.

56. Houssaini A, Breau M, Kebe K, Abid S, Marcos E, Lipskaia L, Rideau D, Parpaleix A, Huang J, Amsellem V, Vienney N, Validire P, Maitre B, Attwe A, Lukas C, Vindrieux D, Boczkowski J, Derumeaux G, Pende M, Bernard D, Meiners S, Adnot S. mTOR pathway activation drives lung cell senescence and emphysema. JCI Insight; 3; 2018.

57. Chung EJ, Sowers A, Thetford A, McKay-Corkum G, Chung SI, Mitchell JB, Citrin DE. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model. Int J Radiat Oncol Biol Phys; 96: 857-866; 2016.

58. Xu Y, Tai W, Qu X, Wu W, Li Z, Deng S, Vongphouttha C, Dong Z. Rapamycin protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2 signaling pathway. Biochem Biophys Res Commun; 490: 535-540; 2017.

59. Wang SH, Li LH, Zou DM, Zheng XM, Deng J. Roles of the mammalian target of rapamycin (mTOR) signaling pathway in the repair of hyperoxia-induced acute lung injury. Adv Clin Exp Med 2019.

60. Ohne Y, Takahara T, Hatakeyama R, Matsuzaki T, Noda M, Mizushima N, Maeda T. Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem; 283: 31861-31870; 2008.

61. Kassai H, Sugaya Y, Noda S, Nakao K, Maeda T, Kano M, Aiba A. Selective activation of mTORC1 signaling recapitulates microcephaly, tuberous sclerosis, and neurodegenerative diseases. Cell Rep; 7: 1626-1639; 2014.

62. Hato T, Kimura Y, Morisada T, Koh GY, Miyata K, Tabata M, Kadomatsu T, Endo M, Urano T, Arai F, Araki K, Suda T, Kobayashi K, Oike Y. Angiopoietins contribute to lung development by regulating pulmonary vascular network formation. Biochem Biophys Res Commun; 381: 218-223; 2009.

63. Ashcroft T, Simpson JM, Timbrell V. Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J Clin Pathol; 41: 467-470; 1988.

64. Demaio L, Tseng W, Balverde Z, Alvarez JR, Kim KJ, Kelley DG, Senior RM, Crandall ED, Borok Z. Characterization of mouse alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol; 296: L1051-1058; 2009.

65. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics; 26: 139-140; 2010.

66. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV, Clark NR, Ma'ayan A. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics; 14: 128; 2013.

67. Summer R, Shaghaghi H, Schriner D, Roque W, Sales D, Cuevas-Mora K, Desai V, Bhushan A, Ramirez MI, Romero F. Activation of the mTORC1/PGC-1 axis promotes mitochondrial biogenesis and induces cellular senescence in the lung epithelium. Am J Physiol Lung Cell Mol Physiol; 316: L1049-l1060; 2019.

68. Li L, Chong HC, Ng SY, Kwok KW, Teo Z, Tan EH, Choo CC, Seet JE, Choi HW, Buist ML, Chow VT, Tan NS. Angiopoietin-like 4 Increases Pulmonary Tissue Leakiness and Damage during Influenza Pneumonia. Cell Rep 2015.

69. Hu K, Babapoor-Farrokhran S, Rodrigues M, Deshpande M, Puchner B, Kashiwabuchi F, Hassan SJ, Asnaghi L, Handa JT, Merbs S, Eberhart CG, Semenza GL, Montaner S, Sodhi A. Hypoxia-inducible factor 1 upregulation of both VEGF and ANGPTL4 is required to promote the angiogenic phenotype in uveal melanoma. Oncotarget; 7: 7816-7828; 2016.

70. La Paglia L, Listi A, Caruso S, Amodeo V, Passiglia F, Bazan V, Fanale D. Potential Role of ANGPTL4 in the Cross Talk between Metabolism and Cancer through PPAR Signaling Pathway. PPAR Res; 2017: 8187235; 2017.

71. Theofilatos D, Fotakis P, Valanti E, Sanoudou D, Zannis V, Kardassis D. HDL-apoAI induces the expression of angiopoietin like 4 (ANGPTL4) in endothelial cells via a PI3K/AKT/FOXO1 signaling pathway. Metabolism; 87: 36-47; 2018.

72. Yu G, Xiao CL, Lu CH, Jia HT, Ge F, Wang W, Yin XF, Jia HL, He JX, He QY. Phosphoproteome profile of human lung cancer cell line A549. Mol Biosyst; 7: 472-479; 2011.

73. Chapman HA. Epithelial responses to lung injury: role of the extracellular matrix. Proc Am Thorac Soc; 9: 89-95; 2012.

74. Strieter RM, Mehrad B. New mechanisms of pulmonary fibrosis. Chest; 136: 1364- 1370; 2009.

75. Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol; 301: L40-49; 2011.

76. Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol; 297: L219-227; 2009.

77. Jung K, Schlenz H, Krasteva G, Muhlfeld C. Alveolar epithelial type II cells and their microenvironment in the caveolin-1-deficient mouse. Anat Rec (Hoboken); 295: 196-200; 2012.

78. Kim KK, Wei Y, Szekeres C, Kugler MC, Wolters PJ, Hill ML, Frank JA, Brumwell AN, Wheeler SE, Kreidberg JA, Chapman HA. Epithelial cell alpha3beta1 integrin links beta-catenin and Smad signaling to promote myofibroblast formation and pulmonary fibrosis. J Clin Invest; 119: 213-224; 2009.

79. Byrne AJ, Maher TM, Lloyd CM. Pulmonary Macrophages: A New Therapeutic Pathway in Fibrosing Lung Disease? Trends Mol Med; 22: 303-316; 2016.

80. Misharin AV, Morales-Nebreda L, Reyfman PA, Cuda CM, Walter JM, McQuattiePimentel AC, Chen CI, Anekalla KR, Joshi N, Williams KJN, Abdala-Valencia H, Yacoub TJ, Chi M, Chiu S, Gonzalez-Gonzalez FJ, Gates K, Lam AP, Nicholson TT, Homan PJ, Soberanes S, Dominguez S, Morgan VK, Saber R, Shaffer A, Hinchcliff M, Marshall SA, Bharat A, Berdnikovs S, Bhorade SM, Bartom ET, Morimoto RI, Balch WE, Sznajder JI, Chandel NS, Mutlu GM, Jain M, Gottardi CJ, Singer BD, Ridge KM, Bagheri N, Shilatifard A, Budinger GRS, Perlman H. Monocyte-derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J Exp Med; 214: 2387-2404; 2017.

81. Yang J, Agarwal M, Ling S, Teitz-Tennenbaum S, Zemans RL, Osterholzer JJ, Sisson TH, Kim KK. Diverse Injury Pathways Induce Alveolar Epithelial Cell CCL2/12 Which Promotes Lung Fibrosis. Am J Respir Cell Mol Biol 2020.

82. Santulli G. Angiopoietin-like proteins: a comprehensive look. Front Endocrinol (Lausanne); 5: 4; 2014.

83. Tan MJ, Teo Z, Sng MK, Zhu P, Tan NS. Emerging roles of angiopoietin-like 4 in human cancer. Mol Cancer Res; 10: 677-688; 2012.

84. Wang Y, Chen H, Li H, Zhang J, Gao Y. Effect of angiopoietin-like protein 4 on rat pulmonary microvascular endothelial cells exposed to LPS. Int J Mol Med; 32: 568-576; 2013.

85. Stapleton CM, Joo JH, Kim YS, Liao G, Panettieri RA, Jr., Jetten AM. Induction of ANGPTL4 expression in human airway smooth muscle cells by PMA through activation of PKC and MAPK pathways. Exp Cell Res; 316: 507-516; 2010.

86. Zhu P, Goh YY, Chin HF, Kersten S, Tan NS. Angiopoietin-like 4: a decade of research. Biosci Rep; 32: 211-219; 2012.

87. Zhu P, Tan MJ, Huang RL, Tan CK, Chong HC, Pal M, Lam CR, Boukamp P, Pan JY, Tan SH, Kersten S, Li HY, Ding JL, Tan NS. Angiopoietin-like 4 protein elevates the prosurvival intracellular O2(-):H2O2 ratio and confers anoikis resistance to tumors. Cancer Cell; 19: 401-415; 2011.

88. Ge H, Yang G, Huang L, Motola DL, Pourbahrami T, Li C. Oligomerization and regulated proteolytic processing of angiopoietin-like protein 4. J Biol Chem; 279: 2038-2045; 2004.

89. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Lam CR, Yau YH, Tan CK, Huang RL, Tan SM, Tang MB, Ding JL, Kersten S, Tan NS. Angiopoietin-like 4 interacts with integrins beta1 and beta5 to modulate keratinocyte migration. Am J Pathol; 177: 2791-2803; 2010.

90. Goh YY, Pal M, Chong HC, Zhu P, Tan MJ, Punugu L, Tan CK, Huang RL, Sze SK, Tang MB, Ding JL, Kersten S, Tan NS. Angiopoietin-like 4 interacts with matrix proteins to modulate wound healing. J Biol Chem; 285: 32999-33009; 2010.

91. Zhang Z, Cao L, Li J, Liang X, Liu Y, Liu H, Du J, Qu Z, Cui M, Liu S, Gao L, Ma C, Zhang L, Han L, Sun W. Acquisition of anoikis resistance reveals a synoikislike survival style in BEL7402 hepatoma cells. Cancer Lett; 267: 106-115; 2008.

92. Yang YH, Wang Y, Lam KS, Yau MH, Cheng KK, Zhang J, Zhu W, Wu D, Xu A. Suppression of the Raf/MEK/ERK signaling cascade and inhibition of angiogenesis by the carboxyl terminus of angiopoietin-like protein 4. Arterioscler Thromb Vasc Biol; 28: 835-840; 2008.

93. Zhu X, Guo X, Wu S, Wei L. ANGPTL4 Correlates with NSCLC Progression and Regulates Epithelial-Mesenchymal Transition via ERK Pathway. Lung; 194: 637- 646; 2016.

94. Teo Z, Sng MK, Chan JSK, Lim MMK, Li Y, Li L, Phua T, Lee JYH, Tan ZW, Zhu P, Tan NS. Elevation of adenylate energy charge by angiopoietin-like 4 enhances epithelial-mesenchymal transition by inducing 14-3-3gamma expression. Oncogene; 36: 6408-6419; 2017.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る