リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Scalar Sector Extension and Physics Beyond Standard Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Scalar Sector Extension and Physics Beyond Standard Model

Abe, Yoshihiko 京都大学 DOI:10.14989/doctor.k23698

2022.03.23

概要

素粒子標準模型は、数多くの実験事実を高い精度で説明する、最も成功した物理理論の一つである。しかしながら、理論・実験双方から現在では標準模型だけでは不十分であると考えられており、正しい理論の正体を明らかにすることは、素粒子物理学における最重要の課題の一つとなっている。本論文では、こうした「標準模型を超えた物理」の一つの方向性として、スカラーセクターの拡張に注目し、そこに現れる擬-南部-ゴールドストンボソン(pNGB)とその現象論的帰結を多角的に調べている。なお、このpNGBは、理論の持つ対称性を反映して低エネルギーで普遍的に現れる自由度であり、その相互作用やポテンシャルの構造を理解することは、理論的にも現象論的にも極めて重要であると考えられている。本論文の構成は以下の通りである。

 第2章と第3章では、このpNGBがWIMPと呼ばれる暗黒物質の候補粒子となる模型を考え、ゲージ群への埋め込みによる紫外完全化を議論している。これまでの直接探索実験からW頂Pと標準模型粒子との結合には強い制限があるが、pNGBは微分結合の相互作用を持つために、この制限を自然に回避することができる。本論文では、とくにゲージ化されたU(1)B-L模型へ埋め込むことで、pNGBの質量の起源が自然に説明できる新しい模型を提案している。なおこの暗黒物質は、新しいゲージ場などとの相互作用を通じて不安定になるが、本論文では、舂命や観測からの制限を満たしながら、現在の残存量を熱的残存量として説明可能なパラメーター領域を議論している。また、この模型と大統一理論との関係を調べることで、pNGB暗黒物質の起源と力の大統一との関係を議論し、力の大統一と整合的な暗黒物質の質量の領域を示している。

 第4章と第5章では、pNGBが非常に大きな真空期待値を持つパラメーター領域を考え、「インフレーションやtype-Iシーソー模型などの他の物理との関係」と「暗黒物質の生成機構」について議論している。一般に、この領域におけるpNGBの相互作用は大きな真空期待値によって強く抑制されてしまい、低エネルギーでは小さな有効相互作用しか持てない。このとき、pNGBは典型的なFIMPの候補粒子となり、freeze-in機構によってその残存量が説明される。本論文では、対称性を破るスカラー場がインフラトンとして振る舞う場合について調べ、freeze-in機構による生成とインフラトンからの直接生成の寄与を評価することで、現在の残存量を説明可能なパラメーター空間があることを示している。また、右手型ニュートリノと結合するような場合についても調べ、ニュートリノとのYukawa結合や、スカラーポテンシャル中のポータル結合を通して暗黒物質が生成されるシナリオを解析している。

 第6章では、DFSZ模型において、スカラー場がPeccei-Quinn電荷を持ち、pNGBがアクシオンとなる場合に、新しいタイプのアクシオンストリング解を構成している。このアクシオンストリングは、中心部に非常に細いコア上のストリングを持ち、その周りを標準模型ゲージ場のフラックスが囲む、という新奇な構造を持つ。さらに、あるパラメーター領域では、コア近傍で電磁対称性が破れることにより、このアクシオンストリングは超伝導ストリングとなりうる。こうしてできる超伝導ストリング間には電磁気力による大きな引力が働く可能性があり、本論文では、Y-shaped junctionと呼ばれる束縛状態を作りうることも議論している。

この論文で使われている画像

参考文献

[A+12] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29 [arXiv:1207.7214 [hep-ex]].

[A+16] ATLAS, CMS Collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266 [hep-ex]].

[A+17a] LUX Collaboration, D. S. Akerib et al., Limits on spin-dependent WIMP-nucleon cross section obtained from the complete LUX exposure, Phys. Rev. Lett. 118 no. 25, (2017) 251302 [arXiv:1705.03380 [astro-ph.CO]].

[A+17b] Fermi-LAT, DES Collaboration, A. Albert et al., Searching for Dark Matter Annihilation in Recently Discovered Milky Way Satellites with Fermi-LAT, Astrophys. J. 834 no. 2, (2017) 110 [arXiv:1611.03184 [astro-ph.HE]].

[A+18] XENON Collaboration, E. Aprile et al., Dark Matter Search Results from a One Ton-Year Exposure of XENON1T, Phys. Rev. Lett. 121 no. 11, (2018) 111302 [arXiv:1805.12562 [astro-ph.CO]].

[A+19a] ATLAS Collaboration, M. Aaboud et al., Combination of searches for invisible Higgs boson decays with the ATLAS experiment, Phys. Rev. Lett. 122 no. 23, (2019) 231801 [arXiv:1904.05105 [hep-ex]].

[A+19b] IceCube Collaboration, M. G. Aartsen et al., Neutrino astronomy with the next generation IceCube Neutrino Observatory, arXiv:1911.02561 [astro-ph.HE].

[A+20a] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209 [astro-ph.CO]]. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[A+20b] Planck Collaboration, N. Aghanim et al., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [arXiv:1807.06209 [astro-ph.CO]]. [Erratum: Astron.Astrophys. 652, C4 (2021)].

[A+20c] Planck Collaboration, Y. Akrami et al., Planck 2018 results. X. Constraints on inflation, Astron. Astrophys. 641 (2020) A10 [arXiv:1807.06211 [astro-ph.CO]].

[A+20d] XENON Collaboration, E. Aprile et al., Projected WIMP sensitivity of the XENONnT dark matter experiment, JCAP 11 (2020) 031 [arXiv:2007.08796 [physics.ins-det]].

[A+21] Muon g-2 Collaboration, T. Albahri et al., Measurement of the anomalous precession frequency of the muon in the Fermilab Muon g − 2 Experiment, Phys. Rev. D 103 no. 7, (2021) 072002 [arXiv:2104.03247 [hep-ex]].

[ABC+90] M. G. Alford, K. Benson, S. R. Coleman, J. March-Russell, and F. Wilczek, The Interactions and Excitations of Nonabelian Vortices, Phys. Rev. Lett. 64 (1990) 1632. [Erratum: Phys.Rev.Lett. 65, 668 (1990)].

[ABC+91] M. G. Alford, K. Benson, S. R. Coleman, J. March-Russell, and F. Wilczek, Zero modes of nonabelian vortices, Nucl. Phys. B 349 (1991) 414–438.

[ABD+20] C. Arina, A. Beniwal, C. Degrande, J. Heisig, and A. Scaffidi, Global fit of pseudo-Nambu-Goldstone Dark Matter, JHEP 04 (2020) 015 [arXiv:1912.04008 [hep-ph]].

[ABDK06] P. Anastasopoulos, M. Bianchi, E. Dudas, and E. Kiritsis, Anomalies, anomalous U(1)’s and generalized Chern-Simons terms, JHEP 11 (2006) 057 [arXiv:hep-th/0605225].

[Abe20] T. Abe, Effect of the early kinetic decoupling in a fermionic dark matter model, Phys. Rev. D 102 no. 3, (2020) 035018 [arXiv:2004.10041 [hep-ph]].

[ABM+04] C. S. Aulakh, B. Bajc, A. Melfo, G. Senjanovic, and F. Vissani, The Minimal supersymmetric grand unified theory, Phys. Lett. B 588 (2004) 196–202 [arXiv:hep-ph/0306242].

[Abr57] A. A. Abrikosov, On the Magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174–1182.

[ACE20] D. Andriot, N. Cribiori, and D. Erkinger, The web of swampland conjectures and the TCC bound, JHEP 07 (2020) 162 [arXiv:2004.00030 [hep-th]].

[ADD+10] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper, and J. March-Russell, String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720 [hep-th]].

[ADG+19] D. Azevedo, M. Duch, B. Grzadkowski, D. Huang, M. Iglicki, and R. Santos, One-loop contribution to dark-matter-nucleon scattering in the pseudo-scalar dark matter model, JHEP 01 (2019) 138 [arXiv:1810.06105 [hep-ph]].

[AFH19] T. Abe, M. Fujiwara, and J. Hisano, Loop corrections to dark matter direct detection in a pseudoscalar mediator dark matter model, JHEP 02 (2019) 028 [arXiv:1810.01039 [hep-ph]].

[AFHS20] T. Abe, M. Fujiwara, J. Hisano, and Y. Shoji, Maximum value of the spin-independent cross section in the 2HDM+a, JHEP 01 (2020) 114 [arXiv:1910.09771 [hep-ph]].

[AFI+01a] G. Aldazabal, S. Franco, L. E. Ibanez, R. Rabadan, and A. M. Uranga, D = 4 chiral string compactifications from intersecting branes, J. Math. Phys. 42 (2001) 3103–3126 [arXiv:hep-th/0011073].

[AFI+01b] G. Aldazabal, S. Franco, L. E. Ibanez, R. Rabadan, and A. M. Uranga, Intersecting brane worlds, JHEP 02 (2001) 047 [arXiv:hep-ph/0011132].

[AHCG01] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, (De)constructing dimensions, Phys. Rev. Lett. 86 (2001) 4757–4761 [arXiv:hep-th/0104005].

[AHMNV07] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [arXiv:hep-th/0601001].

[AHO+20] Y. Abe, Y. Hamada, T. Ohata, K. Suzuki, and K. Yoshioka, TeV-scale Majorogenesis, JHEP 07 no. 07, (2020) 105 [arXiv:2004.00599 [hep-ph]].

[AHT20] Y. Abe, T. Higaki, and R. Takahashi, Implications of the weak gravity conjecture in anomalous quiver gauge theories, Phys. Rev. D 102 no. 6, (2020) 065004 [arXiv:2004.14917 [hep-th]].

[AHY21] Y. Abe, Y. Hamada, and K. Yoshioka, Electroweak axion string and superconductivity, JHEP 06 (2021) 172 [arXiv:2010.02834 [hep-ph]].

[AIM06] T. Asaka, K. Ishiwata, and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [arXiv:hep-ph/0512118].

[AIM07] T. Asaka, K. Ishiwata, and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [arXiv:hep-ph/0612211].

[AIQU00] G. Aldazabal, L. E. Ibanez, F. Quevedo, and A. M. Uranga, D-branes at singularities: A Bottom up approach to the string embedding of the standard model, JHEP 08 (2000) 002 [arXiv:hep-th/0005067].

[AIY21] Y. Abe, T. Ito, and K. Yoshioka, Leptonic CP asymmetry and Light flavored scalar, arXiv:2110.11096 [hep-ph].

[AKMY03] H. Abe, T. Kobayashi, N. Maru, and K. Yoshioka, Field localization in warped gauge theories, Phys. Rev. D 67 (2003) 045019 [arXiv:hep-ph/0205344].

[AKS20] W. Abdallah, A. Kumar, and A. K. Saha, Soft leptogenesis in the NMSSM with a singlet right-handed neutrino superfield, JHEP 04 (2020) 065 [arXiv:1911.03363 [hep-ph]].

[ALQ+18] G. Arcadi, M. Lindner, F. S. Queiroz, W. Rodejohann, and S. Vogl, Pseudoscalar Mediators: A WIMP model at the Neutrino Floor, JCAP 03 (2018) 042 [arXiv:1711.02110 [hep-ph]].

[AM83] C. S. Aulakh and R. N. Mohapatra, Implications of Supersymmetric SO(10) Grand Unification, Phys. Rev. D 28 (1983) 217.

[AM13] G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the physics below MGUT , JHEP 08 (2013) 021 [arXiv:1305.1001 [hep-ph]].

[AO90a] J. Ambjorn and P. Olesen, A Condensate Solution of the Electroweak Theory Which Interpolates Between the Broken and the Symmetric Phase, Nucl. Phys. B 330 (1990) 193–204.

[AO90b] J. Ambjorn and P. Olesen, Electroweak Magnetism: Theory and Application, Int. J. Mod. Phys. A 5 (1990) 4525–4558.

[AO92] J. Ambjorn and P. Olesen, Electroweak magnetism, W condensation and antiscreening, in 4th Hellenic School on Elementary Particle Physics, pp. 396–406. 9, 1992. arXiv:hep-ph/9304220.

[AS83] L. F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133–136.

[AS98] R. Adhikari and U. Sarkar, Baryogenesis in a supersymmetric model without R-parity, Phys. Lett. B 427 (1998) 59–64 [arXiv:hep-ph/9610221].

[AT21] Y. Abe and T. Toma, Direct detection of pseudo-Nambu-Goldstone dark matter with light mediator, Phys. Lett. B 822 (2021) 136639 [arXiv:2108.10647 [hep-ph]].

[ATT20] Y. Abe, T. Toma, and K. Tsumura, Pseudo-Nambu-Goldstone dark matter from gauged U (1)B—L symmetry, JHEP 05 (2020) 057 [arXiv:2001.03954 [hep-ph]].

[ATTY21] Y. Abe, T. Toma, K. Tsumura, and N. Yamatsu, Pseudo-Nambu-Goldstone dark matter model inspired by grand unification, Phys. Rev. D 104 no. 3, (2021) 035011 [arXiv:2104.13523 [hep-ph]].

[ATY21] Y. Abe, T. Toma, and K. Yoshioka, Non-thermal Production of PNGB Dark Matter and Inflation, JHEP 03 (2021) 130 [arXiv:2012.10286 [hep-ph]].

[AV00] A. Achucarro and T. Vachaspati, Semilocal and electroweak strings, Phys. Rept. 327 (2000) 347–426 [arXiv:hep-ph/9904229].

[B+06] C. A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [arXiv:hep-ex/0602020].

[B+19] X. Bai et al., The Large High Altitude Air Shower Observatory (LHAASO) Science White Paper, arXiv:1905.02773 [astro-ph.HE].

[Bar95] M. Barriola, Electroweak strings that produce baryons, Phys. Rev. D 51 (1995) 300–304 [arXiv:hep-ph/9403323].

[BBD+17] D. Barducci, A. Bharucha, N. Desai, M. Frigerio, B. Fuks, A. Goudelis, S. Kulkarni, G. Polesello, and D. Sengupta, Monojet searches for momentum-dependent dark matter interactions, JHEP 01 (2017) 078 [arXiv:1609.07490 [hep-ph]].

[BBDR18] T. Bandyopadhyay, G. Bhattacharyya, D. Das, and A. Raychaudhuri, Reappraisal of constraints on Zr models from unitarity and direct searches at the LHC, Phys. Rev. D 98 no. 3, (2018) 035027 [arXiv:1803.07989 [hep-ph]].

[BBG+18a] G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186 [arXiv:1801.03509 [hep-ph]].

[BBG+18b] G. B´elanger, F. Boudjema, A. Goudelis, A. Pukhov, and B. Zaldivar, micrOMEGAs5.0 : Freeze-in, Comput. Phys. Commun. 231 (2018) 173–186 [arXiv:1801.03509 [hep-ph]].

[BBGH17] T. Binder, T. Bringmann, M. Gustafsson, and A. Hryczuk, Early kinetic decoupling of dark matter: when the standard way of calculating the thermal relic density fails, Phys. Rev. D 96 no. 11, (2017) 115010 [arXiv:1706.07433 [astro-ph.CO]]. [Erratum: Phys.Rev.D 101, 099901 (2020)].

[BBLM20] K. Benakli, C. Branchina, and G. Lafforgue-Marmet, Revisiting the scalar weak gravity conjecture, Eur. Phys. J. C 80 no. 8, (2020) 742 [arXiv:2004.12476 [hep-th]].

[BBP11] R. A. Battye, G. D. Brawn, and A. Pilaftsis, Vacuum Topology of the Two Higgs Doublet Model, JHEP 08 (2011) 020 [arXiv:1106.3482 [hep-ph]].

[BBS18] N. F. Bell, G. Busoni, and I. W. Sanderson, Loop Effects in Direct Detection, JCAP 08 (2018) 017 [arXiv:1803.01574 [hep-ph]]. [Erratum: JCAP 01, E01 (2019)].

[BCM+09] N. Bevis, E. J. Copeland, P.-Y. Martin, G. Niz, A. Pourtsidou, P. M. Saffin, and D. A. Steer, Evolution and stability of cosmic string loops with Y-junctions, Phys. Rev. D 80 (2009) 125030 [arXiv:0904.2127 [hep-th]].

[BCMU20] G. Buratti, J. Calderon, A. Mininno, and A. M. Uranga, Discrete Symmetries, Weak Coupling Conjecture and Scale Separation in AdS Vacua, JHEP 06 (2020) 083 [arXiv:2003.09740 [hep-th]].

[BCP13] A. Belyaev, N. D. Christensen, and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729–1769 [arXiv:1207.6082 [hep-ph]].

[BCST00] R. Barbieri, P. Creminelli, A. Strumia, and N. Tetradis, Baryogenesis through leptogenesis, Nucl. Phys. B 575 (2000) 61–77 [arXiv:hep-ph/9911315].

[BD88] T. Banks and L. J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93–108.

[BDBP04] W. Buchmuller, P. Di Bari, and M. Plumacher, Some aspects of thermal leptogenesis, New J. Phys. 6 (2004) 105 [arXiv:hep-ph/0406014].

[BDLM09] S. Bertolini, L. Di Luzio, and M. Malinsky, Intermediate mass scales in the non-supersymmetric SO(10) grand unification: A Reappraisal, Phys. Rev. D 80 (2009) 015013 [arXiv:0903.4049 [hep-ph]].

[BDM20] D. Borah, A. Dasgupta, and D. Mahanta, Dark Sector Assisted Low Scale Leptogenesis from Three Body Decay, arXiv:2008.10627 [hep-ph].

[BGM+16] I. Brivio, M. B. Gavela, L. Merlo, K. Mimasu, J. M. No, R. del Rey, and V. Sanz, Non-linear Higgs portal to Dark Matter, JHEP 04 (2016) 141 [arXiv:1511.01099 [hep-ph]].

[BGQS16] M. G. Baring, T. Ghosh, F. S. Queiroz, and K. Sinha, New Limits on the Dark Matter Lifetime from Dwarf Spheroidal Galaxies using Fermi-LAT, Phys. Rev. D 93 no. 10, (2016) 103009 [arXiv:1510.00389 [hep-ph]].

[BHW05] R. Blumenhagen, G. Honecker, and T. Weigand, Supersymmetric (non-)Abelian bundles in the Type I and SO(32) heterotic string, JHEP 08 (2005) 009 [arXiv:hep-th/0507041].

[BK94] L. M. A. Bettencourt and T. W. B. Kibble, Nonintercommuting configurations in the collisions of type I U(1) cosmic strings, Phys. Lett. B 332 (1994) 297–304 [arXiv:hep-ph/9405221].

[BK15] K. S. Babu and S. Khan, Minimal nonsupersymmetric SO(10) model: Gauge coupling unification, proton decay, and fermion masses, Phys. Rev. D 92 no. 7, (2015) 075018 [arXiv:1507.06712 [hep-ph]].

[BKLS07] R. Blumenhagen, B. Kors, D. Lust, and S. Stieberger, Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1–193 [arXiv:hep-th/0610327].

[BL94] G. Bimonte and G. Lozano, Vortex solutions in two Higgs doublet systems, Phys. Lett. B 326 (1994) 270–275 [arXiv:hep-ph/9401313].

[BLM97] L. M. A. Bettencourt, P. Laguna, and R. A. Matzner, Nonintercommuting cosmic strings, Phys. Rev. Lett. 78 (1997) 2066–2069 [arXiv:hep-ph/9612350].

[BLPZ06] B. A. Burrington, J. T. Liu, and L. A. Pando Zayas, Finite Heisenberg groups in quiver gauge theories, Nucl. Phys. B 747 (2006) 436–454 [arXiv:hep-th/0602094].

[BLS03] R. Blumenhagen, D. Lust, and S. Stieberger, Gauge unification in supersymmetric intersecting brane worlds, JHEP 07 (2003) 036 [arXiv:hep-th/0305146].

[BM93] K. S. Babu and R. N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand unification, Phys. Rev. Lett. 70 (1993) 2845–2848 [arXiv:hep-ph/9209215].

[BMS10] V. Barger, M. McCaskey, and G. Shaughnessy, Complex Scalar Dark Matter vis-\‘a-vis CoGeNT, DAMA/LIBRA and XENON100, Phys. Rev. D 82 (2010) 035019 [arXiv:1005.3328 [hep-ph]].

[BMSV06] B. Bajc, A. Melfo, G. Senjanovic, and F. Vissani, Yukawa sector in non-supersymmetric renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [arXiv:hep-ph/0510139].

[BMSV14] S. M. Boucenna, S. Morisi, Q. Shafi, and J. W. F. Valle, Inflation and majoron dark matter in the seesaw mechanism, Phys. Rev. D 90 no. 5, (2014) 055023 [arXiv:1404.3198 [hep-ph]].

[Bor00] B. Borasoy, The Electric dipole moment of the neutron in chiral perturbation theory, Phys. Rev. D 61 (2000) 114017 [arXiv:hep-ph/0004011].

[BRSW17] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler, Charged Composite Scalar Dark Matter, JHEP 11 (2017) 094 [arXiv:1707.07685 [hep-ph]].

[BRSW18] R. Balkin, M. Ruhdorfer, E. Salvioni, and A. Weiler, Dark matter shifts away from direct detection, JCAP 11 (2018) 050 [arXiv:1809.09106 [hep-ph]].

[BRT99] C. Bachas, B. Rai, and T. N. Tomaras, New string excitations in the two Higgs standard model, Phys. Rev. Lett. 82 (1999) 2443–2446 [arXiv:hep-ph/9801263].

[BS08a] N. Bevis and P. M. Saffin, Cosmic string Y-junctions: A Comparison between field theoretic and Nambu-Goto dynamics, Phys. Rev. D 78 (2008) 023503 [arXiv:0804.0200 [hep-th]].

[BS08b] F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703–706 [arXiv:0710.3755 [hep-th]].

[BS11] T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120 [hep-th]].

[BV91] L. Bento and J. W. F. Valle, The Simplest model for the 17-KeV neutrino and the MSW effect, Phys. Lett. B 264 (1991) 373–380.

[BVB94] M. Barriola, T. Vachaspati, and M. Bucher, Embedded defects, Phys. Rev. D 50 (1994) 2819–2825 [arXiv:hep-th/9306120].

[C+12] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30–61 [arXiv:1207.7235 [hep-ex]].

[C+16] CTA Collaboration, J. Carr et al., Prospects for Indirect Dark Matter Searches with the Cherenkov Telescope Array (CTA), PoS ICRC2015 (2016) 1203 [arXiv:1508.06128 [astro-ph.HE]].

[C+17] PandaX-II Collaboration, X. Cui et al., Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment, Phys. Rev. Lett. 119 no. 18, (2017) 181302 [arXiv:1708.06917 [astro-ph.CO]].

[CACM16] T. Charnock, A. Avgoustidis, E. J. Copeland, and A. Moss, CMB constraints on cosmic strings and superstrings, Phys. Rev. D 93 no. 12, (2016) 123503 [arXiv:1603.01275 [astro-ph.CO]].

[CDF20] D. B. Costa, B. A. Dobrescu, and P. J. Fox, Chiral Abelian gauge theories with few fermions, Phys. Rev. D 101 no. 9, (2020) 095032 [arXiv:2001.11991 [hep-ph]].

[CDL15] C.-Y. Chen, S. Dawson, and I. M. Lewis, Exploring resonant di-Higgs boson production in the Higgs singlet model, Phys. Rev. D 91 no. 3, (2015) 035015 [arXiv:1410.5488 [hep-ph]].

[CGGK19] N. Craig, I. Garcia Garcia, and S. Koren, Discrete Gauge Symmetries and the Weak Gravity Conjecture, JHEP 05 (2019) 140 [arXiv:1812.08181 [hep-th]].

[CGGK20] N. Craig, I. Garcia Garcia, and G. D. Kribs, The UV fate of anomalous U(1)s and the Swampland, JHEP 11 (2020) 063 [arXiv:1912.10054 [hep-ph]].

[CGIT10] L. Covi, M. Grefe, A. Ibarra, and D. Tran, Neutrino Signals from Dark Matter Decay, JCAP 04 (2010) 017 [arXiv:0912.3521 [hep-ph]].

[CGN20] P. Cox, T. Gherghetta, and M. D. Nguyen, A Holographic Perspective on the Axion Quality Problem, JHEP 01 (2020) 188 [arXiv:1911.09385 [hep-ph]].

[CGR12] M. Cicoli, M. Goodsell, and A. Ringwald, The type IIB string axiverse and its low-energy phenomenology, JHEP 10 (2012) 146 [arXiv:1206.0819 [hep-th]].

[CH85] C. G. Callan, Jr. and J. A. Harvey, Anomalies and Fermion Zero Modes on Strings and Domain Walls, Nucl. Phys. B 250 (1985) 427–436.

[CHN20] C. Chatterjee, T. Higaki, and M. Nitta, Note on a solution to domain wall problem with the Lazarides-Shafi mechanism in axion dark matter models, Phys. Rev. D 101 no. 7, (2020) 075026 [arXiv:1903.11753 [hep-ph]].

[CHR09] M. Cvetic, J. Halverson, and R. Richter, Realistic Yukawa structures from orientifold compactifications, JHEP 12 (2009) 063 [arXiv:0905.3379 [hep-th]].

[CHS99] S. Chang, C. Hagmann, and P. Sikivie, Studies of the motion and decay of axion walls bounded by strings, Phys. Rev. D 59 (1999) 023505 [arXiv:hep-ph/9807374].

[CI01] J. A. Casas and A. Ibarra, Oscillating neutrinos and µ → e, γ, Nucl. Phys. B 618 (2001) 171–204 [arXiv:hep-ph/0103065].

[CIM02a] D. Cremades, L. E. Ibanez, and F. Marchesano, Intersecting brane models of particle physics and the Higgs mechanism, JHEP 07 (2002) 022 [arXiv:hep-th/0203160].

[CIM02b] D. Cremades, L. E. Ibanez, and F. Marchesano, SUSY quivers, intersecting branes and the modest hierarchy problem, JHEP 07 (2002) 009 [arXiv:hep-th/0201205].

[CIM03] D. Cremades, L. E. Ibanez, and F. Marchesano, Yukawa couplings in intersecting D-brane models, JHEP 07 (2003) 038 [arXiv:hep-th/0302105].

[CIM04] D. Cremades, L. E. Ibanez, and F. Marchesano, Computing Yukawa couplings from magnetized extra dimensions, JHEP 05 (2004) 079 [arXiv:hep-th/0404229].

[CK86] D. Chang and A. Kumar, Symmetry Breaking of SO(10) by 210-dimensional Higgs Boson and the Michel’s Conjecture, Phys. Rev. D 33 (1986) 2695.

[CKS06] E. J. Copeland, T. W. B. Kibble, and D. A. Steer, Collisions of strings with Y junctions, Phys. Rev. Lett. 97 (2006) 021602 [arXiv:hep-th/0601153].

[CKS07] E. J. Copeland, T. W. B. Kibble, and D. A. Steer, Constraints on string networks with junctions, Phys. Rev. D 75 (2007) 065024 [arXiv:hep-th/0611243].

[CMG+85] D. Chang, R. N. Mohapatra, J. Gipson, R. E. Marshak, and M. K. Parida, Experimental Tests of New SO(10) Grand Unification, Phys. Rev. D 31 (1985) 1718.

[CMK19] J. Chakrabortty, R. Maji, and S. F. King, Unification, Proton Decay and Topological Defects in non-SUSY GUTs with Thresholds, Phys. Rev. D 99 no. 9, (2019) 095008 [arXiv:1901.05867 [hep-ph]].

[CMP80] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Spontaneously Broken Lepton Number and Cosmological Constraints on the Neutrino Mass Spectrum, Phys. Rev. Lett. 45 (1980) 1926.

[CMP81] Y. Chikashige, R. N. Mohapatra, and R. D. Peccei, Are There Real Goldstone Bosons Associated with Broken Lepton Number?, Phys. Lett. B 98 (1981) 265–268.

[CMP84a] D. Chang, R. N. Mohapatra, and M. K. Parida, A New Approach to Left-Right Symmetry Breaking in Unified Gauge Theories, Phys. Rev. D 30 (1984) 1052.

[CMP84b] D. Chang, R. N. Mohapatra, and M. K. Parida, Decoupling Parity and SU(2)-R Breaking Scales: A New Approach to Left-Right Symmetric Models, Phys. Rev. Lett. 52 (1984) 1072.

[CPS20] M. Chakraborty, M. K. Parida, and B. Sahoo, Triplet Leptogenesis, Type-II Seesaw Dominance, Intrinsic Dark Matter, Vacuum Stability and Proton Decay in Minimal SO(10) Breakings, JCAP 01 (2020) 049 [arXiv:1906.05601 [hep-ph]].

[CR14] C. Cheung and G. N. Remmen, Naturalness and the Weak Gravity Conjecture, Phys. Rev. Lett. 113 (2014) 051601 [arXiv:1402.2287 [hep-ph]].

[CS00] E. Corbelli and P. Salucci, The Extended Rotation Curve and the Dark Matter Halo of M33, Mon. Not. Roy. Astron. Soc. 311 (2000) 441–447 [arXiv:astro-ph/9909252].

[CT86] E. J. Copeland and N. Turok, Cosmic String Interactions,.

[CT19] J. M. Cline and T. Toma, Pseudo-Goldstone dark matter confronts cosmic ray and collider anomalies, Phys. Rev. D 100 no. 3, (2019) 035023 [arXiv:1906.02175 [hep-ph]].

[Dav86] R. L. Davis, Cosmic Axions from Cosmic Strings, Phys. Lett. B 180 (1986) 225–230.

[DBDKZ20] A. Dasgupta, P. S. Bhupal Dev, S. K. Kang, and Y. Zhang, New mechanism for matter-antimatter asymmetry and connection with dark matter, Phys. Rev. D 102 no. 5, (2020) 055009 [arXiv:1911.03013 [hep-ph]].

[DEHK92] A. Denner, H. Eck, O. Hahn, and J. Kublbeck, Feynman rules for fermion number violating interactions, Nucl. Phys. B 387 (1992) 467–481.

[DF83] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137–141.

[DFG+16] I. Dorˇsner, S. Fajfer, A. Greljo, J. F. Kamenik, and N. Koˇsnik, Physics of leptoquarks in precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1–68 [arXiv:1603.04993 [hep-ph]].

[DFS81] M. Dine, W. Fischler, and M. Srednicki, A Simple Solution to the Strong CP Problem with a Harmless Axion, Phys. Lett. B 104 (1981) 199–202.

[DJ74] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9 (1974) 3320–3341.

[DK07] M. R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733–796 [arXiv:hep-th/0610102].

[DKP93a] N. G. Deshpande, E. Keith, and P. B. Pal, Implications of LEP results for SO(10) grand unification, Phys. Rev. D 46 (1993) 2261–2264.

[DKP93b] N. G. Deshpande, E. Keith, and P. B. Pal, Implications of LEP results for SO(10) grand unification with two intermediate stages, Phys. Rev. D 47 (1993) 2892–2896 [arXiv:hep-ph/9211232].

[DKQ11] M. J. Dolan, S. Krippendorf, and F. Quevedo, Towards a Systematic Construction of Realistic D-brane Models on a del Pezzo Singularity, JHEP 10 (2011) 024 [arXiv:1106.6039 [hep-th]].

[DM96] M. R. Douglas and G. W. Moore, D-branes, quivers, and ALE instantons, arXiv:hep-th/9603167.

[DN13] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and Observation, Astron. Astrophys. Rev. 21 (2013) 62 [arXiv:1303.7121 [astro-ph.CO]].

[DNN08] S. Davidson, E. Nardi, and Y. Nir, Leptogenesis, Phys. Rept. 466 (2008) 105–177 [arXiv:0802.2962 [hep-ph]].

[DR08] G. Dvali and M. Redi, Black Hole Bound on the Number of Species and Quantum Gravity at LHC, Phys. Rev. D 77 (2008) 045027 [arXiv:0710.4344 [hep-th]].

[DS93] G. R. Dvali and G. Senjanovic, Topologically stable electroweak flux tubes, Phys. Rev. Lett. 71 (1993) 2376–2379 [arXiv:hep-ph/9305278].

[DS94] G. R. Dvali and G. Senjanovic, Topologically stable Z strings in the supersymmetric Standard Model, Phys. Lett. B 331 (1994) 63–68 [arXiv:hep-ph/9403277].

[DSW87] M. Dine, N. Seiberg, and E. Witten, Fayet-Iliopoulos Terms in String Theory, Nucl. Phys. B 289 (1987) 589–598.

[DW82] A. Davidson and K. C. Wali, MINIMAL FLAVOR UNIFICATION VIA MULTIGENERATIONAL PECCEI-QUINN SYMMETRY, Phys. Rev. Lett. 48 (1982) 11.

[EGKO18] S. A. R. Ellis, T. Gherghetta, K. Kaneta, and K. A. Olive, New Weak-Scale Physics from SO(10) with High-Scale Supersymmetry, Phys. Rev. D 98 no. 5, (2018) 055009 [arXiv:1807.06488 [hep-ph]].

[EHKN20a] M. Eto, Y. Hamada, M. Kurachi, and M. Nitta, Dynamics of Nambu monopole in two Higgs doublet models. Cosmological Monopole Collider, JHEP 07 (2020) 004 [arXiv:2003.08772 [hep-ph]].

[EHKN20b] M. Eto, Y. Hamada, M. Kurachi, and M. Nitta, Topological Nambu monopole in two Higgs doublet models, Phys. Lett. B 802 (2020) 135220 [arXiv:1904.09269 [hep-ph]].

[EHN20] M. Eto, Y. Hamada, and M. Nitta, Topological structure of a Nambu monopole in two-Higgs-doublet models: Fiber bundle, Dirac’s quantization, and a dyon, Phys. Rev. D 102 no. 10, (2020) 105018 [arXiv:2007.15587 [hep-th]].

[EKN18a] M. Eto, M. Kurachi, and M. Nitta, Constraints on two Higgs doublet models from domain walls, Phys. Lett. B 785 (2018) 447–453 [arXiv:1803.04662 [hep-ph]].

[EKN18b] M. Eto, M. Kurachi, and M. Nitta, Non-Abelian strings and domain walls in two Higgs doublet models, JHEP 08 (2018) 195 [arXiv:1805.07015 [hep-ph]].

[EKNO13] M. Eto, K. Konishi, M. Nitta, and Y. Ookouchi, Brane Realization of Nambu Monopoles and Electroweak Strings, Phys. Rev. D 87 no. 4, (2013) 045006 [arXiv:1211.2971 [hep-th]].

[EKU15] F. Elahi, C. Kolda, and J. Unwin, UltraViolet Freeze-in, JHEP 03 (2015) 048 [arXiv:1410.6157 [hep-ph]].

[ENTT14] K. Enqvist, S. Nurmi, T. Tenkanen, and K. Tuominen, Standard Model with a real singlet scalar and inflation, JCAP 08 (2014) 035 [arXiv:1407.0659 [astro-ph.CO]].

[FGL15] A. Falkowski, C. Gross, and O. Lebedev, A second Higgs from the Higgs portal, JHEP 05 (2015) 057 [arXiv:1502.01361 [hep-ph]].

[FHHT19] S. Ferrari, T. Hambye, J. Heeck, and M. H. G. Tytgat, SO(10) paths to dark matter, Phys. Rev. D 99 no. 5, (2019) 055032 [arXiv:1811.07910 [hep-ph]].

[FIK+05] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, and N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005) 033505 [arXiv:hep-ph/0405300].

[FK15] R. Feger and T. W. Kephart, LieART—A Mathematica application for Lie algebras and representation theory, Comput. Phys. Commun. 192 (2015) 166–195 [arXiv:1206.6379 [math-ph]].

[FKS20] R. Feger, T. W. Kephart, and R. J. Saskowski, LieART 2.0 – A Mathematica application for Lie Algebras and Representation Theory, Comput. Phys. Commun. 257 (2020) 107490 [arXiv:1912.10969 [hep-th]].

[FL11] M. Freytsis and Z. Ligeti, On dark matter models with uniquely spin-dependent detection possibilities, Phys. Rev. D 83 (2011) 115009 [arXiv:1012.5317 [hep-ph]].

[FM75] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93 (1975) 193–266.

[FN79] C. D. Froggatt and H. B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP Violation, Nucl. Phys. B 147 (1979) 277–298.

[Fon12] R. M. Fonseca, Calculating the renormalisation group equations of a SUSY model with Susyno, Comput. Phys. Commun. 183 (2012) 2298–2306 [arXiv:1106.5016 [hep-ph]].

[Fon21] R. M. Fonseca, GroupMath: A Mathematica package for group theory calculations, Comput. Phys. Commun. 267 (2021) 108085 [arXiv:2011.01764 [hep-th]].

[Fuk13] T. Fukuyama, SO(10) GUT in Four and Five Dimensions: A Review, Int. J. Mod. Phys. A 28 (2013) 1330008 [arXiv:1212.3407 [hep-ph]].

[FY86] M. Fukugita and T. Yanagida, Baryogenesis Without Grand Unification, Phys. Lett. B 174 (1986) 45–47.

[FZFLLH15] N. Fonseca, R. Zukanovich Funchal, A. Lessa, and L. Lopez-Honorez, Dark Matter Constraints on Composite Higgs Models, JHEP 06 (2015) 154 [arXiv:1501.05957 [hep-ph]].

[GCH17] C. Garcia-Cely and J. Heeck, Neutrino Lines from Majoron Dark Matter, JHEP 05 (2017) 102 [arXiv:1701.07209 [hep-ph]].

[GG74] H. Georgi and S. L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32 (1974) 438–441.

[GGK89] G. B. Gelmini, M. Gleiser, and E. W. Kolb, Cosmology of Biased Discrete Symmetry Breaking, Phys. Rev. D 39 (1989) 1558.

[GIn19] E. Gonzalo and L. E. Ib´an˜ez, A Strong Scalar Weak Gravity Conjecture and Some Implications, JHEP 08 (2019) 118 [arXiv:1903.08878 [hep-th]].

[GK19] S. K. Garg and C. Krishnan, Bounds on Slow Roll and the de Sitter Swampland, JHEP 11 (2019) 075 [arXiv:1807.05193 [hep-th]].

[GL89] N. Ganoulis and G. Lazarides, Fermionic Zero Modes for Cosmic Strings, Nucl. Phys. B 316 (1989) 443–455.

[GLT17] C. Gross, O. Lebedev, and T. Toma, Cancellation Mechanism for Dark-Matter–Nucleon Interaction, Phys. Rev. Lett. 119 no. 19, (2017) 191801 [arXiv:1708.02253 [hep-ph]].

[GMP21] A. Granelli, K. Moffat, and S. T. Petcov, Aspects of high scale leptogenesis with low-energy leptonic CP violation, JHEP 11 (2021) 149 [arXiv:2107.02079 [hep-ph]].

[GMRS79] M. Gell-Mann, P. Ramond, and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315–321 [arXiv:1306.4669 [hep-th]].

[GMS10] P.-H. Gu, E. Ma, and U. Sarkar, Pseudo-Majoron as Dark Matter, Phys. Lett. B 690 (2010) 145–148 [arXiv:1004.1919 [hep-ph]].

[GMW11] B. Grzadkowski, M. Maniatis, and J. Wudka, The bilinear formalism and the custodial symmetry in the two-Higgs-doublet model, JHEP 11 (2011) 030 [arXiv:1011.5228 [hep-ph]].

[GnH21] M. Gran˜a and A. Herra´ez, The Swampland Conjectures: A Bridge from Quantum Gravity to Particle Physics, Universe 7 no. 8, (2021) 273 [arXiv:2107.00087 [hep-th]].

[GP11] D. S. Gorbunov and A. G. Panin, Scalaron the mighty: producing dark matter and baryon asymmetry at reheating, Phys. Lett. B 700 (2011) 157–162 [arXiv:1009.2448 [hep-ph]].

[GR81] G. B. Gelmini and M. Roncadelli, Left-Handed Neutrino Mass Scale and Spontaneously Broken Lepton Number, Phys. Lett. B 99 (1981) 411–415.

[GRW98] S. Gukov, M. Rangamani, and E. Witten, Dibaryons, strings and branes in AdS orbifold models, JHEP 12 (1998) 025 [arXiv:hep-th/9811048].

[GS84] M. B. Green and J. H. Schwarz, Anomaly Cancellation in Supersymmetric D=10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117–122.

[GVMU19] E. Gar´cıa-Valdecasas, A. Mininno, and A. M. Uranga, Discrete Symmetries in Dimer Diagrams, JHEP 10 (2019) 091 [arXiv:1907.06938 [hep-th]].

[H+99] P. G. Harris et al., New experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 82 (1999) 904–907.

[Hal81] L. J. Hall, Grand Unification of Effective Gauge Theories, Nucl. Phys. B 178 (1981) 75–124.

[Ham02] T. Hambye, Leptogenesis at the TeV scale, Nucl. Phys. B 633 (2002) 171–192 [arXiv:hep-ph/0111089].

[HBL+20] D.-Z. He, X.-J. Bi, S.-J. Lin, P.-F. Yin, and X. Zhang, Expected LHAASO sensitivity to decaying dark matter signatures from dwarf galaxies gamma-ray emission, Chin. Phys. C 44 no. 8, (2020) 085001 [arXiv:1910.05017 [astro-ph.HE]].

[HEK+14] T. Hiramatsu, M. Eto, K. Kamada, T. Kobayashi, and Y. Ookouchi, Instability of colliding metastable strings, JHEP 01 (2014) 165 [arXiv:1304.0623 [hep-ph]].

[HJMRW10] L. J. Hall, K. Jedamzik, J. March-Russell, and S. M. West, Freeze-In Production of FIMP Dark Matter, JHEP 03 (2010) 080 [arXiv:0911.1120 [hep-ph]].

[HKL+19] K. Huitu, N. Koivunen, O. Lebedev, S. Mondal, and T. Toma, Probing pseudo-Goldstone dark matter at the LHC, Phys. Rev. D 100 no. 1, (2019) 015009 [arXiv:1812.05952 [hep-ph]].

[HO21] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 no. 3, (2021) 1669–1804 [arXiv:1810.05338 [hep-th]].

[HRR19] B. Heidenreich, M. Reece, and T. Rudelius, Repulsive Forces and the Weak Gravity Conjecture, JHEP 10 (2019) 055 [arXiv:1906.02206 [hep-th]].

[HST+13] T. Hiramatsu, Y. Sendouda, K. Takahashi, D. Yamauchi, and C.-M. Yoo, Type-I cosmic string network, Phys. Rev. D 88 no. 8, (2013) 085021 [arXiv:1307.0308 [astro-ph.CO]].

[HT20] J. Heeck and V. Takhistov, Inclusive Nucleon Decay Searches as a Frontier of Baryon Number Violation, Phys. Rev. D 101 no. 1, (2020) 015005 [arXiv:1910.07647 [hep-ph]].

[IMN14] S. Ipek, D. McKeen, and A. E. Nelson, A Renormalizable Model for the Galactic Center Gamma Ray Excess from Dark Matter Annihilation, Phys. Rev. D 90 no. 5, (2014) 055021 [arXiv:1404.3716 [hep-ph]].

[IMR01] L. E. Ibanez, F. Marchesano, and R. Rabadan, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [arXiv:hep-th/0105155].

[IT18] K. Ishiwata and T. Toma, Probing pseudo Nambu-Goldstone boson dark matter at loop level, JHEP 12 (2018) 089 [arXiv:1810.08139 [hep-ph]].

[Iva08] I. P. Ivanov, Minkowski space structure of the Higgs potential in 2HDM.

II. Minima, symmetries, and topology, Phys. Rev. D 77 (2008) 015017 [arXiv:0710.3490 [hep-ph]].

[Iwa97] A. Iwazaki, Spontaneous magnetization of axion domain wall and primordial magnetic field, Phys. Rev. Lett. 79 (1997) 2927–2930 [arXiv:hep-ph/9705456].

[IYY] R. Iwashima, M. Yamanaka, and K. Yoshioka, to apear,.

[JL05] H. Jockers and J. Louis, The Effective action of D7-branes in N = 1 Calabi-Yau orientifolds, Nucl. Phys. B 705 (2005) 167–211 [arXiv:hep-th/0409098].

[Jon82] D. R. T. Jones, The Two Loop beta Function for a G(1) x G(2) Gauge Theory, Phys. Rev. D 25 (1982) 581.

[JPV92] M. James, L. Perivolaropoulos, and T. Vachaspati, Stability of electroweak strings, Phys. Rev. D 46 (1992) R5232–R5235.

[JPV93] M. James, L. Perivolaropoulos, and T. Vachaspati, Detailed stability analysis of electroweak strings, Nucl. Phys. B 395 (1993) 534–546 [arXiv:hep-ph/9212301].

[JR81] R. Jackiw and P. Rossi, Zero Modes of the Vortex - Fermion System, Nucl. Phys. B 190 (1981) 681–691.

[JS19] K. Jedamzik and A. Saveliev, Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation, Phys. Rev. Lett. 123 no. 2, (2019) 021301 [arXiv:1804.06115 [astro-ph.CO]].

[KC10] J. E. Kim and G. Carosi, Axions and the Strong CP Problem, Rev. Mod. Phys. 82 (2010) 557–602 [arXiv:0807.3125 [hep-ph]]. [Erratum: Rev.Mod.Phys. 91, 049902 (2019)].

[KDMQ10] S. Krippendorf, M. J. Dolan, A. Maharana, and F. Quevedo, D-branes at Toric Singularities: Model Building, Yukawa Couplings and Flavour Physics, JHEP 06 (2010) 092 [arXiv:1002.1790 [hep-th]].

[Kib80] T. W. B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67 (1980) 183.

[Kim79] J. E. Kim, Weak Interaction Singlet and Strong CP Invariance, Phys. Rev. Lett. 43 (1979) 103.

[KM84] F. R. Klinkhamer and N. S. Manton, A Saddle Point Solution in the Weinberg-Salam Theory, Phys. Rev. D 30 (1984) 2212.

[KP14] A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014) 108 [arXiv:1401.1827 [hep-ph]].

[KRS85] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.

[KT90] E. W. Kolb and M. S. Turner, The Early Universe, vol. 69. 1990.

[KTY16] M. Kawasaki, F. Takahashi, and M. Yamada, Suppressing the QCD Axion Abundance by Hidden Monopoles, Phys. Lett. B 753 (2016) 677–681 [arXiv:1511.05030 [hep-ph]].

[Kum69] R. Kumar, Covariant phase-space calculations of n-body decay and production processes, Phys. Rev. 185 (1969) 1865–1875.

[KW86] L. M. Krauss and F. Wilczek, A SHORTLIVED AXION VARIANT, Phys. Lett. B 173 (1986) 189–192.

[La93] H. La, Vortex solutions in two Higgs systems and tan Beta, arXiv:hep-ph/9302220.

[LDR14] M. Le Dall and A. Ritz, Leptogenesis and the Higgs Portal, Phys. Rev. D 90 no. 9, (2014) 096002 [arXiv:1408.2498 [hep-ph]].

[LLW19a] S.-J. Lee, W. Lerche, and T. Weigand, A Stringy Test of the Scalar Weak Gravity Conjecture, Nucl. Phys. B 938 (2019) 321–350 [arXiv:1810.05169 [hep-th]].

[LLW19b] S.-J. Lee, W. Lerche, and T. Weigand, Modular Fluxes, Elliptic Genera, and Weak Gravity Conjectures in Four Dimensions, JHEP 08 (2019) 104 [arXiv:1901.08065 [hep-th]].

[LOSW99] A. Lukas, B. A. Ovrut, K. S. Stelle, and D. Waldram, Heterotic M theory in five-dimensions, Nucl. Phys. B 552 (1999) 246–290 [arXiv:hep-th/9806051].

[LP18] D. Lust and E. Palti, Scalar Fields, Hierarchical UV/IR Mixing and The Weak Gravity Conjecture, JHEP 02 (2018) 040 [arXiv:1709.01790 [hep-th]].

[LPS88] G. Lazarides, C. Panagiotakopoulos, and Q. Shafi, COSMIC SUPERCONDUCTING STRINGS AND COLLIDERS, Nucl. Phys. B 296 (1988) 657–668.

[LS82] G. Lazarides and Q. Shafi, Axion Models with No Domain Wall Problem, Phys. Lett. B 115 (1982) 21–25.

[LS85] G. Lazarides and Q. Shafi, Superconducting Strings in Axion Models, Phys. Lett. B 151 (1985) 123–126.

[LSW97] S. E. Larsson, S. Sarkar, and P. L. White, Evading the cosmological domain wall problem, Phys. Rev. D 55 (1997) 5129–5135 [arXiv:hep-ph/9608319].

[LT19] O. Lebedev and T. Toma, Relativistic Freeze-in, Phys. Lett. B 798 (2019) 134961 [arXiv:1908.05491 [hep-ph]].

[Mar16] D. J. E. Marsh, Axion Cosmology, Phys. Rept. 643 (2016) 1–79 [arXiv:1510.07633 [astro-ph.CO]].

[Min77] P. Minkowski, µ → eγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421–428.

[MKR10] R. Massey, T. Kitching, and J. Richard, The dark matter of gravitational lensing, Rept. Prog. Phys. 73 (2010) 086901 [arXiv:1001.1739 [astro-ph.CO]].

[MLMP15] V. Mart´ın Lozano, J. M. Moreno, and C. B. Park, Resonant Higgs boson pair production in the hh → bb WW → bbl+νl—ν decay channel, JHEP 08 (2015) 004 [arXiv:1501.03799 [hep-ph]].

[MNO+15] Y. Mambrini, N. Nagata, K. A. Olive, J. Quevillon, and J. Zheng, Dark matter and gauge coupling unification in nonsupersymmetric SO(10) grand unified models, Phys. Rev. D 91 no. 9, (2015) 095010 [arXiv:1502.06929 [hep-ph]].

[Moh02] R. N. Mohapatra, Unification and Supersymmetry -The Frontiers of Quarks-Lepton Physics-. Springer, 2002.

[MP75] R. N. Mohapatra and J. C. Pati, Left-Right Gauge Symmetry and an Isoconjugate Model of CP Violation, Phys. Rev. D 11 (1975) 566–571.

[MP81] W. G. McKay and J. Patera, Tables of Dimensions, Indices, and Branching Rules for Representations of Simple Lie Algebras. Marcel Dekker, Inc., New York, 1981.

[MS78] R. N. Mohapatra and G. Senjanovic, Natural Suppression of Strong p and t Noninvariance, Phys. Lett. B 79 (1978) 283–286.

[MS10] H. Murayama and J. Shu, Topological Dark Matter, Phys. Lett. B 686 (2010) 162–165 [arXiv:0905.1720 [hep-ph]].

[MS15] E. Ma and R. Srivastava, Dirac or inverse seesaw neutrino masses with B − L gauge symmetry and S3 flavor symmetry, Phys. Lett. B 741 (2015) 217–222 [arXiv:1411.5042 [hep-ph]].

[MV83] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83–103.

[MV84] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221–232.

[MV85] M. E. Machacek and M. T. Vaughn, Two Loop Renormalization Group Equations in a General Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70–92.

[MY10] S. Matsumoto and K. Yoshioka, Deep Correlation Between Cosmic-Ray Anomaly and Neutrino Masses, Phys. Rev. D 82 (2010) 053009 [arXiv:1006.1688 [hep-ph]].

[Nam77] Y. Nambu, String-Like Configurations in the Weinberg-Salam Theory, Nucl. Phys. B 130 (1977) 505.

[NFP07] P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in branes, Phys. Rept. 441 (2007) 191–317 [arXiv:hep-ph/0601023].

[NO73] H. B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45–61.

[NV10] A. Neronov and I. Vovk, Evidence for strong extragalactic magnetic fields from fermi observations of tev blazars, Science 328 no. 5974, (2010) 73–75.

[OOSV18] G. Obied, H. Ooguri, L. Spodyneiko, and C. Vafa, De Sitter Space and the Swampland, arXiv:1806.08362 [hep-th].

[OPSV19] H. Ooguri, E. Palti, G. Shiu, and C. Vafa, Distance and de Sitter Conjectures on the Swampland, Phys. Lett. B 788 (2019) 180–184 [arXiv:1810.05506 [hep-th]].

[ORS21] N. Okada, D. Raut, and Q. Shafi, Pseudo-Goldstone dark matter in a gauged B − L extended standard model, Phys. Rev. D 103 no. 5, (2021) 055024 [arXiv:2001.05910 [hep-ph]].

[OV07] H. Ooguri and C. Vafa, On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B 766 (2007) 21–33 [arXiv:hep-th/0605264].

[Pal17] E. Palti, The Weak Gravity Conjecture and Scalar Fields, JHEP 08 (2017) 034 [arXiv:1705.04328 [hep-th]].

[Pal19] E. Palti, The Swampland: Introduction and Review, Fortsch. Phys. 67 no. 6, (2019) 1900037 [arXiv:1903.06239 [hep-th]].

[Par55] E. N. Parker, Hydromagnetic Dynamo Models, Astrophys. J. 122 (1955) 293.

[Per93] L. Perivolaropoulos, Existence of double vortex solutions, Phys. Lett. B 316 (1993) 528–533 [arXiv:hep-ph/9309261].

[Pol07] J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12, 2007.

[PQ77a] R. D. Peccei and H. R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791–1797.

[PQ77b] R. D. Peccei and H. R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440–1443.

[PR08] S. Palomares-Ruiz, Model-independent bound on the dark matter lifetime, Phys. Lett. B 665 (2008) 50–53 [arXiv:0712.1937 [astro-ph]].

[PS74] J. C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275–289. [Erratum: Phys.Rev.D 11, 703–703 (1975)].

[PS95] M. E. Peskin and D. V. Schroeder, An Introduction to quantum field theory. Addison-Wesley, Reading, USA, 1995.

[PSS75] J. C. Pati, A. Salam, and J. A. Strathdee, On Fermion number and its conservation, Nuovo Cim. A 26 (1975) 72–83.

[PU04] A. Pilaftsis and T. E. J. Underwood, Resonant leptogenesis, Nucl. Phys. B 692 (2004) 303–345 [arXiv:hep-ph/0309342].

[PV94] A. Pomarol and R. Vega, Constraints on CP violation in the Higgs sector from the rho parameter, Nucl. Phys. B 413 (1994) 3–15 [arXiv:hep-ph/9305272].

[PWW83] J. Preskill, M. B. Wise, and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127–132.

[PWY86] R. D. Peccei, T. T. Wu, and T. Yanagida, A VIABLE AXION MODEL, Phys. Lett. B 172 (1986) 435–440.

[QS14] F. S. Queiroz and K. Sinha, The Poker Face of the Majoron Dark Matter Model: LUX to keV Line, Phys. Lett. B 735 (2014) 69–74 [arXiv:1404.1400 [hep-ph]].

[Ram20] M. Ramos, Composite dark matter phenomenology in the presence of lighter degrees of freedom, JHEP 07 (2020) 128 [arXiv:1912.11061 [hep-ph]].

[Rin12] A. Ringwald, Exploring the Role of Axions and Other WISPs in the Dark Universe, Phys. Dark Univ. 1 (2012) 116–135 [arXiv:1210.5081 [hep-ph]].

[RMC+08] S. W. Randall, M. Markevitch, D. Clowe, A. H. Gonzalez, and M. Bradac, Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E 0657-56, Astrophys. J. 679 (2008) 1173–1180 [arXiv:0704.0261 [astro-ph]].

[Rob06] S. P. Robinson, Normalization conventions for Newton’s constant and the Planck scale in arbitrary spacetime dimension, arXiv:gr-qc/0609060.

[RSW20] M. Ruhdorfer, E. Salvioni, and A. Weiler, A Global View of the Off-Shell Higgs Portal, SciPost Phys. 8 (2020) 027 [arXiv:1910.04170 [hep-ph]].

[S+19] CMS Collaboration, A. M. Sirunyan et al., Search for invisible decays of a Higgs boson produced through vector boson fusion in proton-proton collisions at √s = 13 TeV, Phys. Lett. B 793 (2019) 520–551 [arXiv:1809.05937 [hep-ex]].

[SAC+08] P. Salmi, A. Achucarro, E. J. Copeland, T. W. B. Kibble, R. de Putter, and D. A. Steer, Kinematic constraints on formation of bound states of cosmic strings: Field theoretical approach, Phys. Rev. D 77 (2008) 041701 [arXiv:0712.1204 [hep-th]].

[Sar17] P. Saraswat, Weak gravity conjecture and effective field theory, Phys. Rev. D 95 no. 2, (2017) 025013 [arXiv:1608.06951 [hep-th]].

[Sem16] A. Semenov, LanHEP — A package for automatic generation of Feynman rules from the Lagrangian. Version 3.2, Comput. Phys. Commun. 201 (2016) 167–170 [arXiv:1412.5016 [physics.comp-ph]].

[She87] E. P. S. Shellard, Cosmic String Interactions, Nucl. Phys. B 283 (1987) 624–656.

[She88] E. P. S. Shellard, UNDERSTANDING INTERCOMMUTING, in Workshop on Current Status of Cosmic String Scenarios. 7, 1988.

[Sik82] P. Sikivie, Of Axions, Domain Walls and the Early Universe, Phys. Rev. Lett. 48 (1982) 1156–1159.

[Sik08] P. Sikivie, Axion Cosmology, Lect. Notes Phys. 741 (2008) 19–50 [arXiv:astro-ph/0610440].

[Sla81] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1–128.

[SM75] G. Senjanovic and R. N. Mohapatra, Exact Left-Right Symmetry and Spontaneous Violation of Parity, Phys. Rev. D 12 (1975) 1502.

[SR01] Y. Sofue and V. Rubin, Rotation curves of spiral galaxies, Ann. Rev. Astron. Astrophys. 39 (2001) 137–174 [arXiv:astro-ph/0010594].

[STY18] R. Sato, F. Takahashi, and M. Yamada, Unified Origin of Axion and Monopole Dark Matter, and Solution to the Domain-wall Problem, Phys. Rev. D 98 no. 4, (2018) 043535 [arXiv:1805.10533 [hep-ph]].

[SVZ80] M. A. Shifman, A. I. Vainshtein, and V. I. Zakharov, Can Confinement Ensure Natural CP Invariance of Strong Interactions?, Nucl. Phys. B 166 (1980) 493–506.

[T+20] Super-Kamiokande Collaboration, A. Takenaka et al., Search for proton decay via p → e+π0 and p → µ+π0 with an enlarged fiducial volume in Super-Kamiokande I-IV, Phys. Rev. D 102 no. 11, (2020) 112011 [arXiv:2010.16098 [hep-ex]].

[Tak08] F. Takahashi, Gravitino dark matter from inflaton decay, Phys. Lett. B 660 (2008) 100–106 [arXiv:0705.0579 [hep-ph]].

[Ura00] A. M. Uranga, From quiver diagrams to particle physics, in 3rd European Congress of Mathematics: Shaping the 21st Century. 7, 2000. arXiv:hep-th/0007173.

[Vac92] T. Vachaspati, Vortex solutions in the Weinberg-Salam model, Phys. Rev. Lett. 68 (1992) 1977–1980. [Erratum: Phys.Rev.Lett. 69, 216 (1992)].

[Vac93] T. Vachaspati, Electroweak strings, Nucl. Phys. B 397 (1993) 648–671. [Vaf05] C. Vafa, The String landscape and the swampland, arXiv:hep-th/0509212. [vBCIMV21] M. van Beest, J. Calder´on-Infante, D. Mirfendereski, and I. Valenzuela, Lectures on the Swampland Program in String Compactifications, arXiv:2102.01111 [hep-th].

[VF94] T. Vachaspati and G. B. Field, Electroweak string configurations with baryon number, Phys. Rev. Lett. 73 (1994) 373–376 [arXiv:hep-ph/9401220].

[Vil81] A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23 (1981) 852–857.

[VS00] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, 7, 2000.

[VW07] H. Verlinde and M. Wijnholt, Building the standard model on a D3-brane, JHEP 01 (2007) 106 [arXiv:hep-th/0508089].

[Wei74] S. Weinberg, Gauge and Global Symmetries at High Temperature, Phys. Rev. D 9 (1974) 3357–3378.

[Wei78] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223–226. [Wei05] S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations. Cambridge University Press, 6, 2005.

[Wei13a] S. Weinberg, The quantum theory of fields. Vol. 2: Modern applications. Cambridge University Press, 8, 2013.

[Wei13b] S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry. Cambridge University Press, 6, 2013.

[Wil78] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279–282.

[Wil82] F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549–1552.

[Wit85] E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557–592. [WS10] O. Wantz and E. P. S. Shellard, Axion Cosmology Revisited, Phys. Rev. D 82 (2010) 123508 [arXiv:0910.1066 [astro-ph.CO]].

[Yam08] M. Yamazaki, Brane Tilings and Their Applications, Fortsch. Phys. 56 (2008) 555–686 [arXiv:0803.4474 [hep-th]].

[Yam15] N. Yamatsu, Finite-Dimensional Lie Algebras and Their Representations for Unified Model Building, arXiv:1511.08771 [hep-ph].

[Yan79] T. Yanagida, Horizontal gauge symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95–99.

[Z+20] Particle Data Group Collaboration, P. A. Zyla et al., Review of Particle Physics, PTEP 2020 no. 8, (2020) 083C01.

[Zhi80] A. R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions. (In Russian), Sov. J. Nucl. Phys. 31 (1980) 260.

[Zur85] W. H. Zurek, Cosmological Experiments in Superfluid Helium?, Nature 317 (1985) 505–508.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る