リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Flavor structure in magnetized orbifold and blow-up manifold compactification」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Flavor structure in magnetized orbifold and blow-up manifold compactification

内田, 光 北海道大学

2023.03.23

概要

In the particle physics, the standard model (SM) is the successful theory to explain a lot of
observations related to the strong and electroweak (EW) interactions by GSM = SU (3)C ×
SU (2)L × U (1)Y gauge symmetry for their gauge bosons and the local symmetry for matter
fermions as well as Higgs fields in four-dimensional (4D) space-time. The SM particle contents
are listed in Table 1.1. Among them, there are three types of renormalizable couplings: gauge
couplings among gauge bosons and matter fermions as well as Higgs fields, Yukawa couplings
among matter fermions and Higgs fields, and Higgs self-couplings. Note that weak boson
masses and matter fermion masses are obtained by the EW spontaneously symmetry breaking
(SSB) of Higgs fields through the gauge couplings and Yukawa couplings with the Higgs fields,
respectively. On the other hand, before the EW symmetry breaking, gauge bosons and chiral
matter fermions cannot have their masses because of the gauge symmetries and the chiral
symmetries, respectively. Although neutrinos have much tinier masses than the other quarks
and charged leptons, they can be explained by considering the Weinberg operators among
lepton doublets and Higgs doublets with mass dimension 5 if neutrinos are Majorana neutrinos.
Then, by appropriately fitting their SM parameters: gauge coupling constants, Yukawa coupling
constants (as well as Weinberg operator coefficients), and Higgs self-coupling constants, the SM
predictions are consistent with a lot of observations.
However, there remain a lot of issues to be solved: quantum gravitational phenomena cannot be explained in the SM, there are still some discrepancies between the SM predictions
and the experimental results, there are some mysteries such as the origins of the values of the
SM parameters to explain observations, and so on. In particular, to clear the origins of the
SM parameters may give us hints to discover more fundamental theories. For example, the
three gauge coupling constants may be unified around O(1016 )GeV, (see Ref. [1] for the current
renormalization group (RG) flows of the SM parameters,) which implies that there is a more
fundamental theory to unify the three gauge symmetries into one larger gauge symmetry including GSM such as SU (5) and SO(10) with one gauge coupling constant above the scale and
the large gauge symmetry is spontaneously broken at the scale like the EW symmetry breaking
by the SM Higgs fields. Such a fundamental theory is called a grand unified theory (GUT) [2–4]. ...

この論文で使われている画像

参考文献

[1] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio and A. Strumia,

JHEP 12 (2013), 089 [arXiv:1307.3536 [hep-ph]].

[2] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974), 438-441

[3] H. Fritzsch and P. Minkowski, Annals Phys. 93 (1975), 193-266

[4] H. Georgi, AIP Conf. Proc. 23 (1975), 575-582

[5] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211 [hep-ph]].

[6] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor.

Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552 [hep-th]].

[7] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes

Phys. 858 (2012) 1, Springer.

[8] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hepph]].

[9] S. F. King and C. Luhn, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].

[10] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018

(2014) [arXiv:1402.4271 [hep-ph]].

[11] M. Tanimoto, AIP Conf. Proc. 1666 (2015) 120002.

[12] S. F. King, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413 [hep-ph]].

[13] S. T. Petcov, Eur. Phys. J. C 78 (2018) no.9, 709 [arXiv:1711.10806 [hep-ph]].

[14] P. Minkowski, Phys. Lett. B 67, 421-428 (1977)

[15] M. Gell-Mann, P. Ramond and R. Slansky, Conf. Proc. C 790927, 315-321 (1979)

[arXiv:1306.4669 [hep-th]].

[16] T. Yanagida, Conf. Proc. C 7902131, 95-99 (1979) KEK-79-18-95.

124

[17] S. L. Glashow, NATO Sci. Ser. B 61, 687 (1980)

[18] R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980)

[19] P. Fayet, Phys. Lett. B 64, 159 (1976)

[20] P. Fayet, Phys. Lett. B 69, 489 (1977)

[21] G. R. Farrar and P. Fayet, Phys. Lett. B 76, 575-579 (1978)

[22] S. P. Martin, Adv. Ser. Direct. High Energy Phys. 18, 1-98 (1998) [arXiv:hep-ph/9709356

[hep-ph]].

[23] N. S. Manton, Nucl. Phys. B 158 (1979), 141-153

[24] D. B. Fairlie, Phys. Lett. B 82 (1979), 97-100

[25] Y. Hosotani, Phys. Lett. B 126 (1983), 309-313

[26] Y. Hosotani, Phys. Lett. B 129 (1983), 193-197

[27] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445, 1-193 (2007)

[arXiv:hep-th/0610327 [hep-th]].

[28] L. E. Ibanez and A. M. Uranga, “String theory and particle physics: An introduction to

string phenomenology,” Cambridge University Press, 2012.

[29] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858 (2012), 437-467

[arXiv:1112.1340 [hep-ph]].

[30] F. Feruglio, arXiv:1706.08749 [hep-ph];

[31] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98, no. 1, 016004 (2018)

[arXiv:1803.10391 [hep-ph]];

[32] J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939, 292 (2019) [arXiv:1806.11040 [hep-ph]];

[33] J. C. Criado and F. Feruglio, SciPost Phys. 5, no. 5, 042 (2018) [arXiv:1807.01125 [hepph]];

[34] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP

1811, 196 (2018) [arXiv:1808.03012 [hep-ph]];

[35] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904, 005 (2019)

[arXiv:1811.04933 [hep-ph]];

[36] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904, 174 (2019)

[arXiv:1812.02158 [hep-ph]];

125

[37] F. J. de Anda, S. F. King and E. Perdomo, arXiv:1812.05620 [hep-ph];

[38] H. Okada and M. Tanimoto, Phys. Lett. B 791, 54 (2019) [arXiv:1812.09677 [hep-ph]];

[39] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys.

Lett. B 794, 114 (2019) [arXiv:1812.11072 [hep-ph]];

[40] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793, 247 (2019)

[arXiv:1812.11289 [hep-ph]].

[41] C. Bachas, arXiv:hep-th/9503030.

[42] R. Blumenhagen, L. Goerlich, B. Kors and D. Lust, JHEP 0010, 006 (2000) [arXiv:hepth/0007024].

[43] C. Angelantonj, I. Antoniadis, E. Dudas and A. Sagnotti, Phys. Lett. B489, 223 (2000)

[arXiv:hep-th/0007090].

[44] R. Blumenhagen, B. Kors and D. Lust, JHEP 0102, 030 (2001) [arXiv:hep-th/0012156].

[45] D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 05 (2004), 079 [arXiv:hepth/0404229 [hep-th]].

[46] H. Abe, T. Kobayashi and H. Ohki, JHEP 09 (2008), 043 [arXiv:0806.4748 [hep-th]].

[47] T. H. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, JHEP

01 (2014), 065 [arXiv:1309.4925 [hep-th]].

[48] T. h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki and M. Sakamoto, Nucl.

Phys. B 890, 442 (2014) [arXiv:1409.5421 [hep-th]].

[49] T. Kobayashi and S. Nagamoto, Phys. Rev. D 96 (2017) no.9, 096011 [arXiv:1709.09784

[hep-th]].

[50] M. Sakamoto, M. Takeuchi and Y. Tatsuta, Phys. Rev. D 102 (2020) no.2, 025008

[arXiv:2004.05570 [hep-th]].

[51] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, Nucl. Phys. B 814, 265-292 (2009)

[arXiv:0812.3534 [hep-th]].

[52] T. h. Abe, Y. Fujimoto, T. Kobayashi, T. Miura, K. Nishiwaki, M. Sakamoto and Y. Tatsuta, Nucl. Phys. B 894, 374-406 (2015) [arXiv:1501.02787 [hep-ph]].

[53] K. Hoshiya, S. Kikuchi, T. Kobayashi, Y. Ogawa and H. Uchida, PTEP 2021 (2021) no.3,

033B05 [arXiv:2012.00751 [hep-th]].

126

[54] Y. Fujimoto, T. Kobayashi, K. Nishiwaki, M. Sakamoto and Y. Tatsuta, Phys. Rev. D 94,

no.3, 035031 (2016) [arXiv:1605.00140 [hep-ph]].

[55] H. Abe, K. S. Choi, T. Kobayashi and H. Ohki, JHEP 06 (2009), 080 [arXiv:0903.3800

[hep-th]].

[56] T. Kobayashi, Y. Tatsuta and S. Uemura, Phys. Rev. D 93, no.6, 065029 (2016)

[arXiv:1511.09256 [hep-ph]].

[57] K. Hoshiya, S. Kikuchi, T. Kobayashi, K. Nasu, H. Uchida and S. Uemura, PTEP 2022

(2022) no.1, 013B04 [arXiv:2103.07147 [hep-th]].

[58] H. Abe, T. Kobayashi, H. Ohki, A. Oikawa and K. Sumita, Nucl. Phys. B 870, 30-54

(2013) [arXiv:1211.4317 [hep-ph]].

[59] H. Abe, T. Kobayashi, K. Sumita and Y. Tatsuta, Phys. Rev. D 90, no.10, 105006 (2014)

[arXiv:1405.5012 [hep-ph]].

[60] T. Kobayashi, K. Nishiwaki and Y. Tatsuta, JHEP 04, 080 (2017) [arXiv:1609.08608 [hepth]].

[61] W. Buchmuller and J. Schweizer, Phys. Rev. D 95 (2017) no.7, 075024 [arXiv:1701.06935

[hep-ph]].

[62] W. Buchmuller and K. M. Patel, Phys. Rev. D 97, no.7, 075019 (2018) [arXiv:1712.06862

[hep-ph]].

[63] S. Kikuchi, T. Kobayashi, Y. Ogawa and H. Uchida, PTEP 2022, no.3, 033B10 (2022)

[arXiv:2112.01680 [hep-ph]].

[64] S. Kikuchi, T. Kobayashi, M. Tanimoto and H. Uchida, [arXiv:2206.08538 [hep-ph]].

[65] K. Hoshiya, S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 106 (2022) no.11,

115003 [arXiv:2209.07249 [hep-ph]].

[66] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T. H. Tatsuishi, Phys. Rev. D 97

(2018) no.11, 116002 [arXiv:1804.06644 [hep-th]].

[67] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 102

(2020) no.10, 105010 [arXiv:2005.12642 [hep-th]].

[68] S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 104 (2021) no.6, 065008

[arXiv:2101.00826 [hep-th]].

[69] T. Kobayashi and S. Tamba, Phys. Rev. D 99 (2019) no.4, 046001 [arXiv:1811.11384

[hep-th]].

127

[70] S. Kikuchi, T. Kobayashi, K. Nasu, H. Uchida and S. Uemura, Phys. Rev. D 105 (2022)

no.11, 116002 [arXiv:2202.05425 [hep-th]].

[71] T. Kobayashi, H. Otsuka and H. Uchida, JHEP 08 (2019), 046 [arXiv:1904.02867 [hep-th]].

[72] T. Kobayashi, H. Otsuka and H. Uchida, JHEP 03 (2020), 042 [arXiv:1911.01930 [hep-ph]].

[73] T. Kobayashi, H. Otsuka, M. Sakamoto, M. Takeuchi, Y. Tatsuta and H. Uchida,

[arXiv:2211.04596 [hep-th]].

[74] T. Kobayashi, H. Otsuka, M. Sakamoto, M. Takeuchi, Y. Tatsuta and H. Uchida,

[arXiv:2211.04595 [hep-th]].

[75] J. P. Conlon, A. Maharana and F. Quevedo, JHEP 09 (2008), 104 [arXiv:0807.0789 [hepth]].

[76] B. P. Dolan and A. Hunter-McCabe, J. Phys. A 53 (2020) no.21, 215306 [arXiv:2001.02208

[hep-th]].

[77] Y. Hamada and T. Kobayashi, Prog. Theor. Phys. 128 (2012), 903-923 [arXiv:1207.6867

[hep-th]].

[78] M. Sakamoto, M. Takeuchi and Y. Tatsuta, Phys. Rev. D 103 (2021) no.2, 025009

[arXiv:2010.14214 [hep-th]].

[79] Y. Almumin, M. C. Chen, V. Knapp-P´erez, S. Ramos-S´anchez, M. Ratz and S. Shukla,

JHEP 05 (2021), 078 [arXiv:2102.11286 [hep-th]].

[80] R. C. Gunning, Lectures on Modular Forms (Princeton University Press, Princeton, NJ,

1962).

[81] B. Schoeneberg, Elliptic Modular Functions (Springer-Verlag, 1974)

[82] N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer-Verlag, 1984)

[83] J.H. Bruinier, G.V.D. Geer, G. Harder, and D. Zagier, The 1-2-3 of Modular Forms

(Springer, 2008)

[84] X. G. Liu and G. J. Ding, JHEP 08 (2019), 134 [arXiv:1907.01488 [hep-ph]].

[85] G. Shimura, Annals of Mathematics, 97(3), second series, 440 (1973)

[86] J. F. Duncan and D. A. Mcgady, [arXiv:1806.09875 [math.NT]].

[87] X. G. Liu, C. Y. Yao, B. Y. Qu and G. J. Ding, Phys. Rev. D 102 (2020) no.11, 115035

[arXiv:2007.13706 [hep-ph]].

128

[88] T. Kubota, Kiyokuniya Book Store, 1969

[89] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, JHEP 11 (2020), 101

[arXiv:2007.06188 [hep-th]].

[90] P. Novichkov, J. Penedo, S. Petcov and A. Titov, JHEP 07 (2019), 165 [arXiv:1905.11970

[hep-ph]].

[91] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Phys. Lett. B 795 (2019),

7-14 [arXiv:1901.03251 [hep-th]].

[92] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Nucl. Phys. B 947 (2019),

114737 [arXiv:1908.00805 [hep-th]].

[93] M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop Amplitudes,

Anomalies And Phenomenology,” Cambridge, Uk: Univ. Pr. ( 1987) 596 P. ( Cambridge

Monographs On Mathematical Physics)

[94] A. Strominger and E. Witten, Commun. Math. Phys. 101, 341 (1985).

[95] M. Dine, R. G. Leigh and D. A. MacIntire, Phys. Rev. Lett. 69, 2030 (1992) [hepth/9205011].

[96] K. w. Choi, D. B. Kaplan and A. E. Nelson, Nucl. Phys. B 391, 515 (1993) [hepph/9205202].

[97] C. S. Lim, Phys. Lett. B 256, 233 (1991).

[98] T. Kobayashi and C. S. Lim, Phys. Lett. B 343, 122 (1995) [hep-th/9410023].

[99] R. Blumenhagen, M. Cvetic and T. Weigand, Nucl. Phys. B 771, 113-142 (2007)

[arXiv:hep-th/0609191 [hep-th]].

[100] L. E. Ibanez and A. M. Uranga, JHEP 03, 052 (2007) [arXiv:hep-th/0609213 [hep-th]].

[101] M. Cvetic, R. Richter and T. Weigand, Phys. Rev. D 76, 086002 (2007) [arXiv:hepth/0703028 [hep-th]].

[102] T. Kobayashi and H. Uchida, Phys. Rev. D 105 (2022) no.3, 036018 [arXiv:2111.10811

[hep-th]].

[103] Y. Kariyazono, T. Kobayashi, S. Takada, S. Tamba and H. Uchida, Phys. Rev. D 100

(2019) no.4, 045014 [arXiv:1904.07546 [hep-th]].

[104] H. M. Lee, H. P. Nilles and M. Zucker, Nucl. Phys. B 680 (2004), 177-198 [arXiv:hepth/0309195 [hep-th]].

129

[105] W. Buchmuller, M. Dierigl, F. Ruehle and J. Schweizer, Phys. Rev. D 92, no.10, 105031

(2015) [arXiv:1506.05771 [hep-th]].

[106] W. Buchmuller, M. Dierigl and Y. Tatsuta, Annals Phys. 401, 91-115 (2019)

[arXiv:1810.06362 [hep-th]].

[107] J. Polchinski,“ String Theory. Vol. 1: An Introduction To The Bosonic String, ”, section

7.2.

[108] E. Witten, Phys. Lett. B 149, 351-356 (1984)

[109] S. Ferrara, N. Magnoli, T. R. Taylor and G. Veneziano, Phys. Lett. B 245 (1990), 409-416

[110] M. Cvetic, A. Font, L. E. Ibanez, D. Lust and F. Quevedo, Nucl. Phys. B 361 (1991),

194-232

[111] T. Araki, T. Kobayashi, J. Kubo, S. Ramos-Sanchez, M. Ratz and P. K. S. Vaudrevange,

Nucl. Phys. B 805 (2008), 124-147 [arXiv:0805.0207 [hep-th]].

[112] M. C. Chen, M. Fallbacher, M. Ratz, A. Trautner and P. K. S. Vaudrevange, Phys. Lett.

B 747 (2015), 22-26 [arXiv:1504.03470 [hep-ph]].

[113] K. Fujikawa, Phys. Rev. Lett. 42 (1979), 1195-1198

[114] K. Fujikawa, Phys. Rev. D 21 (1980), 2848 [erratum: Phys. Rev. D 22 (1980), 1499]

[115] L. Alvarez-Gaume and E. Witten, Nucl. Phys. B 234 (1984), 269

[116] L. Alvarez-Gaume and P. H. Ginsparg, Annals Phys. 161 (1985), 423 [erratum: Annals

Phys. 171 (1986), 233]

130

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る