リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Increase in tibial internal rotation due to weight-bearing is a key feature to diagnose early-stage knee osteoarthritis : a study with upright computed tomography (本文)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Increase in tibial internal rotation due to weight-bearing is a key feature to diagnose early-stage knee osteoarthritis : a study with upright computed tomography (本文)

金田, 和也 慶應義塾大学

2022.08.29

概要

Background: The classification of knee osteoarthritis is an essential clinical issue, particularly in terms of diagnosing early knee osteoarthritis. However, the evaluation of three-dimensional limb alignment on two-dimensional radio- graphs is limited. This study evaluated the three-dimensional changes induced by weight-bearing in the alignments of lower limbs at various stages of knee osteoarthritis.

Methods: Forty five knees of 25 patients (69.9 ± 8.9 years) with knee OA were examined in the study. CT images of the entire leg were obtained in the supine and standing positions using conventional CT and 320-row detector upright CT, respectively. Next, the differences in the three-dimensional alignment of the entire leg in the supine and standing positions were obtained using 3D-3D surface registration technique, and those were compared for each Kellgren–Lawrence grade.

Results: Greater flexion, adduction, and tibial internal rotation were observed in the standing position, as opposed to the supine position. Kellgren–Lawrence grades 1 and 4 showed significant differences in flexion, adduction, and tibial internal rotation between two postures. Grades 2 and 4 showed significant differences in adduction, while grades 1 and 2, and 1 and 3 showed significant differences in tibial internal rotation between standing and supine positions.

Conclusions: Weight-bearing makes greater the three-dimensional deformities in knees with osteoarthritis. Particu- larly, greater tibial internal rotation was observed in patients with grades 2 and 3 compared to those with grade 1. The greater tibial internal rotation due to weight-bearing is a key pathologic feature to detect early osteoarthritic change in knees undergoing osteoarthritis.

この論文で使われている画像

参考文献

1. Madry H, Kon E, Condello V, Peretti GM, Steinwachs M, Seil R, et al. Early osteoarthritis of the knee. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1753–62.

2. Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheumatic Dis. 1957;16(4):494–502.

3. Damen J, Schiphof D, Wolde ST, Cats HA, Bierma-Zeinstra SM, Oei EH. Inter-observer reliability for radiographic assessment of early osteoarthri- tis features: the CHECK (cohort hip and cohort knee) study. Osteoarthritis Cartilage. 2014;22(7):969–74.

4. Scott WW Jr, Lethbridge-Cejku M, Reichle R, Wigley FM, Tobin JD, Hoch- berg MC. Reliability of grading scales for individual radiographic features of osteoarthritis of the knee. The Baltimore longitudinal study of aging atlas of knee osteoarthritis. Invest Radiol. 1993;28(6):497–501.

5. Altman RD, Gold GE. Atlas of individual radiographic features in osteoar- thritis, revised. Osteoarthritis Cartilage. 2007;15(Suppl A):A1–56.

6. Altman RD, Hochberg M, Murphy WA Jr, Wolfe F, Lequesne M. Atlas of individual radiographic features in osteoarthritis. Osteoarthritis Cartilage. 1995;3 Suppl A:3–70.

7. Oka H, Muraki S, Akune T, Mabuchi A, Suzuki T, Yoshida H, et al. Fully auto- matic quantification of knee osteoarthritis severity on plain radiographs. Osteoarthritis Cartilage. 2008;16(11):1300–6.

8. Oka H, Muraki S, Akune T, Nakamura K, Kawaguchi H, Yoshimura N. Nor- mal and threshold values of radiographic parameters for knee osteoar- thritis using a computer-assisted measuring system (KOACAD): the ROAD study. J Orthopaedic Sci. 2010;15(6):781–9.

9. Segal NA, Bergin J, Kern A, Findlay C, Anderson DD. Test-retest reliability of tibiofemoral joint space width measurements made using a low-dose standing CT scanner. Skeletal Radiol. 2017;46(2):217–22.

10. Segal NA, Frick E, Duryea J, Nevitt MC, Niu J, Torner JC, et al. Comparison of tibiofemoral joint space width measurements from standing CT and fixed flexion radiography. J Orthop Res. 2017;35(7):1388–95.

11. Hirschmann A, Buck FM, Fucentese SF, Pfirrmann CW. Upright CT of the knee: the effect of weight-bearing on joint alignment. Eur Radiol. 2015;25(11):3398–404.

12. Fujii T, Sato T, Ariumi A, Omori G, Koga Y, Endo N. A comparative study of weight-bearing and non-weight-bearing 3-dimensional lower extremity alignment in knee osteoarthritis. J Orthop Sci. 2020;25(5):874–9.

13. Jinzaki M, Yamada Y, Nagura T, Nakahara T, Yokoyama Y, Narita K, et al. Development of Upright Computed Tomography With Area Detector for Whole-Body Scans: Phantom Study, Efficacy on Workflow, Effect of Gravity on Human Body, and Potential Clinical Impact. Invest Radiol. 2020;55(2):73–83.

14. Ota T, Nagura T, Yamada Y, Yamada M, Yokoyama Y, Ogihara N, et al. Effect of natural full weight-bearing during standing on the rotation of the first metatarsal bone. Clin Anat. 2019;32(5):715–21.

15. Kaneda K, Harato K, Oki S, Ota T, Yamada Y, Yamada M, et al. Three- dimensional kinematic change of hindfoot during full weightbearing in standing: an analysis using upright computed tomography and 3D-3D surface registration. J Orthop Surg Res. 2019;14(1):355.

16. Yamada Y, Yamada M, Yokoyama Y, Tanabe A, Matsuoka S, Niijima Y, et al. Differences in Lung and Lobe Volumes Between Supine and Standing Positions Scanned with Conventional and Newly Developed 320-Detector-Row Upright CT: Intra-Individual Comparison. Respiration. 2020;99(7):598–605.

17. Besl PJ, McKay ND. A method for registration of 3-D shapes. IEEE Trans Pat- tern Analysis Machine Intelli. 1992;14(2):239–56.

18. Ochia RS, Inoue N, Renner SM, Lorenz EP, Lim TH, Andersson GB, et al. Three-dimensional in vivo measurement of lumbar spine segmental motion. Spine (Phila Pa 1976). 2006;31(18):2073–8.

19. Sato T, Koga Y, Sobue T, Omori G, Tanabe Y, Sakamoto M. Quantitative 3-dimensional analysis of preoperative and postoperative joint lines in total knee arthroplasty: a new concept for evaluation of component alignment. J Arthroplasty. 2007;22(4):560–8.

20. Enomoto H, Nakamura T, Waseda A, Niki Y, Toyama Y, Suda Y. A novel and reproducible reference axis for distal tibial axial rotation. J Arthroplasty. 2013;28(5):788–91.

21. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al. ISB rec- ommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomechanics. 2002;35(4):543–8.

22. Akagi M, Oh M, Nonaka T, Tsujimoto H, Asano T, Hamanishi C. An anter- oposterior axis of the tibia for total knee arthroplasty. Clin Orthop Relat Res. 2004;420:213–9.

23. Matsui Y, Kadoya Y, Uehara K, Kobayashi A, Takaoka K. Rotational deform- ity in varus osteoarthritis of the knee: analysis with computed tomogra- phy. Clin Orthop Related Res. 2005;433:147–51.

24. Matsuki K, Matsuki KO, Kenmoku T, Yamaguchi S, Sasho T, Banks SA. In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities. Gait Posture. 2017;58:214–9.

25. Hamai S, Moro-oka TA, Miura H, Shimoto T, Higaki H, Fregly BJ, et al. Knee kinematics in medial osteoarthritis during in vivo weight-bearing activi- ties. J Orthop Res. 2009;27(12):1555–61.

26. Andriacchi TP, Briant PL, Bevill SL, Koo S. Rotational changes at the knee after ACL injury cause cartilage thinning. Clin Orthop Related Res. 2006;442:39–44.

27. Woo SL, Hollis JM, Adams DJ, Lyon RM, Takai S. Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med. 1991;19(3):217–25.

28. Rabe KG, Segal NA, Waheed S, Anderson DD. The Effect of Arch Drop on Tibial Rotation and Tibiofemoral Contact Stress in Postpartum Women. PM R. 2018;10(11):1137–44.

29. Almeida DF, Astudillo P, Vandermeulen D. Three-dimensional image vol- umes from two-dimensional digitally reconstructed radiographs: A deep learning approach in lower limb CT scans. Med Phys. 2021;48(5):2448–57.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る