リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Comprehensive identification of proteins associating with a human microRNA-mediated gene silencing factor, TNRC6A, and its phosphorylation patterns for elucidating its functions in the nucleus and cytoplasm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Comprehensive identification of proteins associating with a human microRNA-mediated gene silencing factor, TNRC6A, and its phosphorylation patterns for elucidating its functions in the nucleus and cytoplasm

須澤, 壮崇 東京大学 DOI:10.15083/0002001912

2021.10.04

概要

【序論】
ノンコーディングRNA(ncRNA)の⼀種であるmicroRNA(miRNA)は、20数塩基の短いRNAであり、細胞質において相補的な塩基配列をもつmRNAの分解や翻訳抑制を引き起こすことで、遺伝⼦発現を負に制御する。この機構はRNAサイレンシングと呼ばれ、分化や発⽣、細胞死やストレス応答などの多岐に渡る⽣命機能を制御する。しかしながら、近年、miRNAは細胞質だけでなく、核内にも存在することが明らかとなってきた。これにより、核内に存在するRNAを標的とした新たな遺伝⼦発現制御機構の存在が⽰唆され、その分⼦機構の解明が進められている。
miRNAは細胞質において、Argonaute(AGO)タンパク質へと取り込まれるが、AGOは、⾜場タンパク質であるGW182ファミリータンパク質を介してCCR4-NOT脱アデニル化複合体と相互作⽤することで、miRNA-induced silencing complex (miRISC)と呼ばれる複合体を形成する。miRNA-AGO複合体の核輸送については、これまで輸送タンパク質であるImportin8による機構が知られていたが、当研究室では、GW182ファミリータンパク質であるTrinucleotide repeat-containing gene6A(TNRC6A)が核-細胞質間シャトリングタンパク質であり、miRNA-AGO複合体を核内へと輸送するという新たな機構を明らかにした(Nishi et al. 2013)。TNRC6AによるmiRNAの核移⾏は、ゼブラフィッシュの脳の神経前駆細胞の未分化状態維持に関わることや、ヒトの胃癌・前⽴腺癌などの癌化した細胞やハエの胚発⽣初期(細胞膜形成時)で認められていることなどから、miRNA-AGOを含む核内TNRC6A複合体は、細胞の分化や恒常性維持、発⽣などの種々のプロセスにおける遺伝⼦発現制御に関わると考えられる。しかしながら、核内における遺伝⼦発現制御のメカニズムや、その基盤となる核内TNRC6A複合体の構成因⼦は解明されていない。そこで本研究では、核内TNRC6A複合体の機能解明に向けて、質量分析法を⽤いて核内および細胞質TNRC6Aの相互作⽤因⼦の解析を⾏った。同時に、TNRC6A由来のペプチド断⽚のリン酸化パターンを解析した結果、TNRC6Aは核と細胞質で異なるリン酸化パターンを⽰す可能性が⽰唆された。そこで、本研究では、リン酸化がAGOとの相互作⽤およびRNAサイレンシングに及ぼす影響を解析した。

【⽅法・結果】
核内および細胞質TNRC6A複合体の免疫沈降による単離TNRC6Aは、細胞質-核シャトリングタンパク質であるが、ヒトHeLa細胞では、主に細胞質に局在し、核内には僅かにしか存在しない。そこで、核内TNRC6A複合体の回収には、先⾏研究で明らかにしたTNRC6Aの核外移⾏配列(Nuclear Export Signal, NES)に変異を導⼊することで核局在化させたTNRC6A-NES-mutantを⽤いた。まず、FLAG/HA/SBPタグを付加したTNRC6A-NES-mutantをHeLa細胞に発現させ、細胞質画分と核画分に分画した。核画分からFLAG抗体を⽤いてTNRC6A-NES-mutantを免疫沈降し、免疫沈降物を質量分析で解析した。細胞質TNRC6Aの回収には、TNRC6Aの核移⾏配列列(Nuclear Localization Signal, NLS)に変異を導⼊し核移⾏を阻害したTNRC6A-NLS-mutantを⽤いた。FLAG/HA/SBPタグを付加したTNRC6A-NLS-mutantをHeLa細胞に発現させ、その細胞質画分からFLAG抗体を⽤いてTNRC6A-NLS-mutantの免疫沈降を⾏い、質量分析で解析した。

TNRC6Aの核と細胞質における相互作⽤因⼦の同定と解析
質量分析により、核内および細胞質TNRC6A相互作⽤因⼦としてそれぞれ628種類、522種類の因⼦が検出された。興味深いことに、核内TNRC6Aの免疫沈降物中で検出された因⼦のうち、上位10因⼦には、miRISC構成因⼦が多く含まれており、AGOだけでなくCCR4-NOT複合体の⼀部であるCNOT1も検出された(表1)。CCR4-NOT複合体は、細胞質で脱アデニル化によるmRNA不安定化をもたらすが、哺乳類における核内機能はほとんど解明されていない。そこで、まず核内におけるTNRC6AとCNOT1の相互作⽤を免疫沈降実験により検証した。FLAG/HA/SBPタグを付加した野⽣型TNRC6AとTNRC6A-NES-mutantをHeLa細胞に発現させ、細胞質および⼩胞体画分を分離して得られた核画分からFLAG抗体でTNRC6Aの免疫沈降を⾏った。その結果、野⽣型およびTNRC6A-NES-mutantの両⽅を⽤いた場合の核画分でCNOT1との相互作⽤が確認された(図1⾚枠)。CCR4-NOT複合体は、酵⺟などでは核内でヒストンメチル化酵素などのクロマチンリモデリング因⼦と協働して転写調節に寄与することが報告されているが、本研究により、ヒトにおいても、CCR4-NOT複合体は核内でTNRC6Aと協働して何らかの機能を持つことが⽰唆された。
また、分⼦間ネットワークに関する情報を統合したデータベースであるKyoto Encyclopedia of Genes and Genomes (KEGG)を⽤いて、質量分析で検出された全因⼦の機能分類を⾏った結果、miRISC構成因⼦以外に、細胞質TNRC6A複合体にはウイルス・細菌感染に関わる因⼦、核内TNRC6A複合体にはスプライソソーム構成因⼦なども含まれていることが明らかになった(図2)。これらの結果より、TNRC6Aは細胞質と核でそれぞれ異なる機能を持つ因⼦と相互作⽤することで、複数の遺伝⼦調節機構に関与する可能性が⽰唆された。そこで次に、細胞内局在に応じてTNRC6Aが相互作⽤因⼦を切り替える機構を検討する⽬的で、質量分析の結果明らかとなったTNRC6Aのリン酸化の影響を検討した。

TNRC6Aのリン酸化が相互作⽤因⼦に与える影響
質量分析により、TNRC6Aの全⻑に渡って計17箇所のリン酸化候補残基を⾒出した。それらの中には、細胞質または核内TNRC6Aに特異的なリン酸化部位も存在した。これらのリン酸化が、核内および細胞質TNRC6Aの機能に影響を与える可能性を明らかにするため、本研究では、AGO2との相互作⽤への影響を調べた。TNRC6Aは、N末端側のAGO binding domainと呼ばれる領域内に、AGO2との相互作⽤に重要な3つのGW-motif(GW-I, GW-II, GW-III)を持ち、それぞれがAGO2と相互作⽤する。まず、各GW-motifにおけるリン酸化候補残基の変異体を⽤いた解析を⾏うことで、細胞内において実際にリン酸化を受ける残基を、GW-IとGW-IIに1箇所ずつ、GW-III motifに2箇所の計4箇所同定した。これらのリン酸化残基のうち、GW-II motifのリン酸化残基(738番⽬のセリン,S738)をアラニンに置換してリン酸化を阻害したところ、GW-II motifとAGO2の相互作⽤が⼤きく減少した(図3)。さらに、それに伴うRNAサイレンシング活性の減弱も確認された。GW-II otifのリン酸化は、質量分析では細胞質TNRC6Aで特異的に検出されていたことから、TNRC6Aが細胞質に存在する場合は、S738はリン酸化され、AGO2との相互作⽤が促進されることでRNAサイレンシング活性が増強されるが、核移⾏すると脱リン酸化されAGO2が解離される可能性が⽰唆された。これらの結果から、核と細胞質におけるTNRC6Aのリン酸化状態の変化が、AGO2との相互作⽤や、複合体構成因⼦の切り替えに寄与することが推測される。現在、AGOとの相互作⽤におけるリン酸化の機能の詳細な解析を進めるとともに、AGO binding domain以外の領域のリン酸化残基の同定および機能解析も進めている。

【まとめ・展望】
本研究では、核内TNRC6Aの機能解明に向けて、核内および細胞質TNRC6Aの相互作⽤因⼦を質量分析法により解析した。その結果、TNRC6Aは核内で、細胞質における場合と同様にmiRISC複合体因⼦およびCCR4-NOT複合体の⼀部と相互作⽤することが明らかになった。また、KEGGを⽤いた解析から、核内では他にスプライシング関連因⼦などと相互作⽤する可能性が⽰唆された(Suzawa et al. 2017)。これらの結果より、核内TNRC6Aは、スプライシングの制御やCCR4-NOT複合体と協働した遺伝⼦発現制御に関わることが推定される。また、TNRC6Aのリン酸化が、AGOとの相互作⽤およびRNAサイレンシング活性の増強に寄与することを明らかにした。質量分析の結果、細胞質と核内TNRC6Aはそれぞれ異なる残基がリン酸化を受けていたことから、核-細胞質移⾏に伴うTNRC6Aのリン酸化状態の変化が、核-細胞質における相互作⽤因⼦の切り替えや機能の変換を制御している可能性が⽰唆された(図4)。今後は、核内TNRC6A-CCR4-NOT複合体が標的とする遺伝⼦の解析や遺伝⼦発現に与える影響を解析することで、核内TNRC6Aによる遺伝⼦制御の分⼦メカニズムの解明を⽬指す。

この論文で使われている画像

参考文献

Alberti, C. and Cochella, L. 2017. A framework for understanding the roles of miRNAs in animal development. Development 144: 2548-2559.

Allo, M., Buggiano, V., Fededa, J.P., Petrillo, E., Schor, I., de la Mata, M., Agirre, E., Plass, M., Eyras, E., Elela, S.A. et al. 2009. Control of alternative splicing through siRNA-mediated transcriptional gene silencing. Nat. Struct. Mol. Biol. 16: 717-724.

Ameres, S.L. and Zamore, P.D. 2013. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14: 475-488.

Ameyar-Zazoua, M., Rachez, C., Souidi, M., Robin, P., Fritsch, L., Young, R., Morozova, N., Fenouil, R., Descostes, N., Andrau, J.C. et al. 2012. Argonaute proteins couple chromatin silencing to alternative splicing. Nat. Struct. Mol. Biol. 19: 998-1004.

Ayoubian, H., Ludwig, N., Fehlmann, T., Menegatti, J., Groger, L., Anastasiadou, E., Trivedi, P., Keller, A., Meese, E. and Grasser, F.A. 2018. Infection of cell lines derived from diffuse large B-cell lymphoma (DLBCL) with the Epstein-Barr virus (EBV) alters the miRNA loading of the Ago2- complex. J. Virol. 93: e01297-18

Azzouz, N., Panasenko, O.O., Colau, G. and Collart, M.A. 2009. The CCR4-NOT complex physically and functionally interacts with TRAMP and the nuclear exosome. PLoS One 4: e6760.

Bartel, D.P. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136: 215-233.

Baubec, T. and Schubeler, D. 2014. Genomic patterns and context specific interpretation of DNA methylation. Curr. Opin. Genet. Dev. 25: 85-92.

Behm-Ansmant, I., Rehwinkel, J., Doerks, T., Stark, A., Bork, P. and Izaurralde, E. 2006. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20: 1885-1898.

Braun, J.E., Huntzinger, E., Fauser, M. and Izaurralde, E. 2011. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol. Cell 44: 120-133.

Chapat, C., Jafarnejad, S.M., Matta-Camacho, E., Hesketh, G.G., Gelbart, I.A., Attig, J., Gkogkas, C.G., Alain, T., Stern-Ginossar, N., Fabian, M.R. et al. 2017. Cap-binding protein 4EHP effects translation silencing by microRNAs. Proc. Natl. Acad. Sci. U. S. A. 114: 5425-5430.

Chekulaeva, M., Filipowicz, W. and Parker, R. 2009. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA 15: 794-803.

Chekulaeva, M., Mathys, H., Zipprich, J.T., Attig, J., Colic, M., Parker, R. and Filipowicz, W. 2011. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W- containing motifs. Nat. Struct. Mol. Biol. 18: 1218-1226.

Chen, J., Chiang, Y.C. and Denis, C.L. 2002. CCR4, a 3'-5' poly(A) RNA and ssDNA exonuclease, is the catalytic component of the cytoplasmic deadenylase. EMBO J. 21: 1414-1426.

Chen, Y., Boland, A., Kuzuoglu-Ozturk, D., Bawankar, P., Loh, B., Chang, C.T., Weichenrieder, O. and Izaurralde, E. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol. Cell 54: 737-750.

Chu, C.Y. and Rana, T.M. 2006. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4: e210.

Chukwurah, E. and Patel, R.C. 2018. Stress-induced TRBP phosphorylation enhances its interaction with PKR to regulate cellular survival. Sci. Rep. 8: 1020-018-19360-8.

Collart, M.A. 2016. The Ccr4-Not complex is a key regulator of eukaryotic gene expression. Wiley Interdiscip. Rev. RNA 7: 438-454.

Cougot, N., Babajko, S. and Seraphin, B. 2004. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 165: 31-40.

Cui, Y., Ramnarain, D.B., Chiang, Y.C., Ding, L.H., McMahon, J.S. and Denis, C.L. 2008. Genome wide expression analysis of the CCR4-NOT complex indicates that it consists of three modules with the NOT module controlling SAGA-responsive genes. Mol. Genet. Genomics 279: 323-337.

Drake, M., Furuta, T., Suen, K.M., Gonzalez, G., Liu, B., Kalia, A., Ladbury, J.E., Fire, A.Z., Skeath, J.B. and Arur, S. 2014. A requirement for ERK-dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in C. elegans. Dev. Cell. 31: 614-628.

Elkayam, E., Faehnle, C.R., Morales, M., Sun, J., Li, H. and Joshua-Tor, L. 2017. Multivalent Recruitment of Human Argonaute by GW182. Mol. Cell 67: 646-658.e3.

Eulalio, A., Huntzinger, E., Nishihara, T., Rehwinkel, J., Fauser, M. and Izaurralde, E. 2009a. Deadenylation is a widespread effect of miRNA regulation. RNA 15: 21-32.

Eulalio, A., Helms, S., Fritzsch, C., Fauser, M. and Izaurralde, E. 2009b. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15: 1067-1077.

Eulalio, A., Tritschler, F. and Izaurralde, E. 2009c. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA 15: 1433-1442.

Eystathioy, T., Chan, E.K., Tenenbaum, S.A., Keene, J.D., Griffith, K. and Fritzler, M.J. 2002. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 13: 1338-1351.

Ezhkova, E. and Tansey, W.P. 2004. Proteasomal ATPases link ubiquitylation of histone H2B to methylation of histone H3. Mol. Cell 13: 435-442.

Fabian, M.R., Cieplak, M.K., Frank, F., Morita, M., Green, J., Srikumar, T., Nagar, B., Yamamoto, T., Raught, B., Duchaine, T.F. et al. 2011. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat. Struct. Mol. Biol. 18: 1211-1217.

Fabian, M.R., Mathonnet, G., Sundermeier, T., Mathys, H., Zipprich, J.T., Svitkin, Y.V., Rivas, F., Jinek, M., Wohlschlegel, J., Doudna, J.A. et al. 2009. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol. Cell 35: 868-880.

Ferdous, A., Kodadek, T. and Johnston, S.A. 2002. A nonproteolytic function of the 19S regulatory subunit of the 26S proteasome is required for efficient activated transcription by human RNA polymerase II. Biochemistry 41: 12798-12805.

Francia, S., Michelini, F., Saxena, A., Tang, D., de Hoon, M., Anelli, V., Mione, M., Carninci, P. and d'Adda di Fagagna, F. 2012. Site-specific DICER and DROSHA RNA products control the DNA- damage response. Nature 488: 231-235.

Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. 2009. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19: 92-105.

Fromm, S.A., Truffault, V., Kamenz, J., Braun, J.E., Hoffmann, N.A., Izaurralde, E. and Sprangers, R. 2012. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J. 31: 279-290.

Fukao, A., Mishima, Y., Takizawa, N., Oka, S., Imataka, H., Pelletier, J., Sonenberg, N., Thoma, C. and Fujiwara, T. 2014. MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol. Cell 56: 79-89.

Fukaya, T., Iwakawa, H.O. and Tomari, Y. 2014. MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol. Cell 56: 67-78.

Fukaya, T. and Tomari, Y. 2012. MicroRNAs mediate gene silencing via multiple different pathways in drosophila. Mol. Cell 48: 825-836.

Gagnon, K.T., Li, L., Chu, Y., Janowski, B.A. and Corey, D.R. 2014. RNAi factors are present and active in human cell nuclei. Cell. Rep. 6: 211-221.

Gebert, L.F.R. and MacRae, I.J. 2019. Regulation of microRNA function in animals. Nat. Rev. Mol. Cell Biol. 20: 21-37.

Ghildiyal, M. and Zamore, P.D. 2009. Small silencing RNAs: an expanding universe. Nat. Rev. Genet. 10: 94-108.

Goh, A.M., Walters, K.J., Elsasser, S., Verma, R., Deshaies, R.J., Finley, D. and Howley, P.M. 2008. Components of the ubiquitin-proteasome pathway compete for surfaces on Rad23 family proteins. BMC Biochem. 9: 4-2091-9-4.

Gonzalez, F., Delahodde, A., Kodadek, T. and Johnston, S.A. 2002. Recruitment of a 19S proteasome subcomplex to an activated promoter. Science 296: 548-550.

Guo, H., Kazadaeva, Y., Ortega, F.E., Manjunath, N. and Desai, T.J. 2017. Trinucleotide repeat containing 6c (TNRC6c) is essential for microvascular maturation during distal airspace sacculation in the developing lung. Dev. Biol. 430: 214-223.

Ha, M. and Kim, V.N. 2014. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 15: 509- 524.

Hafner, M., Landthaler, M., Burger, L., Khorshid, M., Hausser, J., Berninger, P., Rothballer, A., Ascano, M.,Jr, Jungkamp, A.C., Munschauer, M. et al. 2010. Transcriptome-wide identification of RNA- binding protein and microRNA target sites by PAR-CLIP. Cell 141: 129-141.

Heard, E., Clerc, P. and Avner, P. 1997. X-chromosome inactivation in mammals. Annu. Rev. Genet. 31: 571-610.

Hetzer, M.W. 2010. The nuclear envelope. Cold Spring Harb Perspect. Biol. 2: a000539.

Hicks, J.A., Li, L., Matsui, M., Chu, Y., Volkov, O., Johnson, K.C. and Corey, D.R. 2017. Human GW182 Paralogs Are the Central Organizers for RNA-Mediated Control of Transcription. Cell. Rep. 20: 1543-1552.

Hock, J., Weinmann, L., Ender, C., Rudel, S., Kremmer, E., Raabe, M., Urlaub, H. and Meister, G. 2007. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 8: 1052-1060.

Horman, S.R., Janas, M.M., Litterst, C., Wang, B., MacRae, I.J., Sever, M.J., Morrissey, D.V., Graves, P., Luo, B., Umesalma, S. et al. 2013. Akt-mediated phosphorylation of argonaute 2 downregulates cleavage and upregulates translational repression of MicroRNA targets. Mol. Cell 50: 356-367.

Hu, G., Kim, J., Xu, Q., Leng, Y., Orkin, S.H. and Elledge, S.J. 2009. A genome-wide RNAi screen identifies a new transcriptional module required for self-renewal. Genes Dev. 23: 837-848.

Hu, H.Y., Yan, Z., Xu, Y., Hu, H., Menzel, C., Zhou, Y.H., Chen, W. and Khaitovich, P. 2009. Sequence features associated with microRNA strand selection in humans and flies. BMC Genomics 10: 413- 2164-10-413.

Huang da, W., Sherman, B.T. and Lempicki, R.A. 2009a. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res.37: 1-13.

Huang da, W., Sherman, B.T. and Lempicki, R.A. 2009b. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44-57.

Huang, K.L., Chadee, A.B., Chen, C.Y., Zhang, Y. and Shyu, A.B. 2013. Phosphorylation at intrinsically disordered regions of PAM2 motif-containing proteins modulates their interactions with PABPC1 and influences mRNA fate. RNA 19: 295-305.

Iaccarino, I., Palombo, F., Drummond, J., Totty, N.F., Hsuan, J.J., Modrich, P. and Jiricny, J. 1996. MSH6, a Saccharomyces cerevisiae protein that binds to mismatches as a heterodimer with MSH2. Curr. Biol. 6: 484-486.

Ioshikhes, I.P. and Zhang, M.Q. 2000. Large-scale human promoter mapping using CpG islands. Nat. Genet. 26: 61-63.

Jakymiw, A., Lian, S., Eystathioy, T., Li, S., Satoh, M., Hamel, J.C., Fritzler, M.J. and Chan, E.K. 2005. Disruption of GW bodies impairs mammalian RNA interference. Nat. Cell Biol.7: 1267-1274.

Jiang, Z., Yu, N., Kuang, P., Chen, M., Shao, F., Martin, G., Chui, D.H., Cardoso, W.V., Ai, X. and Lu, J. 2012. Trinucleotide repeat containing 6a (Tnrc6a)-mediated microRNA function is required for development of yolk sac endoderm. J. Biol. Chem. 287: 5979-5987.

Jonas, S. and Izaurralde, E. 2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16: 421-433.

Kalantari, R., Chiang, C.M. and Corey, D.R. 2016a. Regulation of mammalian transcription and splicing by Nuclear RNAi. Nucleic Acids Res. 44: 524-537.

Kalantari, R., Hicks, J.A., Li, L., Gagnon, K.T., Sridhara, V., Lemoff, A., Mirzaei, H. and Corey, D.R. 2016b. Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA 22: 1085-1098.

Katz, S., Cussigh, D., Urban, N., Blomfield, I., Guillemot, F., Bally-Cuif, L. and Coolen, M. 2016. A Nuclear Role for miR-9 and Argonaute Proteins in Balancing Quiescent and Activated Neural Stem Cell States. Cell. Rep. 17: 1383-1398.

Khvorova, A., Reynolds, A. and Jayasena, S.D. 2003. Functional siRNAs and miRNAs exhibit strand bias. Cell 115: 209-216.

Kim, M.S., Oh, J.E., Kim, Y.R., Park, S.W., Kang, M.R., Kim, S.S., Ahn, C.H., Yoo, N.J. and Lee, S.H. 2010. Somatic mutations and losses of expression of microRNA regulation-related genes AGO2 and TNRC6A in gastric and colorectal cancers. J. Pathol. 221: 139-146.

Kim, Y., Yeo, J., Lee, J.H., Cho, J., Seo, D., Kim, J.S. and Kim, V.N. 2014. Deletion of human tarbp2 reveals cellular microRNA targets and cell-cycle function of TRBP. Cell. Rep. 9: 1061-1074.

Kinoshita, E., Takahashi, M., Takeda, H., Shiro, M. and Koike, T. 2004. Recognition of phosphate monoester dianion by an alkoxide-bridged dinuclear zinc(II) complex. Dalton Trans. (8):1189-93.

Kloosterman, W.P. and Plasterk, R.H. 2006. The diverse functions of microRNAs in animal development and disease. Dev. Cell. 11: 441-450.

Ko, M., Huang, Y., Jankowska, A.M., Pape, U.J., Tahiliani, M., Bandukwala, H.S., An, J., Lamperti, E.D., Koh, K.P., Ganetzky, R. et al. 2010. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468: 839-843.

Kruk, J.A., Dutta, A., Fu, J., Gilmour, D.S. and Reese, J.C. 2011. The multifunctional Ccr4-Not complex directly promotes transcription elongation. Genes Dev. 25: 581-593.

Kwak, J., Workman, J.L. and Lee, D. 2011. The proteasome and its regulatory roles in gene expression. Biochim. Biophys. Acta 1809: 88-96.

Landthaler, M., Gaidatzis, D., Rothballer, A., Chen, P.Y., Soll, S.J., Dinic, L., Ojo, T., Hafner, M., Zavolan, M. and Tuschl, T. 2008. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14: 2580-2596.

Landthaler, M., Yalcin, A. and Tuschl, T. 2004. The human DiGeorge syndrome critical region gene 8 and Its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14: 2162-2167.

Laribee, R.N., Shibata, Y., Mersman, D.P., Collins, S.R., Kemmeren, P., Roguev, A., Weissman, J.S., Briggs, S.D., Krogan, N.J. and Strahl, B.D. 2007. CCR4/NOT complex associates with the proteasome and regulates histone methylation. Proc. Natl. Acad. Sci. U. S. A. 104: 5836-5841.

Lazzaretti, D., Tournier, I. and Izaurralde, E. 2009. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA 15: 1059-1066.

Leach, F.S., Nicolaides, N.C., Papadopoulos, N., Liu, B., Jen, J., Parsons, R., Peltomaki, P., Sistonen, P., Aaltonen, L.A. and Nystrom-Lahti, M. 1993. Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75: 1215-1225.

Lee, D., Ezhkova, E., Li, B., Pattenden, S.G., Tansey, W.P. and Workman, J.L. 2005. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators. Cell 123: 423-436.

Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. et al. 2003. The nuclear RNase III Drosha initiates microRNA processing. Nature 425: 415-419.

Li, E., Beard, C. and Jaenisch, R. 1993. Role for DNA methylation in genomic imprinting. Nature 366: 362-365.

Li, G.M. 2008. Mechanisms and functions of DNA mismatch repair. Cell Res. 18: 85-98.

Li, S., Wang, L., Fu, B., Berman, M.A., Diallo, A. and Dorf, M.E. 2014. TRIM65 regulates microRNA activity by ubiquitination of TNRC6. Proc. Natl. Acad. Sci. U. S. A. 111: 6970-6975.

Lian, S.L., Li, S., Abadal, G.X., Pauley, B.A., Fritzler, M.J. and Chan, E.K. 2009. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA 15: 804-813.

Lim, S., Kwak, J., Kim, M. and Lee, D. 2013. Separation of a functional deubiquitylating module from the SAGA complex by the proteasome regulatory particle. Nat. Commun. 4: 2641.

Liu, H., Lei, C., He, Q., Pan, Z., Xiao, D. and Tao, Y. 2018a. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol. Cancer. 17: 64-018-0765-5.

Liu, J., Hu, J. and Corey, D.R. 2012. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing. Nucleic Acids Res. 40: 1240-1250.

Liu, J., Liu, Z. and Corey, D.R. 2018b. The Requirement for GW182 Scaffolding Protein Depends on Whether Argonaute Is Mediating Translation, Transcription, or Splicing. Biochemistry 57: 5247-5256.

Liu, J., Rivas, F.V., Wohlschlegel, J., Yates, J.R.,3rd, Parker, R. and Hannon, G.J. 2005. A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7: 1261-1266.

MacRae, I.J., Zhou, K. and Doudna, J.A. 2007. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14: 934-940.

Mathonnet, G., Fabian, M.R., Svitkin, Y.V., Parsyan, A., Huck, L., Murata, T., Biffo, S., Merrick, W.C., Darzynkiewicz, E., Pillai, R.S. et al. 2007. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317: 1764-1767.

Mathys, H., Basquin, J., Ozgur, S., Czarnocki-Cieciura, M., Bonneau, F., Aartse, A., Dziembowski, A., Nowotny, M., Conti, E. and Filipowicz, W. 2014. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol. Cell 54: 751-765.

Matranga, C., Tomari, Y., Shin, C., Bartel, D.P. and Zamore, P.D. 2005. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123: 607-620.

Mauri, M., Kirchner, M., Aharoni, R., Ciolli Mattioli, C., van den Bruck, D., Gutkovitch, N., Modepalli, V., Selbach, M., Moran, Y. and Chekulaeva, M. 2017. Conservation of miRNA-mediated silencing mechanisms across 600 million years of animal evolution. Nucleic Acids Res. 45: 938-950.

Meijer, H.A., Kong, Y.W., Lu, W.T., Wilczynska, A., Spriggs, R.V., Robinson, S.W., Godfrey, J.D., Willis, A.E. and Bushell, M. 2013. Translational repression and eIF4A2 activity are critical for microRNA-mediated gene regulation. Science 340: 82-85.

Meister, G., Landthaler, M., Peters, L., Chen, P.Y., Urlaub, H., Luhrmann, R. and Tuschl, T. 2005. Identification of novel argonaute-associated proteins. Curr. Biol. 15: 2149-2155.

Mishima, Y., Fukao, A., Kishimoto, T., Sakamoto, H., Fujiwara, T. and Inoue, K. 2012. Translational inhibition by deadenylation-independent mechanisms is central to microRNA-mediated silencing in zebrafish. Proc. Natl. Acad. Sci. U. S. A. 109: 1104-1109.

Morel, A.P., Sentis, S., Bianchin, C., Le Romancer, M., Jonard, L., Rostan, M.C., Rimokh, R. and Corbo, L. 2003. BTG2 antiproliferative protein interacts with the human CCR4 complex existing in vivo in three cell-cycle-regulated forms. J. Cell. Sci. 116: 2929-2936.

Mulder, K.W., Brenkman, A.B., Inagaki, A., van den Broek, N.J. and Timmers, H.T. 2007. Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res. 35: 2428-2439.

Nguyen, T.A., Jo, M.H., Choi, Y.G., Park, J., Kwon, S.C., Hohng, S., Kim, V.N. and Woo, J.S. 2015. Functional Anatomy of the Human Microprocessor. Cell 161: 1374-1387.

Nishi, K., Nishi, A., Nagasawa, T. and Ui-Tei, K. 2013. Human TNRC6A is an Argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA 19: 17-35.

Nishi, K., Takahashi, T., Suzawa, M., Miyakawa, T., Nagasawa, T., Ming, Y., Tanokura, M. and Ui- Tei, K. 2015. Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Res. 43: 9856-9873.

Nishimura, T., Padamsi, Z., Fakim, H., Milette, S., Dunham, W.H., Gingras, A.C. and Fabian, M.R. 2015. The eIF4E-Binding Protein 4E-T Is a Component of the mRNA Decay Machinery that Bridges the 5' and 3' Termini of Target mRNAs. Cell. Rep. 11: 1425-1436.

Okada-Katsuhata, Y., Yamashita, A., Kutsuzawa, K., Izumi, N., Hirahara, F. and Ohno, S. 2012. N- and C-terminal Upf1 phosphorylations create binding platforms for SMG-6 and SMG-5:SMG-7 during NMD. Nucleic Acids Res. 40: 1251-1266.

Park, J.E., Heo, I., Tian, Y., Simanshu, D.K., Chang, H., Jee, D., Patel, D.J. and Kim, V.N. 2011. Dicer recognizes the 5' end of RNA for efficient and accurate processing. Nature 475: 201-205.

Paroo, Z., Ye, X., Chen, S. and Liu, Q. 2009. Phosphorylation of the human microRNA-generating complex mediates MAPK/Erk signaling. Cell 139: 112-122.

Pastor, W.A., Aravind, L. and Rao, A. 2013. TETonic shift: biological roles of TET proteins in DNA demethylation and transcription. Nat. Rev. Mol. Cell Biol. 14: 341-356.

Patel, P.H., Barbee, S.A. and Blankenship, J.T. 2016. GW-Bodies and P-Bodies Constitute Two Separate Pools of Sequestered Non-Translating RNAs. PLoS One 11: e0150291.

Pauli, A., Rinn, J.L. and Schier, A.F. 2011. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12: 136-149.

Peng, W., Togawa, C., Zhang, K. and Kurdistani, S.K. 2008. Regulators of cellular levels of histone acetylation in Saccharomyces cerevisiae. Genetics 179: 277-289.

Pfaff, J., Hennig, J., Herzog, F., Aebersold, R., Sattler, M., Niessing, D. and Meister, G. 2013. Structural features of Argonaute-GW182 protein interactions. Proc. Natl. Acad. Sci. U. S. A. 110: E3770-9.

Provost, P., Dishart, D., Doucet, J., Frendewey, D., Samuelsson, B. and Radmark, O. 2002. Ribonuclease activity and RNA binding of recombinant human Dicer. EMBO J. 21: 5864-5874.

Qi, H.H., Ongusaha, P.P., Myllyharju, J., Cheng, D., Pakkanen, O., Shi, Y., Lee, S.W., Peng, J. and Shi, Y. 2008. Prolyl 4-hydroxylation regulates Argonaute 2 stability. Nature 455: 421-424.

Rand, T.A., Petersen, S., Du, F. and Wang, X. 2005. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123: 621-629.

Rao, H. and Sastry, A. 2002. Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J. Biol. Chem. 277: 11691-11695.

Rivett, A.J. 1998. Intracellular distribution of proteasomes. Curr. Opin. Immunol. 10: 110-114.

Rudel, S., Wang, Y., Lenobel, R., Korner, R., Hsiao, H.H., Urlaub, H., Patel, D. and Meister, G. 2011. Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Res. 39: 2330-2343.

Ryu, I., Park, J.H., An, S., Kwon, O.S. and Jang, S.K. 2013. eIF4GI facilitates the MicroRNA- mediated gene silencing. PLoS One 8: e55725.

Sahin, U., Lapaquette, P., Andrieux, A., Faure, G. and Dejean, A. 2014. Sumoylation of human argonaute 2 at lysine-402 regulates its stability. PLoS One 9: e102957.

Sarshad, A.A., Juan, A.H., Muler, A.I.C., Anastasakis, D.G., Wang, X., Genzor, P., Feng, X., Tsai, P.F., Sun, H.W., Haase, A.D. et al. 2018. Argonaute-miRNA Complexes Silence Target mRNAs in the Nucleus of Mammalian Stem Cells. Mol. Cell 71: 1040-1050.e8.

Savas, J.N., Makusky, A., Ottosen, S., Baillat, D., Then, F., Krainc, D., Shiekhattar, R., Markey, S.P. and Tanese, N. 2008. Huntington's disease protein contributes to RNA-mediated gene silencing through association with Argonaute and P bodies. Proc. Natl. Acad. Sci. U. S. A. 105: 10820-10825.

Scharer, O.D. 2013. Nucleotide excision repair in eukaryotes. Cold Spring Harb Perspect. Biol. 5: a012609.

Schirle, N.T. and MacRae, I.J. 2012. The crystal structure of human Argonaute2. Science 336: 1037- 1040.

Schraivogel, D., Schindler, S.G., Danner, J., Kremmer, E., Pfaff, J., Hannus, S., Depping, R. and Meister, G. 2015. Importin-beta facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res. 43: 7447-7461.

Schwarz, D.S., Hutvagner, G., Du, T., Xu, Z., Aronin, N. and Zamore, P.D. 2003. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115: 199-208.

Shen, J., Xia, W., Khotskaya, Y.B., Huo, L., Nakanishi, K., Lim, S.O., Du, Y., Wang, Y., Chang, W.C., Chen, C.H. et al. 2013. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497: 383-387.

Sheu-Gruttadauria, J. and MacRae, I.J. 2018. Phase Transitions in the Assembly and Function of Human miRISC. Cell 173: 946-957.e16.

Stalder, L., Heusermann, W., Sokol, L., Trojer, D., Wirz, J., Hean, J., Fritzsche, A., Aeschimann, F., Pfanzagl, V., Basselet, P. et al. 2013. The rough endoplasmatic reticulum is a central nucleation site of siRNA-mediated RNA silencing. EMBO J. 32: 1115-1127.

Sugasawa, K., Ng, J.M., Masutani, C., Maekawa, T., Uchida, A., van der Spek, P.J., Eker, A.P., Rademakers, S., Visser, C., Aboussekhra, A. et al. 1997. Two human homologs of Rad23 are functionally interchangeable in complex formation and stimulation of XPC repair activity. Mol. Cell. Biol. 17: 6924-6931.

Takimoto, K., Wakiyama, M. and Yokoyama, S. 2009. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA 15: 1078-1089.

Taliaferro, J.M., Aspden, J.L., Bradley, T., Marwha, D., Blanchette, M. and Rio, D.C. 2013. Two new and distinct roles for Drosophila Argonaute-2 in the nucleus: alternative pre-mRNA splicing and transcriptional repression. Genes Dev. 27: 378-389.

Tanaka, K. 2009. The proteasome: overview of structure and functions. Proc. Jpn. Acad. Ser. B. Phys. Biol. Sci. 85: 12-36.

Tang, R., Li, L., Zhu, D., Hou, D., Cao, T., Gu, H., Zhang, J., Chen, J., Zhang, C.Y. and Zen, K. 2012. Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system. Cell Res. 22: 504-515.

Taus, T., Kocher, T., Pichler, P., Paschke, C., Schmidt, A., Henrich, C. and Mechtler, K. 2011. Universal and confident phosphorylation site localization using phosphoRS. J. Proteome Res. 10: 5354-5362.

Tian, Y., Simanshu, D.K., Ma, J.B., Park, J.E., Heo, I., Kim, V.N. and Patel, D.J. 2014. A phosphate- binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol. Cell 53: 606- 616.

Till, S., Lejeune, E., Thermann, R., Bortfeld, M., Hothorn, M., Enderle, D., Heinrich, C., Hentze, M.W. and Ladurner, A.G. 2007. A conserved motif in Argonaute-interacting proteins mediates functional interactions through the Argonaute PIWI domain. Nat. Struct. Mol. Biol. 14: 897-903.

Tritschler, F., Braun, J.E., Eulalio, A., Truffault, V., Izaurralde, E. and Weichenrieder, O. 2009. Structural basis for the mutually exclusive anchoring of P body components EDC3 and Tral to the DEAD box protein DDX6/Me31B. Mol. Cell 33: 661-668.

Tucker, M., Valencia-Sanchez, M.A., Staples, R.R., Chen, J., Denis, C.L. and Parker, R. 2001. The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104: 377-386.

Venters, B.J., Wachi, S., Mavrich, T.N., Andersen, B.E., Jena, P., Sinnamon, A.J., Jain, P., Rolleri, N.S., Jiang, C., Hemeryck-Walsh, C. et al. 2011. A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol. Cell 41: 480-492.

Wahl, M.C., Will, C.L. and Luhrmann, R. 2009. The spliceosome: design principles of a dynamic RNP machine. Cell 136: 701-718.

Wahle, E. and Winkler, G.S. 2013. RNA decay machines: deadenylation by the Ccr4-not and Pan2- Pan3 complexes. Biochim. Biophys. Acta 1829: 561-570.

Wakiyama, M., Takimoto, K., Ohara, O. and Yokoyama, S. 2007. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21: 1857- 1862.

Wang, D., Sun, X., Wei, Y., Liang, H., Yuan, M., Jin, F., Chen, X., Liu, Y., Zhang, C.Y., Li, L. et al. 2018. Nuclear miR-122 directly regulates the biogenesis of cell survival oncomiR miR-21 at the posttranscriptional level. Nucleic Acids Res. 46: 2012-2029.

Wei, W., Ba, Z., Gao, M., Wu, Y., Ma, Y., Amiard, S., White, C.I., Rendtlew Danielsen, J.M., Yang, Y.G. and Qi, Y. 2012. A role for small RNAs in DNA double-strand break repair. Cell149: 101-112.

Weinmann, L., Hock, J., Ivacevic, T., Ohrt, T., Mutze, J., Schwille, P., Kremmer, E., Benes, V., Urlaub, H. and Meister, G. 2009. Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell 136: 496-507.

Winkler, G.S., Mulder, K.W., Bardwell, V.J., Kalkhoven, E. and Timmers, H.T. 2006. Human Ccr4- Not complex is a ligand-dependent repressor of nuclear receptor-mediated transcription. EMBO J. 25: 3089-3099.

Yamashita, A., Chang, T.C., Yamashita, Y., Zhu, W., Zhong, Z., Chen, C.Y. and Shyu, A.B. 2005. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat. Struct. Mol. Biol. 12: 1054-1063.

Yang, M., Haase, A.D., Huang, F.K., Coulis, G., Rivera, K.D., Dickinson, B.C., Chang, C.J., Pappin, D.J., Neubert, T.A., Hannon, G.J. et al. 2014. Dephosphorylation of tyrosine 393 in argonaute 2 by protein tyrosine phosphatase 1B regulates gene silencing in oncogenic RAS-induced senescence. Mol. Cell 55: 782-790.

Yang, Z., Jakymiw, A., Wood, M.R., Eystathioy, T., Rubin, R.L., Fritzler, M.J. and Chan, E.K. 2004. GW182 is critical for the stability of GW bodies expressed during the cell cycle and cell proliferation. J. Cell. Sci. 117: 5567-5578.

Yi, R., Qin, Y., Macara, I.G. and Cullen, B.R. 2003. Exportin-5 mediates the nuclear export of pre- microRNAs and short hairpin RNAs. Genes Dev. 17: 3011-3016.

Yoo, N.J., Hur, S.Y., Kim, M.S., Lee, J.Y. and Lee, S.H. 2010. Immunohistochemical analysis of RNA- induced silencing complex-related proteins AGO2 and TNRC6A in prostate and esophageal cancers. Apmis 118: 271-276.

Zeng, Y. and Cullen, B.R. 2004. Structural requirements for pre-microRNA binding and nuclear export by Exportin 5. Nucleic Acids Res. 32: 4776-4785.

Zeng, Y., Sankala, H., Zhang, X. and Graves, P.R. 2008. Phosphorylation of Argonaute 2 at serine-387 facilitates its localization to processing bodies. Biochem. J. 413: 429-436.

Zhang, X., Zuo, X., Yang, B., Li, Z., Xue, Y., Zhou, Y., Huang, J., Zhao, X., Zhou, J., Yan, Y. et al. 2014. MicroRNA directly enhances mitochondrial translation during muscle differentiation. Cell 158: 607-619.

Zielezinski, A. and Karlowski, W.M. 2015. Early origin and adaptive evolution of the GW182 protein family, the key component of RNA silencing in animals. RNA Biol. 12: 761-770.

Zipprich, J.T., Bhattacharyya, S., Mathys, H. and Filipowicz, W. 2009. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA 15: 781-793.

Zisoulis, D.G., Kai, Z.S., Chang, R.K. and Pasquinelli, A.E. 2012. Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486: 541-544.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る