リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Search for lepton-flavor-violating tau decays into a lepton and a vector meson at the Belle experiment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Search for lepton-flavor-violating tau decays into a lepton and a vector meson at the Belle experiment

都築, 識次 名古屋大学

2023.06.23

概要

学位報告4

別紙4
報告番号








論文題目













Search for lepton-flavor-violating tau decays into a

lepton and a vector meson at the Belle experiment
(Belle 実験におけるタウ粒子がレプトンフレーバーを破ってレプトンと
ベクトル中間子に崩壊する事象の探索)





都築 識次

論 文 内 容 の 要 旨
素粒子物理学における標準理論は、多くの実験結果を説明できる。一方で、理論と一致しない可能性
が高い測定量に対しては、背景にある新しい理論の仮説が数多く立てられており、その検証が課題で
ある。例えば、B 中間子のとある崩壊過程が起こる確率に関する研究は、複数の似た崩壊過程で
ずれの兆候が観測されており、B アノマリーと呼ばれて議論されている。
B アノマリーはレプトンとクォークを含む崩壊事象において見出されたため、それら二つと同時に
結合する新粒子レプトクォークが注目されている。レプトクォークを実験で生成・観測した証拠は
ないが、生成可能な素粒子の崩壊過程にレプトクォークが介在していれば、標準理論とのずれが生じ
る。申請者はレプトクォークの存在を検証することを目的とし、レプトンの一つであるタウ粒子が
世代(フレーバー)の異なる荷電レプトンとベクトル中間子に崩壊する事象を探索した。標準理論におけ
るレプトンフレーバーは保存する量とされる。しかし、レプトクォークを仮定して B アノマリーを含
む実験結果を説明する場合、タウ粒子がレプトンフレーバー保存則を破って崩壊する事象を観測でき
る可能性がある。
この探索の感度を高めるには、大量のタウ粒子の測定と徹底した背景事象の削減が必要である。そ
こで、電子・陽電子衝突により B 中間子、タウ粒子などを生成し記録した Belle 実験のデータ(980 fb-1)
を用いた。申請者の研究対象となる崩壊過程は、2種類の荷電レプトンと5種類のベクトル中間子の
組み合わせで合計 10 種類ある。これらの事象は崩壊後にニュートリノを含まないため、全ての娘粒子
を測定でき、そこから親粒子の質量と欠損エネルギーを計算することで背景事象は大幅に削減される。
本研究では、この質量と欠損エネルギーが信号事象らしい領域を解析手法が確定するまで隠すブライ
ンド解析の手法をとり、その周辺領域のデータ、及びモンテカルロシミュレーションで生成した Belle
実験における疑似信号事象を基に、事象選別条件の決定、信号事象の選別効率と背景事象数の推定を
行った。このブラインド解析の手法により、申請者が選別条件にバイアスを生む危険は少なくなる。
申請者はレプトンフレーバーを破る10種類のタウ粒子崩壊過程について、選別条件を決定し、信
号効率は平均 6.0%、背景事象数の期待値はいずれも1未満と推定した。ブラインドを解除して信号候
補となる事象の数を確認した結果、事前推定した背景事象数と矛盾は無かった。よって、研究対象と

学位関係

した10種類のタウ崩壊過程が起こる確率について信頼度 90%の上限値を 1.7×10-8 から 4.2×
10-8 の範囲で決定した。
申請者は、以上の探索結果から、タウ粒子がレプトンフレーバーを破る10種類の崩壊確率の
上限値を先行研究よりも相対値で平均 30%下げ、レプトクォークを含む新物理の理論により強い
制限を与えた。また、構築した事象選別条件は背景事象数を 1 未満に抑制しつつ、信号効率を先
行研究よりも相対値で平均 46%向上した。

この論文で使われている画像

参考文献

[1] Super-Kamiokande collaboration, Evidence for oscillation of atmospheric neutrinos,

Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003].

[2] SNO collaboration, Direct evidence for neutrino flavor transformation from neutral

current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002)

011301 [nucl-ex/0204008].

[3] P.F. de Salas, D.V. Forero, S. Gariazzo, P. Mart´ınez-Mirav´e, O. Mena, C.A. Ternes et al.,

2020 global reassessment of the neutrino oscillation picture, JHEP 02 (2021) 071

[2006.11237].

[4] Muon g-2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment

Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035].

[5] Muon g-2 collaboration, Measurement of the Positive Muon Anomalous Magnetic

Moment to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [2104.03281].

¯ → D(∗) τ − ν¯τ decays, Phys. Rev. Lett.

[6] BaBar collaboration, Evidence for an excess of B

109 (2012) 101802 [1205.5442].

¯ → D(∗) τ − ν¯τ Decays and

[7] BaBar collaboration, Measurement of an Excess of B

Implications for Charged Higgs Bosons, Phys. Rev. D 88 (2013) 072012 [1303.0571].

¯ → D(∗) τ − ν¯τ relative to

[8] Belle collaboration, Measurement of the branching ratio of B

(∗)

¯ → D ℓ ν¯ℓ decays with hadronic tagging at Belle, Phys. Rev. D 92 (2015) 072014

[1507.03233].

[9] Belle collaboration, Measurement of the τ lepton polarization and R(D∗ ) in the decay

¯ → D∗ τ − ν¯τ , Phys. Rev. Lett. 118 (2017) 211801 [1612.00529].

[10] Belle collaboration, Measurement of R(D) and R(D∗ ) with a semileptonic tagging

method, Phys. Rev. Lett. 124 (2020) 161803 [1910.05864].

[11] LHCb collaboration, Measurement of the ratio of branching fractions

¯ 0 → D∗+ τ − ν¯τ )/B(B

¯ 0 → D∗+ µ− ν¯µ ), Phys. Rev. Lett. 115 (2015) 111803

B(B

[1506.08614].

[12] LHCb collaboration, Measurement of the ratio of the B 0 → D∗− τ + ντ and

B 0 → D∗− µ+ νµ branching fractions using three-prong τ -lepton decays, Phys. Rev. Lett.

120 (2018) 171802 [1708.08856].

[13] LHCb collaboration, Test of Lepton Flavor Universality by the measurement of the

B 0 → D∗− τ + ντ branching fraction using three-prong τ decays, Phys. Rev. D 97 (2018)

072013 [1711.02505].

[14] Belle collaboration, Lepton-Flavor-Dependent Angular Analysis of B → K ∗ ℓ+ ℓ− , Phys.

Rev. Lett. 118 (2017) 111801 [1612.05014].

77

[15] LHCb collaboration, Measurement of CP -Averaged Observables in the B 0 → K ∗0 µ+ µ−

Decay, Phys. Rev. Lett. 125 (2020) 011802 [2003.04831].

[16] LHCb collaboration, Angular Analysis of the B + → K ∗+ µ+ µ− Decay, Phys. Rev. Lett.

126 (2021) 161802 [2012.13241].

[17] LHCb collaboration, Branching Fraction Measurements of the Rare Bs0 → ϕµ+ µ− and

Bs0 → f2′ (1525)µ+ µ− Decays, Phys. Rev. Lett. 127 (2021) 151801 [2105.14007].

[18] Belle collaboration, Search for Lepton-Flavor-Violating tau Decays into a Lepton and a

Vector Meson, Phys. Lett. B 699 (2011) 251 [1101.0755].

[19] B.W. Lee and R.E. Shrock, Natural Suppression of Symmetry Violation in Gauge

Theories: Muon - Lepton and Electron Lepton Number Nonconservation, Phys. Rev. D 16

(1977) 1444.

[20] J. Ellis, TikZ-Feynman: Feynman diagrams with TikZ, Comput. Phys. Commun. 210

(2017) 103 [1601.05437].

[21] M. Dohse, TikZ-FeynHand: Basic User Guide, 1802.00689.

[22] MEG collaboration, Search for the lepton flavour violating decay µ+ → e+ γ with the full

dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [1605.05081].

[23] SINDRUM collaboration, Search for the Decay µ+ → e+ e+ e− , Nucl. Phys. B 299 (1988)

1.

[24] SINDRUM II collaboration, A Search for muon to electron conversion in muonic gold,

Eur. Phys. J. C 47 (2006) 337.

[25] ATLAS collaboration, Search for the lepton flavor violating decay Z→eµ in pp collisions

at s TeV with the ATLAS detector, Phys. Rev. D 90 (2014) 072010 [1408.5774].

[26] ATLAS collaboration, Search for lepton-flavor-violation in Z-boson decays with τ -leptons

with the ATLAS detector, Phys. Rev. Lett. 127 (2022) 271801 [2105.12491].

[27] ATLAS collaboration, Search for the Higgs boson decays H → ee and H → eµ in pp

collisions at s = 13 TeV with the ATLAS detector, Phys. Lett. B 801 (2020) 135148

[1909.10235].

[28] CMS collaboration, Search for lepton-flavor violating decays of the Higgs boson in the µτ

and eτ final states in proton-proton collisions at s = 13 TeV, Phys. Rev. D 104 (2021)

032013 [2105.03007].

[29] HFLAV collaboration, Averages of b-hadron, c-hadron, and τ -lepton properties as of

2018, Eur. Phys. J. C 81 (2021) 226 [1909.12524].

[30] L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati, Lepton flavour violation from

SUSY-GUTs: Where do we stand for MEG, PRISM/PRIME and a super flavour factory,

Phys. Rev. D 74 (2006) 116002 [hep-ph/0605139].

[31] J.R. Ellis, J. Hisano, M. Raidal and Y. Shimizu, A New parametrization of the seesaw

mechanism and applications in supersymmetric models, Phys. Rev. D 66 (2002) 115013

[hep-ph/0206110].

[32] A. Brignole and A. Rossi, Lepton flavor violating decays of supersymmetric Higgs bosons,

Phys. Lett. B 566 (2003) 217 [hep-ph/0304081].

78

[33] G. Cvetiˇc, C. Dib, C.S. Kim and J.D. Kim, On lepton flavor violation in tau decays, Phys.

Rev. D 66 (2002) 034008 [hep-ph/0202212].

[34] A. Celis, V. Cirigliano and E. Passemar, Model-discriminating power of lepton flavor

violating τ decays, Phys. Rev. D 89 (2014) 095014 [1403.5781].

[35] Belle collaboration, Search for lepton-flavor-violating tau-lepton decays to ℓγ at Belle,

JHEP 10 (2021) 19 [2103.12994].

[36] C. Hati, J. Kriewald, J. Orloff and A.M. Teixeira, The fate of V1 vector leptoquarks: the

impact of future flavour data, Eur. Phys. J. C 81 (2021) 1066 [2012.05883].

[37] L. Di Luzio, J. Fuentes-Martin, A. Greljo, M. Nardecchia and S. Renner, Maximal Flavour

Violation: a Cabibbo mechanism for leptoquarks, JHEP 11 (2018) 081 [1808.00942].

[38] J. Kumar, D. London and R. Watanabe, Combined Explanations of the b → sµ+ µ− and

b → cτ − ν¯ Anomalies: a General Model Analysis, Phys. Rev. D 99 (2019) 015007

[1806.07403].

[39] A. Crivellin, C. Greub, D. M¨

uller and F. Saturnino, Importance of Loop Effects in

Explaining the Accumulated Evidence for New Physics in B Decays with a Vector

Leptoquark, Phys. Rev. Lett. 122 (2019) 011805 [1807.02068].

[40] A. Crivellin, D. M¨

uller and F. Saturnino, Flavor Phenomenology of the Leptoquark

Singlet-Triplet Model, JHEP 06 (2020) 020 [1912.04224].

[41] P.S. Bhupal Dev, R. Mohanta, S. Patra and S. Sahoo, Unified explanation of flavor

anomalies, radiative neutrino masses, and ANITA anomalous events in a vector

leptoquark model, Phys. Rev. D 102 (2020) 095012 [2004.09464].

[42] LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18

(2022) 277 [2103.11769].

[43] LHCb collaboration, Test of lepton universality in b → sℓ+ ℓ− decays, 2212.09152.

[44] I. Pacheco and P. Roig, Lepton flavour violation in hadron decays of the tau lepton within

the littlest Higgs model with T-parity, JHEP 09 (2022) 144 [2207.04085].

[45] A. Arhrib, R. Benbrik and C.-H. Chen, Lepton flavor violating tau decays in type-III

seesaw mechanism, Phys. Rev. D 81 (2010) 113003 [0903.1553].

[46] Z.-H. Li, Y. Li and H.-X. Xu, Unparticle-Induced Lepton Flavor Violating Decays

τ → ℓ(V 0 , P 0 ), Phys. Lett. B 677 (2009) 150 [0901.3266].

[47] A. Ilakovac, Lepton flavor violation in the standard model extended by heavy singlet Dirac

neutrinos, Phys. Rev. D 62 (2000) 036010 [hep-ph/9910213].

[48] S. Kurokawa and E. Kikutani, Overview of the KEKB accelerators, Nucl. Instrum. Meth.

A 499 (2003) 1.

[49] Belle collaboration, Physics Achievements from the Belle Experiment, PTEP 2012

(2012) 04D001 [1212.5342].

[50] T. Abe et al., Achievements of KEKB, PTEP 2013 (2013) 03A001.

[51] Belle collaboration, The Belle Detector, Nucl. Instrum. Meth. A 479 (2002) 117.

[52] G. Alimonti, H. Aihara, J. Alexander, Y. Asano, A. Bakich, A. Bo˙zek et al., The BELLE

silicon vertex detector, Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment 453 (2000) 71.

79

[53] Z. Natkaniec, H. Aihara, Y. Asano, T. Aso, A. Bakich, T. Browder et al., Status of the

Belle silicon vertex detector, Nuclear Instruments and Methods in Physics Research

Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 560 (2006) 1.

[54] M. Akatsu, K. Fujimoto, Y. Fujita, H. Hirano, M. Hirose, K. Inami et al., Cathode image

readout in the BELLE central drift chamber, Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

454 (2000) 322.

[55] E. Nakano, Belle PID, Nucl. Instrum. Meth. A 494 (2002) 402.

[56] A.J. Bevan, B. Golob, T. Mannel, S. Prell, B.D. Yabsley, H. Aihara et al., The Physics of

the B Factories, Eur. Phys. J. C 74 (2014) .

[57] T. Iijima, M. Amami, I. Adachi, R. Enomoto, R. Itoh, S. Kobayashi et al., Study on

fine-mesh PMTs for detection of aerogel Cherenkov light, Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment 387 (1997) 64.

[58] T. Iijima, I. Adachi, R. Enomoto, R. Suda, T. Sumiyoshi, C. Leonidopoulos et al., Aerogel

Cherenkov counter for the BELLE detector, Nuclear Instruments and Methods in Physics

Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment

453 (2000) 321.

[59] H. Kichimi, H. Sagawa, Y. Yoshimura, T. Kishida, N. Tamura, H. Suzuki et al., Timing

characteritics of a micro-channel plate and fine mesh photomultiplier tubes in a 1 T field,

Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 325 (1993) 451.

[60] Belle collaboration, A detailed Monte Carlo simulation for the Belle TOF system, Nucl.

Instrum. Meth. A 491 (2002) 54 [hep-ex/0204030].

[61] K. Miyabayashi, Belle electromagnetic calorimeter, Nuclear Instruments and Methods in

Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated

Equipment 494 (2002) 298.

[62] H. Ikeda, A. Satpathy, B. Ahn, V. Aulchenko, A. Bondar, B. Cheon et al., A detailed test

of the CsI(Tℓ) calorimeter for BELLE with photon beams of energy between 20 MeV and

5.4 GeV, Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment 441 (2000) 401.

[63] A. Abashian, K. Abe, K. Abe, S. Azuchi, P. Behera, S. Chidzik et al., The KL /µ detector

subsystem for the BELLE experiment at the KEK B-factory, Nuclear Instruments and

Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and

Associated Equipment 449 (2000) 112.

[64] Y. Ushiroda, A. Mohapatra, H. Sakamoto, Y. Sakai, M. Nakao, Q. An et al., Development

of the central trigger system for the BELLE detector at the KEK B-factory, Nuclear

Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers,

Detectors and Associated Equipment 438 (1999) 460.

[65] E. Nygard, P. Aspell, P. Jarron, P. Weilhammer and K. Yoshioka, CMOS low noise

amplifier for microstrip readout: Design and results, Nucl. Instrum. Meth. A 301 (1991)

506.

[66] O. Toker, S. Masciocchi, E. Nygard, A. Rudge and P. Weilhammer, VIKING: A CMOS

low noise monolithic 128-channel front end for Si strip detector readout, Nucl. Instrum.

Meth. A 340 (1994) 572.

80

[67] Belle collaboration, Data acquisition system for the BELLE experiment, IEEE Trans.

Nucl. Sci. 47 (2000) 56.

[68] S.Y. Suzuki, R. Itoh, H.W. Kim, H.J. Kim, H.O. Kim, M. Nakao et al., Belle DAQ system

upgrade at 2001, Nucl. Instrum. Meth. A 494 (2002) 535.

[69] K. Hanagaki, H. Kakuno, H. Ikeda, T. Iijima and T. Tsukamoto, Electron identification in

Belle, Nucl. Instrum. Meth. A 485 (2002) 490 [hep-ex/0108044].

[70] A. Abashian et al., Muon identification in the Belle experiment at KEKB, Nucl. Instrum.

Meth. A 491 (2002) 69.

[71] S. Jadach, B.F.L. Ward and Z. Was, The Precision Monte Carlo event generator K K for

two fermion final states in e+ e− collisions, Comput. Phys. Commun. 130 (2000) 260

[hep-ph/9912214].

[72] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462

(2001) 152.

[73] S. Jadach, E. Richter-Was, B.F.L. Ward and Z. Was, Monte Carlo program BHLUMI-2.01

for Bhabha scattering at low angles with Yennie-Frautschi-Suura exponentiation, Comput.

Phys. Commun. 70 (1992) 305.

[74] F.A. Berends, P.H. Daverveldt and R. Kleiss, Monte Carlo Simulation of Two Photon

Processes. 2. Complete Lowest Order Calculations for Four Lepton Production Processes

in electron Positron Collisions, Comput. Phys. Commun. 40 (1986) 285.

[75] R. Brun, F. Bruyant, M. Maire, A.C. McPherson and P. Zanarini, GEANT3, .

[76] S. Brandt, C. Peyrou, R. Sosnowski and A. Wroblewski, The principal axis of jets — an

attempt to analyse high-energy collisions as two-body processes, Physics Letters 12 (1964)

57.

[77] E. Farhi, A QCD Test for Jets, Phys. Rev. Lett. 39 (1977) 1587.

[78] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma et al., LightGBM: A Highly

Efficient Gradient Boosting Decision Tree, in Advances in Neural Information Processing

Systems, I. Guyon, U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan

et al., eds., vol. 30, Curran Associates, Inc., 2017,

https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76faPaper.pdf.

[79] G. Punzi, Sensitivity of searches for new signals and its optimization, eConf C030908

(2003) MODT002 [physics/0308063].

[80] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the

Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343.

[81] S. Jadach, Studies of µ-Pair and π-Pair Production at the Electron–Positron Low Energy

Colliders, Acta Phys. Pol. B 36 (2005) 2387 [hep-ph/0506180].

[82] S. Jadach, B.F.L. Ward and Z. Was, Coherent exclusive exponentiation for precision

Monte Carlo calculations, Phys. Rev. D 63 (2001) 113009 [hep-ph/0006359].

[83] A. Caldwell, D. Kollar and K. Kroninger, BAT: The Bayesian Analysis Toolkit, Comput.

Phys. Commun. 180 (2009) 2197 [0808.2552].

81

[84] S. Banerjee, B. Pietrzyk, J.M. Roney and Z. Was, Tau and muon pair production

cross-sections in electron-positron annihilations at s = 10.58 GeV, Phys. Rev. D 77

(2008) 054012 [0706.3235].

[85] G.J. Feldman and R.D. Cousins, Unified approach to the classical statistical analysis of

small signals, Phys. Rev. D 57 (1998) 3873.

82

Appendix A

Validation of NBG estimation method

using background MC

I check our NBG estimation method using the background MC events. Figures A.1 and A.2 are

the fit results (see section 5.2.2 for the fit functions) to the control samples in the MC. I use

those parameters to define the shape of functions except for the scale factors (c1 , c0 and clm

0 )

in the function. Figures A.3 and A.4 are the fit results to the MC observed sideband regions

with cut-base selection. Figures A.5 and A.6 are that of BDT selection. The blind regions are

removed from the fitting as well as the fitting to the data in the sideband. The expected and the

observed NBG in MC samples are shown in tables A.1 (cut-base) and A.2 (BDT). The number

of events in the validation region, where is inside the blind region but outside the signal region,

is also shown. They are scaled to 980 fb−1 . The NBG in the signal region is consistent with the

observed number of background events in the MC within 2σ. The NBG in the validation region

is also consistent with the observed one for most of the ℓV 0 modes, except for the eK ∗0 mode.

Table A.1: Comparison of expected and observed NBG of the MC samples (cut-base selection).

They are scaled to 980 fb−1 .

Mode

τ−

µ− ρ0

τ − → e− ρ 0

τ − → µ− ϕ

τ − → e− ϕ

τ − → µ− ω

τ − → e− ω

τ → µ− K ∗0

τ − → e− K ∗0

τ − → µ− K ∗0

τ − → e− K ∗0

signal region

MC

expected NBG

0.35±0.05(stat) ±0.02(syst)

0.31±0.07(stat) ±0.00(syst)

0.19±0.04(stat) ±0.00(syst)

0.06±0.03(stat) ±0.00(syst)

0.68±0.13(stat) ±0.03(syst)

1.00±0.16(stat) ±0.00(syst)

0.72±0.10(stat) ±0.01(syst)

0.66±0.12(stat) ±0.01(syst)

0.70±0.07(stat) ±0.01(syst)

0.83±0.13(stat) ±0.02(syst)

MC

Nobs

0.55±0.25

0.38±0.22

0 (<0.15)

0.08±0.08

0.45±0.23

0.68±0.35

0.47±0.33

0.24±0.24

0.51±0.30

0.54±0.28

83

validation region

MC

expected NBG

2.5±0.3(stat) ±0.2(syst)

2.1±0.5(stat) ±0.0(syst)

1.1±0.2(stat) ±0.0(syst)

0.3±0.2(stat) ±0.0(syst)

2.7±0.5(stat) ±0.1(syst)

2.2±0.4(stat) ±0.0(syst)

2.7±0.4(stat) ±0.0(syst)

4.1±0.7(stat) ±0.0(syst)

2.6±0.3(stat) ±0.0(syst)

3.3±0.5(stat) ±0.0(syst)

MC

Nobs

2.4±0.5

0.9±0.3

0.8±0.5

0.3±0.2

1.6±0.5

2.4±0.6

2.7±0.7

2.1±0.6

3.2±0.8

2.2±0.6

Table A.2: Comparison of expected and observed NBG of the MC samples (BDT selection).

They are scaled to 980 fb−1 .

Mode

τ − → µ− ρ0

τ − → e− ρ 0

τ − → µ− ϕ

τ − → e− ϕ

τ − → µ− ω

τ − → e− ω

τ → µ− K ∗0

τ − → e− K ∗0

τ − → µ− K ∗0

τ − → e− K ∗0

signal region

MC

expected NBG

0.31±0.05(stat) ±0.01(syst)

0.28±0.07(stat) ±0.01(syst)

0.31±0.06(stat) ±0.01(syst)

0.08±0.04(stat) ±0.00(syst)

0.29±0.08(stat) ±0.02(syst)

0.73±0.15(stat) ±0.00(syst)

0.61±0.09(stat) ±0.03(syst)

0.50±0.10(stat) ±0.01(syst)

0.52±0.06(stat) ±0.00(syst)

0.48±0.08(stat) ±0.01(syst)

MC

Nobs

0.54±0.24

0.11±0.11

0.11±0.11

0.08±0.08

0.55±0.28

0.34±0.24

0.91±0.47

0.71±0.38

0.59±0.34

0.39±0.23

84

validation region

MC

expected NBG

2.1±0.3(stat) ±0.1(syst)

1.8±0.4(stat) ±0.0(syst)

1.8±0.3(stat) ±0.0(syst)

0.4±0.2(stat) ±0.0(syst)

1.2±0.3(stat) ±0.0(syst)

1.7±0.3(stat) ±0.0(syst)

2.2±0.3(stat) ±0.1(syst)

3.2±0.6(stat) ±0.0(syst)

2.0±0.2(stat) ±0.0(syst)

1.8±0.3(stat) ±0.0(syst)

MC

Nobs

1.6±0.4

1.4±0.4

1.2±0.6

0.3±0.2

1.2±0.4

1.5±0.5

2.6±0.7

1.2±0.4

2.1±0.7

1.4±0.5

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 3.98e+02 /81

p-value : 1.205e-43

1.70

1.75

1.80

M 0 (GeV/c2)

1.85

1.90

E (GeV)

(a) τ → µρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 5.33e+02 /86

p-value : 3.829e-66

1.70

1.75

1.80

M (GeV/c2)

1.85

1.90

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

E (GeV)

(b) τ → µϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

chi2/ndf : 1.21e+02 /74

p-value : 3.789e-04

1.70

1.75

1.80

M (GeV/c2)

1.85

1.90

E (GeV)

(c) τ → µω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 2.16e+02 /84

p-value : 8.885e-14

0.8

0.6

0.4

0.2

1.70

1.80

1.85

1.75

M K*0 (GeV/c2)

1.90

E (GeV)

(d) τ → µK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 1.52e+02 /82

p-value : 2.873e-06

1.2

1.0

0.8

0.6

0.4

0.2

1.70

1.80

1.85

1.75

M K*0 (GeV/c2)

1.90

(e) τ → µK ∗0

Figure A.1: The fitting results to the µV 0 control samples in the MC (left). The luminosity is

scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle) and ∆E (right). The

orange hatched regions in µϕ and µK ∗0 modes are blinded to avoid D± meson event peaks.

They are removed from the fitting and the plot of ∆E projection.

85

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 3.80e+02 /73

p-value : 2.446e-43

1.70

1.75

1.80

Me 0 (GeV/c2)

1.85

1.90

E (GeV)

(a) τ → eρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 2.38e+02 /70

p-value : 1.714e-20

0.5

0.4

0.3

0.2

1.70

1.75

1.80

Me (GeV/c2)

1.85

1.90

0.1

E (GeV)

(b) τ → eϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 2.34e+02 /74

p-value : 9.132e-19

1.70

1.75

1.80

Me (GeV/c2)

1.85

1.90

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

E (GeV)

(c) τ → eω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 3.33e+02 /68

p-value : 5.201e-37

2.5

2.0

1.5

1.0

0.5

1.70

1.80

1.85

1.75

MeK*0 (GeV/c2)

1.90

E (GeV)

(d) τ → eK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 3.62e+02 /74

p-value : 6.974e-40

4.0

3.5

3.0

2.5

2.0

1.5

1.0

1.70

1.80

1.85

1.75

MeK*0 (GeV/c2)

1.90

0.5

(e) τ → eK ∗0

Figure A.2: The fitting results to the eV 0 control samples in the MC (left). The luminosity is

scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle) and ∆E (right). The

orange hatched regions in eϕ and eK ∗0 modes are blinded to avoid D± meson event peaks. They

are removed from the fitting and the plot of ∆E projection.

86

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 4.70e+01 /31

p-value : 2.482e-02

0.12

0.10

0.08

0.06

0.04

0.02

1.70

1.75

1.80

(GeV/c2)

1.85

1.90

E (GeV)

(a) τ → µρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.0020

chi2/ndf : 3.96e+01 /34

p-value : 1.978e-01

0.0018

0.0016

0.0014

0.0012

0.0010

1.70

1.80

1.85

(GeV/c2)

1.75

1.90

E (GeV)

(b) τ → µϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 2.00e+01 /22

p-value : 5.187e-01

0.020

0.015

0.010

0.005

1.70

1.80

1.85

(GeV/c2)

1.75

1.90

E (GeV)

(c) τ → µω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.012

chi2/ndf : 3.76e+01 /33

p-value : 2.296e-01

0.010

0.008

0.006

0.004

1.70

1.75

1.80

M K*0 (GeV/c2)

1.85

1.90

0.002

E (GeV)

(d) τ → µK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.016

0.014

0.012

0.010

0.008

0.006

0.004

0.002

chi2/ndf : 3.72e+01 /31

p-value : 1.712e-01

1.70

1.75

1.80

M K*0 (GeV/c2)

1.85

1.90

(e) τ → µK ∗0

Figure A.3: The fitting results to the µV 0 sideband MC samples after the cut-base selection

(left). The luminosity is scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle)

and ∆E (right). The gray hatched regions are the blind regions. The orange hatched regions

in µϕ and µK ∗0 modes are blinded to avoid D± meson event peaks. The hatched regions are

removed from the fitting and the plot of ∆E projection. The blind regions are not included for

the fitting.

87

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.010

chi2/ndf : 1.78e+01 /22

p-value : 6.593e-01

0.008

0.006

0.004

0.002

1.70

1.80

1.85

1.75

Me 0 (GeV/c2)

1.90

E (GeV)

(a) τ → eρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

×10

chi2/ndf : 2.24e+01 /20

p-value : 2.648e-01

1.70

1.75

1.80

Me (GeV/c2)

1.85

1.90

E (GeV)

(b) τ → eϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.0040

chi2/ndf : 3.80e+01 /22

p-value : 1.306e-02

0.0035

0.0030

0.0025

0.0020

0.0015

1.70

1.80

1.85

1.75

Me (GeV/c2)

1.90

E (GeV)

(c) τ → eω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.0050

chi2/ndf : 2.88e+01 /19

p-value : 5.034e-02

0.0045

0.0040

0.0035

0.0030

0.0025

0.0020

1.70

1.80

1.85

1.75

MeK*0 (GeV/c2)

1.90

E (GeV)

(d) τ → eK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.006

chi2/ndf : 2.99e+01 /22

p-value : 9.478e-02

0.005

0.004

0.003

0.002

0.001

1.70

1.75

1.80

MeK*0 (GeV/c2)

1.85

1.90

(e) τ → eK ∗0

Figure A.4: The fitting results to the eV 0 sideband MC samples after the cut-base selection

(left). The luminosity is scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle)

and ∆E (right). The gray hatched regions are the blind regions. The orange hatched regions

in eϕ and eK ∗0 modes are blinded to avoid D± meson event peaks. The hatched regions are

removed from the fitting and the plot of ∆E projection. The blind regions are not included for

the fitting.

88

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 4.36e+01 /31

p-value : 5.235e-02

0.08

0.06

0.04

0.02

1.70

1.75

1.80

M 0 (GeV/c2)

1.85

1.90

E (GeV)

(a) τ → µρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 5.09e+01 /34

p-value : 2.399e-02

0.0035

0.0030

0.0025

0.0020

0.0015

1.70

1.75

1.80

M (GeV/c2)

1.85

1.90

0.0010

E (GeV)

(b) τ → µϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 1.49e+01 /22

p-value : 8.285e-01

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

1.70

1.75

1.80

M (GeV/c2)

1.85

1.90

E (GeV)

(c) τ → µω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 6.16e+01 /33

p-value : 1.266e-03

0.008

0.006

0.004

0.002

1.70

1.80

1.85

1.75

M K*0 (GeV/c2)

1.90

E (GeV)

(d) τ → µK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.012

chi2/ndf : 3.59e+01 /31

p-value : 2.109e-01

0.010

0.008

0.006

0.004

1.70

1.75

1.80

M K*0 (GeV/c2)

1.85

1.90

0.002

(e) τ → µK ∗0

Figure A.5: The fitting results to the µV 0 sideband MC samples after the BDT selection (left).

The luminosity is scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle) and ∆E

(right). The gray hatched regions are the blind regions. The orange hatched regions in µϕ and

µK ∗0 modes are blinded to avoid D± meson event peaks. The hatched regions are removed from

the fitting and the plot of ∆E projection. The blind regions are not included for the fitting.

89

E (GeV)

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

0.010

chi2/ndf : 2.33e+01 /22

p-value : 3.290e-01

0.008

0.006

0.004

0.002

1.70

1.80

1.85

1.75

Me 0 (GeV/c2)

1.90

E (GeV)

(a) τ → eρ0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

×10

chi2/ndf : 1.81e+01 /20

p-value : 5.134e-01

1.70

1.80

1.85

1.75

Me (GeV/c2)

1.90

E (GeV)

(b) τ → eϕ

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 1.53e+01 /22

p-value : 8.090e-01

0.0024

0.0022

0.0020

0.0018

0.0016

0.0014

1.70

1.80

1.85

1.75

Me (GeV/c2)

1.90

E (GeV)

(c) τ → eω

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 2.77e+01 /19

p-value : 6.661e-02

0.0032

0.0030

0.0028

0.0026

0.0024

0.0022

0.0020

1.70

1.80

1.85

1.75

MeK*0 (GeV/c2)

1.90

E (GeV)

(d) τ → eK ∗0

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.1001.65

fit result

chi2/ndf : 1.94e+01 /22

p-value : 5.626e-01

0.0035

0.0030

0.0025

0.0020

0.0015

0.0010

0.0005

1.70

1.80

1.85

1.75

MeK*0 (GeV/c2)

1.90

(e) τ → eK ∗0

Figure A.6: The fitting results to the eV 0 sideband MC samples after the BDT selection (left).

The luminosity is scaled to that of q q¯ MC (5720 fb−1 ). Projection to the MℓV 0 (middle) and ∆E

(right). The gray hatched regions are the blind regions. The orange hatched regions in eϕ and

eK ∗0 modes are blinded to avoid D± meson event peaks. The hatched regions are removed from

the fitting and the plot of ∆E projection. The blind regions are not included for the fitting.

90

Appendix B

BDT training with MC control

samples

Here, I discuss an additional study about the Boosted Decision Tree (BDT) training in section 4.4.2. The BDT performance basically improves as the number of training samples increases. In section 4.4.2, the BDT is trained using the control samples in the data. To increase

the number of training samples, I add the control samples (section 4.4.1) in the background MC

to the BDT training.

The BDT training is done with 40% of the signal MC events as signal samples, and 80% of the

control samples in the data and background MC as background samples. The validation samples,

which have 10% of the signal MC events as signal samples and 20% of the control samples in the

data and background MC as background samples, are used for the AUC monitoring during the

training. If the AUC is not improved for 50 rounds of the training, I stop training and choose

the BDT with the best AUC score. The total wights of the control samples in the background

MC are scaled to match the number of the control samples in the data. The total weights of

the signal MC samples are scaled to match the sum of weights of the control samples in the

data and in the background MC. The input variables and the hyper-parameters for the BDT

are same as in section 4.4.2.

To compare the BDT performance with that in section 4.4.2, I calculate the AUC of the

validation samples except for the background MC (Figures B.1 and B.2). The BDT trained

with the data and background MC has better performance than the BDT in section 4.4.2. It

means that the BDT can be improved in the future Belle II experiment that has 50 times larger

integrated luminosity than the Belle experiment. Because this study is done after the unblind

of the τ → ℓV 0 signal region, I do not apply this BDT for my final results.

Figures B.3 and B.4 shows the observed event distribution after the BDT selection trained

with the control samples in the data and background MC. The ℓϕ modes are not shown because

I do not set the BDT output lower limits in the BDT selection for them. Table B.1 shows the

number of background estimation and the number of observed events inside the signal region

using this BDT at the same signal efficiency in table 6.2. The upper limits of the τ → ℓV 0

branching fractions are calculated with the same systematic uncertainty on the expected number

of signal events in table 6.2. The observed upper limits are more dependent on the number of

observed events than on the expected number of background events. Whereas the expected NBG

is decrease about 6.5% by the BDT with additional training samples, the sum of the observed

events are same as my final results.

91

(a) τ → µρ0

(b) τ → µϕ

(c) τ → µω

(d) τ → µK ∗0

(e) τ → µK ∗0

Figure B.1: The BDT performance indicator (AUC of the validation samples in the data) on

each training stage (number of BDT tree) for the µV 0 modes. The filled blue circles are the

performance of the new BDT that is trained with the control samples both in the data and

background MC. The filled red circles are the performance of the BDT that is trained with

the control samples only in the data. The additional training samples in the background MC

improve the BDT performance. The training is stopped if there is no AUC improvement for 50

training stages.

92

(a) τ → eρ0

(b) τ → eϕ

(c) τ → eω

(d) τ → eK ∗0

(e) τ → eK ∗0

Figure B.2: ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る