リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rupture Process of the 2019 Mw 8.0 Intermediate-Depth Peru Earthquake and the 2017 Mw 6.5 Shallow Jiuzhaigou Earthquake」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rupture Process of the 2019 Mw 8.0 Intermediate-Depth Peru Earthquake and the 2017 Mw 6.5 Shallow Jiuzhaigou Earthquake

Hu, Yaping 筑波大学 DOI:10.15068/0002005481

2022.11.18

概要

Intermediate-depth and shallow earthquakes usually have complex rupture processes and variable generating mechanisms. We firstly obtained the spatiotemporal distribution of focal mechanisms and rupture evolution of the 2019 𝑀𝑤 8.0 Peru intermediate-depth earthquake that occurred in the northern Peru on the 26 May 2019 by applying back projection method and a newly developed flexible finite-fault teleseismic waveform inversion which takes both the uncertainty of Green’s function and the uncertainty of fault geometry into account. The main shock ruptured the subducting Nazca plate where the dip angle of the slab increases sharply and the strike angle rotates clockwise from the epicentre to north. Combining with the results of two methods, we inferred that the rupture process of this event consisted of four processes. Initial rupture propagated downdip from the hypocentre and then unilaterally propagated to northern area of the hypocentre. The main rupture unilaterally propagated to north direction until the rupture stopped following the north-south bilateral propagation. Finally, the cessation of main rupture was located in the ~200km north area of the epicentre. Spatial T-axis distribution calculated from the inverted solution of focal mechanisms shows that the direction of T-axis gradually rotated from south to north in the assumed model plane, corresponding to clockwise rotation of the strike of slab geometry in the source region. Meanwhile large-slip areas are located in the high- curvature area of the slab iso-depth lines. Our results suggest that the rupture process with the focal-mechanism transition of Peru earthquake is related to the slab geometry of the subducting Nazca plate. Then, we applied a developed finite-fault inversion which introduced the standard deviation of the smoothness constraints for five basis double-couple components by the weight of its each amplitude respectively to estimate the rupture process of the 2017 𝑀𝑤 6.5 Jiuzhaigou earthquake that occurred in a blind fault in southwest China on 8 August 2017. The total slip distribution shows that the large slip region coincides with distribution of relocated aftershocks, especially for the depth change of the aftershock region in the southeastern and northwestern regions of the epicentre, respectively. The spatial distribution of potency-density tensors showed that different total focal mechanisms for the northwest and southeast area of the main shock, suggesting the complex seismogenic fault of the main shock may be divided into two main segments and a secondary segment. The rupture evolution shows that the rupture begins around the hyopocentre and then mainly propagates to the up-dip part of the hypocentre with partial rupture propagation in the first 6 s. The sudden large slip during 6-10 s located the northwestern area of the epicentre can be interpret as the second rupture stage that occurred in the northeastern segment of the seismogenic fault. Considering the high velocity anomalies around the hypocentre and low velocity anomalies in the northwestern and deep part of the hypocentre, the 2017 Jiuzhaigou earthquake may be caused by the stress accumulation of lower crustal flow and upwelling asthenosphere.

この論文で使われている画像

参考文献

Akaike, H. (1980). Likelihood and the Bayes procedure. Trab. Estad. Y Investig. Oper., 31(1), 143–166. https://doi.org/10.1007/BF02888350

Astiz, L., Lay, T., & Kanamori, H. (1988). Large intermediate-depth earthquakes and the subduction process. Phys. Earth Planet. Inter., 53(1–2), 80–166. https://doi.org/10.1016/0031-9201(88)90138-0

Brace, W. F., Byerlee, J. D. (1966). Stick-slip as a mechanism for earthquakes. Science, 153(3739), 990-992. DOI: 10.1126/science.153.3739.990

Brace, W. F.,Byerlee, J. D. (1970). California earthquakes: why only shallow focus? Science, 168(3939), 1573-1575. DOI: 10.1126/science.168.3939.1573

Brady, B. T. (1974). Theory of earthquake. Pure Appl. Geophys., 112(4), 701-725.

Bridgman, P. W. (1936). Shearing phenomena at high pressure of possible importance for geology. The Journal of Geology, 4, 653~69.

Bridgman, P. W. (1945). Polymorphic transitions and geological phenomena. Am. J. Sci., 243A, 90-97. https://doi.org/10.4159/harvard.9780674287839.c28

Burchfiel, B. C., Chen, Z., Liu, Y., Royden, L. H. (1995). Tectonics of the Longmen shan and adjacent regions, central China. Int Geol Rev., 37, 661–735. https://doi.org/10.1080/00206819509465424

Byerlee, J. (1978). Friction of rocks. Pure Appl. Geophys., 116(4), 615-626. https://doi.org/10.1007/BF00876528

Collier, J. D., Helfrich, G. R., Wood B. J. (2001). Seismic discontinuities and subduction zones. Phys. Earth Planet. In., 127, 35-49. https://doi.org/10.1016/S0031-9201(01)00220-5

Chang, Y., Warren, L. M., Zhu, L., Prieto, G. A. (2019). Earthquake Focal Mechanisms and Stress Field for the Intermediate‐Depth Cauca Cluster, Colombia. J. Geophys. Res. Solid Earth, 124, 822-836. https://doi.org/10.1029/2018JB016804

Chernak, L. J. and Hirth, G. (2010). Deformation of antigorite serpentinite at high temperature and pressure. Earth Planet. Sc. Lett., 296, 23-3. DOI: 10.1016/j.epsl.2010.04.035

Chen, S., Zhao, J., Xu, Q., Liu, H., & Ju, C. (2021). Evidence for fluids at the hypocenter of the 2017 Ms 7.0 Jiuzhaigou earthquake revealed by local earthquake tomography. J. Geophys. Res. Solid Earth, 126, e2020JB021036. https://doi.org/10.1029/2020JB021036

Clark, M.K., Bush, J.W.M., Royden, L.H. (2005). Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau. Geophys. J. Int., 162 (2), 575–590. https://doi.org/10.1111/j.1365- 246X.2005.02580.x

Das, S., Aki, K. (1977). Fault plane with barriers: A versatile earthquake model. J. Geophys. Res., 82(36), 5658-5670. https://doi.org/10.1029/JB082i036p05658

Deng, Q. D., Chen, S. F., Zhao, X. L. (1994). Tectonics, seismicity and dynamics of Longmenshan mountains and its adjacent regions (in Chinese). Seismol Geol., 16, 389–403.

DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophys. J. Int., 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x Derode, B., & Campos, J. (2019). Energy Budget of Intermediate‐Depth Earthquakes in Northern Chile: Comparison With Shallow Earthquakes and Implications of Rupture Velocity Models Used. Geophys. Res. Lett., 46(5), 2484– 2493. https://doi.org/10.1029/2018GL080962

Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., … Shimamoto, T. (2011). Fault lubrication during earthquakes. Nature, 471(7339), 494–498. https://doi.org/10.1038/nature09838

Duputel, Z., Agram, P. S., Simons, M., Minson, S. E., & Beck, J. L. (2014). Accounting for prediction uncertainty when inferring subsurface fault slip. Geophys. J. Int., 197(1), 464–482. https://doi.org/10.1093/gji/ggt517

Dziewonski, A. M., Chou, T.-A., & Woodhouse, J. H. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth, 86(B4), 2825–2852. https://doi.org/10.1029/JB086iB04p02825

Ekström, G., Nettles, M., & Dziewoński, A. M. (2012). The global CMT project 2004– 2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter., 200–201, 1–9. https://doi.org/10.1016/j.pepi.2012.04.002

Fang, L. H., Wu, J. P., Su, J.R., Wang, M. M., Jiang, C., Fan, L. P., Wang, W. L., Wang, C. Z. and Tan, X. L. (2018). Relocation of mainshock and aftershock sequences of Ms 7.0 Sichuan Jiuzhaigou earthquake (in Chinese). Chin. Sci. Bull. 63.

Fukahata, Y., Yagi, Y., & Rivera, L. (2014). Theoretical relationship between back- projection imaging and classical linear inverse solutions. Geophys. J. Int., 196(1), 552–559. https://doi.org/10.1093/gji/ggt392

Gabriel, A.-A., Ampuero, J.-P., Dalguer, L. A., & Mai, P. M. (2012). The transition of dynamic rupture styles in elastic media under velocity-weakening friction. J. Geophys. Res. Solid Earth, 117(B9), 1–20. https://doi.org/10.1029/2012JB009468

Green, H. W. II.,Chen, W. P., Brudzinski, M. R. (2010). Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature, 467, 828-831. https://doi.org/10.1038/nature09401

Griggs, D. T., Handin, J. (1960). Observations on fracture and a hypothesis of earthquakes. Geol. Soc. Am. Mem., 79, 347~364. https://doi.org/10.1130/MEM79- p347

Griggs, D. T. and Baker, D. W. (1969). The origin of deep-focus earthquakes. In: Mark

H and Fernbach S. eds. Properties of Mater under Unusual Conditions, 23~42, John Wiley, NewYork. Gutenberg, B., & Richter, C. (1949). Seismicity of the Earth and Associated Phenomena. Princet. Univ. Press.

Hacker, B. R., Peacock, S. M., Abers, G. A., & Holloway, S. D. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? J. Geophys. Res. Solid Earth, 108(B1). https://doi.org/10.1029/2001JB001129

Han, B., Cheng, J., An, Y. er al. (2018). Preliminary Report on the 8 August 2017 Ms 7.0 Jiuzhaigou, Sichuan, China, Earthquake. Seismol. Res. Lett., 89 (2A), 557–569. https://doi.org/10.1785/0220170158

Hasegawa, A., & Nakajima, J. (2017). Seismic imaging of slab metamorphism and genesis of intermediate-depth intraslab earthquakes. Prog. Earth Planet. Sci., 4, 12. https://doi.org/10.1186/s40645-017-0126-9

Hartzell, S. H., & Heaton, T. H. (1983). Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California, earthquake. Bull. Seism. Soc. Am., 73(6A), 1553. https://doi.org/10.1785/BSSA07306A1553

Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61. DOI: 10.1126/science.aat4723

Hicks, S. P., Okuwaki, R., Steinberg, A., Rychert, C. A., Harmon, N., Abercrombie, R. E., … Sudhaus, H. (2020). Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nat. Geosci., 13(9), 647–653. https://doi.org/10.1038/s41561-020-0619-9

Hideo, A., Marc, C., Oona, S., and Catherine, B. (2006). Estimating rupture scenario likelihood based on dynamic rupture simulations: the example of the segmented Middle Durance fault, southeastern France. Geophys. J. Int., 165, 436-446. DOI: 10.1111/j.1365-246X.2006.02842.x

Hong, S., Zhou, X., Zhang, K. er al. (2018). Source Model and Stress Disturbance of the 2017 Jiuzhaigou Mw 6.5 Earthquake Constrained by InSAR and GPS Measurements. Remote Sens., 10, 1400. https://doi.org/10.3390/rs10091400

Houston, H. (1993). The non-double-couple component of deep earthquakes and the width of the seismogenic zone. Geophys. Res. Lett., 20(16), 1687-1690. https://doi.org/10.1029/93GL01301

Houston, H. (2007). Deep Earthquakes. In G. B. T.-T. on G. Schubert (Ed.), Treatise on Geophysics (pp. 321–350). https://doi.org/10.1016/B978-044452748-6.00071-7 Hoyos, M. C., Morales, R. S. and Akhavan-Tabatabaei, R. (2013). Modeling the inclusion of trapped victims in logistics planning for earthquake response: A case study in the city of Bogotá. 2013 Winter Simulations Conference (WSC), pp. 2487- 2495.

Hu, Y. P. and Wang, Z. (2018). Plate interactions, crustal deformation and magmatism along the eastern margins of the Tibetan Plateau. Tectonophysics, 740-741, 10-26. https://doi.org/10.1016/j.tecto.2018.05.011

Hubbert, M. K., Rubey, W. W. (1959). Role of fluid pressure in mechanics of over thrust faulting I. Mechanics of fluid-filled porous solids and its application to over thrust faulting. Geol. Soc. Am. Bul., 70, 115~166. https://doi.org/10.1130/0016- 7606(1959)70[115:ROFPIM]2.0.CO;2

Ide, S., & Takeo, M. (1996). The dynamic rupture process of the 1993 Kushiro-oki earthquake. J. Geophys. Res. Solid Earth, 101(B3), 5661–5675. https://doi.org/10.1029/95JB00959

Idini, B., & Ampuero, J.-P. (2020). Fault‐Zone Damage Promotes Pulse‐Like Rupture and Back‐Propagating Fronts via Quasi‐Static Effects. Geophys. Res. Lett., 47(23), e2020GL090736. https://doi.org/10.1029/2020GL090736

Ishii, M., Shearer, P. M., Houston, H., & Vidale, J. E. (2005). Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933–936. https://doi.org/10.1038/nature03675 Daniell, J., Vervaeck, A., Wenzel, F. (2011). A timeline of the Socio-economic effects of the 2011 Tohoku Earthquake with emphasis on the development of a new worldwide rapid earthquake loss estimation procedure. Australian Earthquake Engineering Society 2011 Conference, Nov 18-20, Barossa Valley, South Australia. Ji, S., and Xia, B. (2002). Rheology of polyphase earth materials. Montreal: Polytechnic International Press,1~259.

Ji, L., Liu, C. Xu, J. Liu, J. Long, E. and Zhang, Z. (2017). InSAR observation and inversion of the seismogenic fault for the 2017 Jiuzhaigou Ms 7.0 earthquake in China (in Chinese). Chin. J. Geophys., 60, no. 10, 4069–4082.

Jia, K., Zhou, S., Zhuang, J., Jiang, C., Guo, Y., Gao, Z., & Gao, S. (2018). Did the 2008 Mw 7.9 Wenchuan earthquake trigger the occurrence of the 2017 Mw 6.5 Jiuzhaigou earthquake in Sichuan, China? J. Geophys. Res. Solid Earth, 123, 2965– 2983. DOI:10.1002/2017JB015165

Johnson, T., Wu, F. T., Scholz, C. H. (1973). Source Parameters for Stick-Slip and for Earthquakes. Science, 179(4070), 278-80. DOI: 10.1126/science.179.4070.278

Julian, B. R., Miller, A. D., & Foulger, G. R. (1998). Non-double-couple earthquakes 1. Theory. Rev. Geophys., 36(4), 525–549. https://doi.org/10.1029/98RG00716 Karato, S. I. (2008). Deformation of earth materials: an introduction to the rheology of solid earth. Cambridge: Cambridge University Press, 1-463.

Kaila, K. L., Krishna, V. G., & Khandekar, G. (1999). Preliminary models of upper mantle P and S wave velocity structure in the western South America region. J. Geodyn., 27(4–5), 567–583. https://doi.org/10.1016/S0264-3707(98)00016-7

Kanamori, H., Anderson, D. L., & Heaton, T. H. (1998). Frictional Melting During the Rupture of the 1994 Bolivian Earthquake. Science, 279(5352), 839–842. DOI: 10.1126/science.279.5352.839

Kawakatsu, H. (1991). Insignificant isotropic component in the moment tensor of deep earthquakes. Nature, 351, 50-53. https://doi.org/10.1038/351050a0

Kelemen, P. B., & Hirth, G. (2007). A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature, 446(7137), 787–790. https://doi.org/10.1038/nature05717

Kennett, B. L. N., Engdahl, E. R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122(1), 108–124. https://doi.org/10.1111/j.1365-246X.1995.tb03540.x

Kikuchi, M., & Fukao, Y. (1988). Seismic wave energy inferred from long-period body wave inversion. Bull. Seismol. Soc. Am., 78(5), 1707–1724. https://doi.org/10.1785/BSSA0780051707

Kikuchi, M., & Kanamori, H. (1991). Inversion of complex body waves-III. Bull. Seism. Soc. Am., 81(6), 2335–2350. https://doi.org/10.1785/BSSA0810062335

Kiser, E., & Ishii, M. (2017). Back-Projection Imaging of Earthquakes. Annu. Rev. Earth Planet. Sci., 45(1), 271–299. https://doi.org/10.1146/annurev-earth-063016- 015801

Kirby, S. H., Durham, W. B., Stern, L. A. (1991). Mantle phase change and deep- earthquake faulting in subducting lithosphere. Science, 252, 216-225. DOI: 10.1126/science.252.5003.216

Kirby, S. H., Stein, S., Okal, E. A., et al. (1996). Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev. Geophys., 34(2),261-306. https://doi.org/10.1029/96RG01050

Krüger, F., & Ohrnberger, M. (2005). Tracking the rupture of the Mw = 9.3 Sumatra earthquake over 1,150 km at teleseismic distance. Nature, 435(7044), 937–939. https://doi.org/10.1038/nature03696

Lay, T., Kanamori, H., Ammon, C. J., Koper, K. D., Hutko, A. R., Ye, L., … Rushing, T. M. (2012). Depth-varying rupture properties of subduction zone megathrust faults. J. Geophys. Res. Solid Earth, 117(4), 1–21. https://doi.org/10.1029/2011JB009133 Legrand, D., & Delouis, B. (1999). Determination of the fault plane using a single near- field seismic station with a finite-dimension source model. Geophys. J. Int., 138(3), 801–808. https://doi.org/10.1046/j.1365-246x.1999.00917.x

Lei, Q., Cai, Z., Du, P., Yu, J., Wang, Y., Xie, X. (2015). The seismogenic structure of the M8.0 Pingluo earthquake in 1973. Seismology and Geology, 37(2), 413-429. DOI: 10.3969/j.issn.0253-4967.2015.02.006

Li, Z., Ni, S., Roecker, S. (2014). Intersration Pg and Sg differential traveltiome tomography in the northeastern margin of the Tibetan plateau: implications for spatial extent of crustal flow and segmentation of the longmenshan fault zone. Phys. Earth Planet. Inter, 227, 30-40. DOI: 10.1016/j.pepi.2013.11.016

Li, Q., Tan, K., Wang, D., Zhao, B., Zhang, R., Li, Y., Qi, Y. (2018) Joint inversion of GNSS and teleseismic data for the rupture process of the 2017 Mw6.5 Jiuzhaigou, China, earthquake. J. Seismol., 22, 805-814. DOI: 10.1007/s10950-018-9733-1

Liang, S. S., Lei, J. S., Xu, Z. G., Xu, X. W., Zou, L. Y., Liu, J. G., and Chen, H. F. (2018). Relocation of aftershocks of the 2017 Jiuzhaigou, Sichuan, Ms 7.0 earthquake and inversion for focal mechanism of the mainshock (in Chinese),. Chinese J. Geophys. 61(5), 2163–2175. https://doi.org/10.6038/cjg2018L0508

Lin, X., Chu, R., Zeng, X. (2019). Rupture processes and Coulomb stress changes of the 2017 Mw 6.5 Jiuzhaigou and 2013 Mw 6.6 Lushan earthquakes. Earth Planets. Space, 71, 81. https://doi.org/10.1186/s40623-019-1061-3

Liu, G., Wang, Q., Qiao, X., et al. (2015). The 25 April 2015 Nepal Ms8.1 earthquake slip distribution from joint inversion of teleseismic, static and high-rate GPS data (in Chinese). Chinese J. Geophys., 58(11), 4287-4297.

Liu, G., Xiong, W., Wang, Q., Qiao, X., Ding, K., Li, X., Yang, S. (2018). ource Characteristics of the 2017 Ms 7.0 Jiuzhaigou, China, Earthquake and Implications for Recent Seismicity in Eastern Tibet. J. Geophys. Res. Solid Earth, 124, 4895-4915. https://doi.org/10.1029/2018JB016340

Liu, Q., Yin, D., Wang, Z. (2019) Inversion of the rupture process and high-frequency radiation of the 2017 Jiuzhaigou earthquake, northeastern Tibetan Plateau. J. Asian Earth Sci., 179, 300-318. DOI: 10.1016/j.jseaes.2019.04.016

Liu, W., & Yao, H. (2020). Rupture Process of the 26 May 2019 M w 8.0 Northern Peru Intermediate‐Depth Earthquake and Insights Into Its Mechanism. Geophys. Res. Lett., 47(4), e2020GL087167. https://doi.org/10.1029/2020GL087167

Ma, Y., & Clayton, R. W. (2014). The crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis. Earth Planet. Sci. Lett., 395, 61–70. https://doi.org/10.1016/j.epsl.2014.03.013

Madariaga, R. (1977). High-frequency radiation from crack (stress drop) models of earthquake faulting. Geophys. J. Int., 51(3), 625–651. https://doi.org/10.1111/j.1365-246X.1977.tb04211.x

McCloskey, J., Lange, D., Tilmann, F., Nalbant, S. S., Bell, A. F., Natawidjaja, D. H., & Rietbrock, A. (2010). The September 2009 Padang earthquake. Nat. Geosci., 3(2), 70–71. https://doi.org/10.1038/ngeo753

Melgar, D., Pérez-Campos, X., Ramirez-Guzman, L., Spica, Z., Espíndola, V. H., Hammond, W. C., & Cabral-Cano, E. (2018). Bend Faulting at the Edge of a Flat Slab: The 2017 M w 7.1 Puebla-Morelos, Mexico Earthquake. Geophys. Res. Lett., 45(6), 2633–2641. https://doi.org/10.1002/2017GL076895

Meng, L., Inbal, A., & Ampuero, J.-P. (2011). A window into the complexity of the dynamic rupture of the 2011 Mw 9 Tohoku-Oki earthquake. Geophys. Res. Lett., 38(7), n/a-n/a. https://doi.org/10.1029/2011GL048118

Mishra, O. P. and Zhao, D. (2004). Seismic evidence for dehydration embrittlement of the subducting Pacific slab. Geophys. Res. Lett., 31(9), 165-198. DOI: 10.1029/2004GL019489

Muirhead, K. J., & Datt, R. (1976). The N-th root process applied to seismic array data. Geophys. J. Int., 47(1), 197–210. https://doi.org/10.1111/j.1365- 246X.1976.tb01269.x

Münchmeyer, J, Bindi, D., Leser, U., Tilmann, F. (2020). The transformer earthquake alerting model: A new versatile approach to earthquake early warning. Geophys. J. Int. 225(1).

Nie, Z., Wang, D., Jia, Z., Yu, P. and Li, L. (2018). Fault model of the 2017 Jiuzhaigou Mw 6.5 earthquake estimated from coseismic deformation observed using Global Positioning System and Interferometric Synthetic Aperture Radar data. Earth, Planets and Space, 70, 55. https://doi.org/10.1186/s40623-018-0826-4

Okal, E. A. (1996). Radial modes from the great 1994 Bolivian earthquakes: no evidence for an isotropic component to the source. Geophys. Res. Lett., 23(5), 431- 434. https://doi.org/10.1029/96GL00375

Okazaki, K. and Hirth, G. (2016). Dehydration of lawsonite could directly trigger earthquakes in subducting oceanic crust. Nature, 530, 81-84. https://doi.org/10.1038/nature16501

Okuwaki, R., Yagi, Y., & Hirano, S. (2015). Relationship between High-frequency Radiation and Asperity Ruptures, Revealed by Hybrid Back-projection with a Non- planar Fault Model. Sci. Rep., 4(1), 7120. https://doi.org/10.1038/srep07120

Okuwaki, R., & Yagi, Y. (2017). Rupture Process During the M w 8.1 2017 Chiapas Mexico Earthquake: Shallow Intraplate Normal Faulting by Slab Bending. Geophys. Res. Lett., 44(23), 11,816-11,823. https://doi.org/10.1002/2017GL075956

Okuwaki, R., Kasahara, A., Yagi, Y., Hirano, S., & Fukahata, Y. (2019). Backprojection to image slip. Geophys. J. Int., 216(3), 1529–1537. https://doi.org/10.1093/gji/ggy505

Olson, A. H., & Apsel, R. J. (1982). Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seism. Soc. Am., 72(6A), 1969. https://doi.org/10.1785/BSSA07206A1969

Orowan, E. (1960). Mechanism of seismic faulting in rock deformation: A symposium. Geol. Soc. Am. Men., 79, 323-346. https://doi.org/10.1130/MEM79-p323

Perfettini, H., Avouac, J.-P., Tavera, H., Kositsky, A., Nocquet, J.-M., Bondoux, F., … Soler, P. (2010). Seismic and aseismic slip on the Central Peru megathrust. Nature, 465(7294), 78–81. https://doi.org/10.1038/nature09062

Persh, S. E., & Houston, H. (2004a). Strongly Depth-Dependent Aftershock Production in Deep Earthquakes. Bull. Seismol. Soc. Am., 94(5), 1808–1816. https://doi.org/10.1785/012003191

Persh, S. E., & Houston, H. (2004b). Deep earthquake rupture histories determined by global stacking of broadband P waveforms. J. Geophys. Res. Solid Earth, 109(B4). https://doi.org/10.1029/2003JB002762

Poli, P., & Prieto, G. (2014). Global and along‐strike variations of source duration and scaling for intermediate‐depth and deep‐focus earthquakes. Geophys. Res. Lett., 41(23), 8315–8324. https://doi.org/10.1002/2014GL061916

Poli, P., & Prieto, G. A. (2016). Global rupture parameters for deep and intermediate‐ depth earthquakes. J. Geophys. Res. Solid Earth, 121(12), 8871–8887. https://doi.org/10.1002/2016JB013521

Prezzi, C. B., & Silbergleit, V. (2015). Seismic hazards along Ecuador, Perú and northern Chile (South America). Nat. Hazards, 79(2), 1159–1175. DOI: 10.1007/s11069-015-1900-x

Prieto, G. A., Florez, M., Barrett, S. A., Beroza, G. C., Pedraza, P., Blanco, J. F., & Poveda, E. (2013). Seismic evidence for thermal runaway during intermediate-depth earthquake rupture. Geophys. Res. Lett., 40(23), 6064–6068. https://doi.org/10.1002/2013GL058109

Qin, S., Xu, T., Hu, B., et al. (2010) Brittle failure mechanism of multiple locked patches in a seismogenic fault system and exploration on a new way for earthquake prediction (in Chinese). Chinese J. Geophys., 53(4), 1001-1014.

Ragon, T., Sladen, A., & Simons, M. (2018a). Accounting for uncertain fault geometry in earthquake source inversions – I: theory and simplified application. Geophys. J. Int., 214(2), 1174–1190. https://doi.org/10.1093/gji/ggy187

Ragon, T., Sladen, A., & Simons, M. (2018b). Accounting for uncertain fault geometry in earthquake source inversions – II: application to the Mw 6.2 Amatrice earthquake, central Italy. Geophys. J. Int., 218(1), 689–707. https://doi.org/10.1093/gji/ggz180

Ranero, C. R., Villaseñor, A., Phipps Morgan, J., & Weinrebe, W. (2005). Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophys. Geosystems, 6(12), n/a-n/a. https://doi.org/10.1029/2005GC000997

Raleigh, C. B., Paterson, M. S. (1965). Experimental deformation of serpentinite and its tectonic implications. J. Geophys. Res., 70, 3965~3985.

Reid H. F. (1910). The California earthquake of April 18, 1906, the mechanics of the earthquake,in The State Earthquake Investigation Committee Report,Carnegie Institution of Washington.

Renshaw, C. E., & Schulson, E. M. (2013). Are intermediate depth earthquakes caused by plastic faulting? Earth Planet. Sci. Lett., 382, 32–37. https://doi.org/10.1016/j.epsl.2013.09.006

Royden, L.H., Burchfiel, B.C., Van Der Hilst, R.D. (2008). The geological evolution of the Tibetan plateau. Science 321 (5892), 1054–1058. DOI: 10.1126/science.1155371

Sao T., Ji, S., Wang, Q. (2011). Rheology of partially molten rocks: a state-of-the-art overview. Geological Review, 26(20), 1505-1508.

Scheper, G., Hinsbergen, D., Spakman, W., Kosters, M. E., Boschman, M. B., McQuarrie, N. (2017). South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes. Nat. Comm. 8, 15249.

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391, 37-42. https://doi.org/10.1038/34097

Shan, B., Zheng, Y., Liu, C. L., Xie, Z. J., Kong, J. (2017). Coseismic Coulomb failure stress changes caused by the 2017 M7.0 Jiuzhaigou earthquake, and its relationship with the 2008 Wenchuan earthquake. Science China Earth Sciences, 60: 2181–2189, DOI:10.1007/s11430-017-9125-2

Shimizu, K., Yagi, Y., Okuwaki, R., & Fukahata, Y. (2020). Development of an inversion method to extract information on fault geometry from teleseismic data. Geophys. J. Int., 220(2), 1055–1065. https://doi.org/10.1093/gji/ggz496

Silver, P. G., Beck, S. L., Walace, T. C., et al. (1995). Rupture characteristics of the deep Bolivian earthquake of 9 June 1994 and the mechanism of deep focus earthquakes. Science, 268, 69-73. DOI: 10.1126/science.268.5207.69

Sladen, A., Tavera, H., Simons, M., Avouac, J. P., Konca, A. O., Perfettini, H., … Cavagnoud, R. (2010). Source model of the 2007 M w 8.0 Pisco, Peru earthquake: Implications for seismogenic behavior of subduction megathrusts. J. Geophys. Res., 115(B2), B02405. https://doi.org/10.1029/2009JB006429

Somoza, R., & de Hurtis, M. E. (2005). Convergencia en el margen occidental de América del sur durante el Cenozoico: Subducción de Nazca, Farallon y Aluk. Asoc. Geológica Argentina.

Spudich, P., & Frazer, L. N. (1984). Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am., 74(6), 2061–2082. https://doi.org/10.1785/BSSA0740062061

Sun, J., Yue, H., Shen, Z., Fang, L., Zhan, Y. and Sun, X. (2018). The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophys. Res. Lett., 45, no. 5, 2230–2240. https://doi.org/10.1002/2017GL076421

Suzuki, M., & Yagi, Y. (2011). Depth dependence of rupture velocity in deep earthquakes. Geophys. Res. Lett., 38(5), n/a-n/a. https://doi.org/10.1029/2011GL046807

Tang, X., Guo, R., Xu, J., Sun, H., Chen, X., Zhou, J. (2021) Probing the Fault Complexity of the 2017 Ms 7.0 Jiuzhaigou Earthquake Based on the InSAR Data. Remote Sens., 13, 1573. https://doi.org/10.3390/rs13081573

Tavera, H. & Buforn, E. (2001). Source mechanism of earthquakes in Peru. J. Seismol., 5, 519-539. http://hdl.handle.net/20.500.12816/2110

Tocheport, A., Rivera, L., & Chevrot, S. (2007). A systematic study of source time functions and moment tensors of intermediate and deep earthquakes. J. Geophys. Res., 112(B7), B07311. https://doi.org/10.1029/2006JB004534

Twardzik, C., & Ji, C. (2015). The Mw7.9 2014 intraplate intermediate-depth Rat Islands earthquake and its relation to regional tectonics. Earth Planet. Sci. Lett., 431, 26–35. https://doi.org/10.1016/j.epsl.2015.08.033

Uchide, T., Yao, H., & Shearer, P. M. (2013). Spatio-temporal distribution of fault slip and high-frequency radiation of the 2010 El Mayor-Cucapah, Mexico earthquake. J. Geophys. Res. Solid Earth, 118(4), 1546–1555. https://doi.org/10.1002/jgrb.50144

Vallée, M., Grandin, R., Nocquet, J.-M., Villegas, J.-C., Vaca, S., Xie, Y., Jarrin, P. (2020). Rupture characteristics of the 2019 North Peru intraslab earthquake (Mw8. 0). EGU General Assembly Conference Abstracts, 10429.

Villegas-Lanza, J. C., Chlieh, M., Cavalié, O., Tavera, H., Baby, P., Chire-Chira, J., & Nocquet, J.-M. (2016). Active tectonics of Peru: Heterogeneous interseismic coupling along the Nazca megathrust, rigid motion of the Peruvian Sliver, and Subandean shortening accommodation. J. Geophys. Res. Solid Earth, 121(10), 7371– 7394. https://doi.org/10.1002/2016JB013080

Wang, K., Wada, I., Ishikawa, Y. (2004). Stresses in the subducting slab beneath southwest Japan and relation with plate geometry, tectonic forces, slab dehydration, and damaging earthquakes. J. Geophys. Res. Solid Earth, 109, B8. https://doi.org/10.1029/2003JB002888

Wang, Z.,Huang, R.,Pei, S. (2014). Crustal deformation along the Longmenshan fault zone and its implications for seismogenesis. Tectonophysics, 610,128-137. https://doi.org/10.1016/j.tecto.2013.11.004

Wiens, D. A. and Snider, N. O. (2001). Repeating deep earthquakes: evidence for fault reactivation at great depth. Science, 293, 1463- 1467. DOI: 10.1126/science.1063042

Wong, I., Dober, M., Hemphill-Haley, M., & Terra, F. (2012). Seismic hazard along the southern coast of Ecuador. Proceedings of the Fifthteenth World Conference on Earthquake Engineering, Lisbon, 10.

Wyss, M., Johnston, A. C., Klein, F. W. (1981). Multiple asperity model for earthquake prediction. Nature, 289, 231-234. https://doi.org/10.1038/289231a0

Xie, Z., Zheng, Y., Yao, H., Fang, L., Zhang, Y., Liu, C., Wang, M., Shan, B., Zhang, H., Ren, J., et al. (2018). Preliminary analysis about source characteristics and seismogenic structure of the Jiuzhaigou Ms 7.0 earthquake in 2017. Sci. China Earth. Sci., 61, 339–352. https://doi.org/10.1007/s11430-017-9161-y

Xu, X., Wen, X., et al., (2008). The Ms8.0 Wenchuan earthquake surface ruptures and its seismogenic structure. Seismology and geology, 30(3), 597-629.

Xu, J., Zhang, H., & Chen, X. (2015). Rupture phase diagrams for a planar fault in 3‐ D full‐space and half‐space. Geophys. J. Int., 202, 2194–2206. https://doi.org/10.1093/gji/ggv284

Xu, X.W., Chen, G.H., Wang, Q.X., et al. (2017). Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau (in Chinese). Chinese J. Geophys., 60, 4018– 4026.

Xu, L. S., Zhang, X., and Li, C. L. (2018). Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?. Earth Planet. Phys., 2, 163–169. https://doi.org/10.26464/epp2018016

Yabuki, T., & Matsu’ura, M. (1992). Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys. J. Int., 109(2), 363–375. https://doi.org/10.1111/j.1365-246X.1992.tb00102.x

Yamasaki, T. and Seno, T. (2003). Double seismic zone and dehydration embrittlement of the subducting slab. J. Geophys. Res., 108(B4), 283-299. https://doi.org/10.1029/2002JB001918

Yamashita, S., Yagi, Y., Okuwaki, R. et al. (2021). Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Sci. Rep., 11, 5979. https://doi.org/10.1038/s41598-021-85522-w

Yagi, Y., Mikumo, T., Pacheco, J., & Reyes, G. (2004). Source Rupture Process of the Tecomán, Colima, Mexico Earthquake of 22 January 2003, Determined by Joint Inversion of Teleseismic Body-Wave and Near-Source Data. Bull. Seismol. Soc. Am., 94(5), 1795–1807. https://doi.org/10.1785/012003095

Yagi, Y., & Fukahata, Y. (2011). Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophys. J. Int., 186(2), 711–720. https://doi.org/10.1111/j.1365-246X.2011.05043.x

Yagi, Y., Nakao, A., & Kasahara, A. (2012). Smooth and rapid slip near the Japan Trench during the 2011 Tohoku-oki earthquake revealed by a hybrid back-projection method. Earth Planet. Sci. Lett., 355–356, 94–101.

Yagi, Y., & Okuwaki, R. (2015). Integrated seismic source model of the 2015 Gorkha, Nepal, earthquake. Geophys. Res. Lett., 42(15), 6229–6235. https://doi.org/10.1002/2015GL064995

Ye, L., Lay, T., & Kanamori, H. (2020). Anomalously low aftershock productivity of the 2019 M 8.0 energetic intermediate-depth faulting beneath Peru. Earth Planet. Sci. Lett., 549, 116528. https://doi.org/10.1016/j.epsl.2020.116528

Yeats, R. S. (2012). Active Faults of the World. Cambridge: Cambridge University Press.

Yi, G. X., Long, F., Liang, M. J., Zhang, H. P., Zhao, M., Ye, Y. Q., Zhang, Z. W., Qi,

Y. P., Wang, S. W., ... Su, J. R. (2017). Focal mechanism solutions and seismogenic structure of the 8 August 2017 M7.0 Jiuzhaigou earthquake and its aftershock, northern Sichuan (in Chinese). Chinese J. Geophys., 60(10), 4083–4097.

Zhang, Y., Wang, R., Walter, T. R., Feng, W., Chen, Y. and Huang, Q. (2017a). Significant lateral dip changes may have limited the scale of the 2015 Mw 7.8 Gorkha earthquake. Geophys. Res. Lett., 44, 8847– 8856. https://doi.org/10.1002/2017GL074095

Zhang, X., Feng, W., Xu, L., Li, C. (2017b). The source-process inversion and the intensity estimation of the 2017 Ms7.0 Jiuzhaigou earthquake (in Chinese). Chinese J. Geophys., 60(10), 4105-4116.

Zhang, Y., W. Feng, X. Li, Y. Liu, J. Ning, and Q. Huang (2021). Joint Inversion of Rupture across a Fault Stepover during the 8 August 2017 Mw 6.5 Jiuzhaigou, China, Earthquake. Seismol. Res. Lett., XX, 1–12. https://doi.org/10.1785/0220210084

Zheng, X. J., Zhang, Y., and Wang, R. J. (2017). Estimating the rupture process of the 8 august 2017 Jiuzhaigou earthquake by inverting strong-motion data with IDS method (in Chinese). Chinese J. Geophys., 60(11), 4421–4430. https://doi.org/10.6038/cjg20171128

Zheng, A., Yu, X., Xu, W., Chen, X., Zhang, W. (2020). A hybrid source mechanism of the 2017 Mw 6.5 Jiuzhaigou earthquake revealed by the joint inversion of strong- motion, teleseismic and InSAR data. Tectonopysics, 789, 228538. https://doi.org/10.1016/j.tecto.2020.228538

Zhao, D., Qu, C., Shan, X., Gong, W., Zhang, Y., Zhnag, G. (2018). InSAR and GPS derived coseismic deformation and fault model of the 2017 Ms7.0 Jiuzhaigou earthquake in the Northeast Bayanhar block. Tectonophysics, 726, 86-99. https://doi.org/10.1016/j.tecto.2018.01.026

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る