リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on the Role of Group II Metabotropic Glutamate Receptors in Medulla Oblongata on Blood Pressure Regulation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on the Role of Group II Metabotropic Glutamate Receptors in Medulla Oblongata on Blood Pressure Regulation

許, 筑甯 東京大学 DOI:10.15083/0002006910

2023.03.24

概要























筑甯

高血圧は、心血管系疾患の主要な危険因子であり平均余命と正の相関関係が認められて
おり、その対策が世界的に求められている重要な疾患である。血圧は、1 回拍出量と心拍数
の影響を受ける心拍出量と総末梢抵抗によって変化するが、その制御機構は自律神経系の
働きも含めて複雑である。延髄は、血圧を神経学的に制御する心血管系調節の中枢として非
常に重要な部位であり、この領域の中でも孤束核(NTS)は圧受容器求心性情報を入力する
最初のシナプス部位としての役割を担っている。NTS ニューロンは、グルタミン酸作動性
投射を尾側腹外側延髄(CVLM)にあるニューロンに送り、抑制性 GABA 作動性投射を吻
側腹外側延髄(RVLM)にあるニューロンを介して機能していることから、NTS 圧感受性ニ
ューロンの活性化は、CVLM ニューロンの興奮を誘発し RVLM ニューロンの抑制をもたら
す。哺乳類の中枢神経系における主要な興奮性神経伝達物質としてはグルタミン酸が、代謝
型グルタミン酸受容体(mGluR)を介して作用し、セカンドメッセンジャーシグナル伝達カ
スケードを開始する神経調節物質にもなる。mGluR は G タンパク質共役型受容体であり 3
つのグループに分類され、グループ I の mGluR は Gq タンパク質であり、グループ II およ
び III の mGluR は Gi タンパク質である。グループ I の mGluR はホスホリパーゼ C シグナ
ル伝達カスケードを刺激するが、グループ II とグループ III はアデニル酸シクラーゼ経路を
阻害する。mGluR は延髄、特に NTS に存在し、自律神経系機能におけるグルタミン酸作動
性伝達の調節に大きく寄与することが知られているものの、血圧調節における mGluR の働
きに関する詳細な検討はなされていない。そこで、本研究では自然発症高血圧ラット(SHR)
と正常血圧モデルである Wistar Kyoto ラット(WKY)を利用し延髄におけるグループⅡ
mGluR の血圧調節における役割と高血圧治療における可能性を明らかにすることを目的と
した。
本論文は 6 章からなり、第 1 章では、研究の背景および目的を述べている。
第 2 章ではグループ II mGluR モジュレーターである LY379268(mGluR2/3 アゴニスト;
0.40 µg /日)および LY341495(mGluR2/3 アンタゴニスト; 0.40 µg /日)を延髄背側部に埋入
したミニ浸透圧ポンプにより慢性(6週間)投与した際の、血圧(BP)と心拍数(HR)に
及ぼす影響を SHR と WKY で検討した。その結果、アンタゴニストの投与により BP は SHR
で有意に増加したが、WKY では変化が認められなかった。一方、アゴニストの投与では SHR
の BP は有意に低下したが、WKY では変化が認められなかった。HR については SHR と
WKY とも何れの処置によっても顕著な変化は認められなかった。これらの結果から、延髄

において mGluR2/3 アゴニストによる刺激が高血圧の発症を抑制する可能性が示唆された。
第 3 章では前章で SHR の血圧低下作用が認められた LY379268(mGluR2/3 アゴニスト)
について、延髄への直接投与は血液脳関門をバイパス可能である一方で、投与濃度によって
は神経毒性を示す可能性もあるので濃度依存性について詳細な検討を行った。SHR に
LY379268(0.40-40 µg /日)の 5 つの用量を投与して生存率と血圧に及ぼす影響を調べたと
ころ、血圧低下作用に用量依存性は認められず生存率から求めた LD50 は 4.63 µg /日だった
ことから、安全性と副作用の少ない投与量として 0.40 µg /日が適切であると考えられたの
で、以降の研究にはこの濃度を使用した。
第 4 章では第 2 章と同様に mGluR2/3 アゴニストとアンタゴニストを 6 週間投与し投与後
の 21 週齢まで BP と HR に及ぼす影響を観察すると共に、mGluR2/3 の発現について分子生
物学的及び免疫組織学的に検討を加えた。SHR に対するアゴニストの血圧低下作用は投与
終了から9週間に渡って維持された。SHR ではアゴニストの投与は対照群と比較して
mGluR2 遺伝子発現レベルを変化させなかったが、アンタゴニストの投与は発現レベルを増
加させた。
また、
WKY では mGluR2 の遺伝子発現レベルに顕著な変化は認められなかった。
mGluR3 の遺伝子発現レベルは、両系統共に変化は認められなかった。免疫組織学的にも同
様な結果が得られた。
第 5 章では mGluR2/3 アゴニストによる SHR の血圧低下作用機構の一端を明らかにする
目的で、自律神経系機能と圧反射感受性に及ぼす影響について検討した。自律神経系機能は
テレメトリー法により記録した心電図を用いて心拍変動解析することにより評価した。そ
の結果、アゴニスト投与群において副交感神経系機能が優位になることが明らかとなった。
また、圧反射感受性についてもアゴニスト投与群において血圧の上昇に対する徐脈効果の
亢進していることが明らかとなった。
第6章では、得られた知見に関して総合考察を行っている。
本研究では、延髄の背側部における mGluR2/3 アゴニストの慢性的な刺激が、副交感神経
系機能と圧反射感受性を亢進することにより SHR の高血圧発症を抑制することが明らかと
なった。この機構に関与する受容体としては mGluR2 による可能性の高いことが示唆され
た。高血圧発症に関与する延髄背側 mGluR2/3 の役割を介した神経機構の発見は、血圧調節
機構の更なる解明および高血圧の治療戦略における創薬に対して新たな情報を提供するも
のと考えられた。申請者のこれらの研究成果は、学術上応用上寄与するところが少なくない。
よって、審査委員一同は本論文が博士(獣医学)の学位論文として価値あるものと認めた。

この論文で使われている画像

参考文献

103

Abal P, Louzao MC, Antelo A, Alvarez M, Cagide E, Vilariño N, Vieytes MR, Botana

LM.

Acute oral toxicity of tetrodotoxin in mice: Determination of lethal dose 50 (LD50)

and no observed adverse effect level (NOAEL). Toxins (Basel). 9 (3): 75, 2017.

Abdel-Rahman AA, Tao S. Differential alteration of neuronal and cardiovascular responses

to adenosine microinjected into the nucleus tractus solitarius of spontaneously hypertensive

rats. Hypertension. 27 (4): 939-948, 1996.

Adams MA, Bobik A, Korner PI. Differential development of vascular and cardiac

hypertrophy in genetic hypertension. Relation to sympathetic function. Hypertension. 14 (2):

191-202, 1989.

Akhila J, Shyamjith D, Alwar M. Acute toxicity studies and determination of median lethal

dose. Curr Sci. 93 (7): 917-920, 2007.

Almeida J, Oliveira LA, Benini R, Crestani CC. Differential roles of hippocampal nNOS

and iNOS in the control of baroreflex function in conscious rats. Brain Res. 1710 (1):

109-116, 2019.

Alvarez MC, Caldiz C, Fantinelli JC, Garciarena CD, Console GM, Chiappe de

Cingolani GE, Mosca SM. Is cardiac hypertrophy in spontaneously hypertensive rats the

cause or the consequence of oxidative stress?. Hypertens Res. 31 (7): 1465-1476, 2008.

Anand-Srivastava MB. Enhanced expression of inhibitory guanine nucleotide regulatory

protein in spontaneously hypertensive rats. Relationship to adenylate cyclase inhibition.

Biochem J. 288 (Pt1): 79-85, 1992.

Anand-Srivastava MB. G-proteins and adenylyl cyclase signalling in hypertension. Mol

Cell Biochem. 157 (1-2): 163-170, 1996.

Anishchenko AM, Aliev OI, Sidekhmenova AV, Shamanaev AY, Plotnikov MB.

Dynamics of blood pressure elevation and endothelial dysfunction in SHR rats during the

development of arterial hypertension. Bull Exp Biol Med. 159 (5): 591-593, 2015.

Antunes VR, Machado BH. Antagonism of glutamatergic metabotropic receptors in the

104

NTS of awake rats does not affect the gain of the baroreflex. Auton Neurosci. 103 (1-2):

65-71, 2003.

Anwyl

R.

Metabotropic

glutamate

receptor-dependent

long-term

potentiation.

Neuropharmacology. 56 (4): 735-740, 2009.

Anwyl R. Metabotropic glutamate receptors: Electrophysiological properties and role in

plasticity. Brain Res Brain Res Rev. 29 (1): 83-120, 1999.

Balazs R, Bridges RJ, Cotman CW. Metabotropic glutamate receptors. In: Excitatory

amino acid transmission in health and disease. 1st ed. Oxford University Press, New York,

NY, United States, 115-166, 2006.

Barker GR, Bashir ZI, Brown MW, Warburton EC. A temporally distinct role for group I

and group II metabotropic glutamate receptors in object recognition memory. Learn Mem. 13

(2): 178-186, 2006.

Blackshaw LA, Page AJ, Young RL. Metabotropic glutamate receptors as novel therapeutic

targets on visceral sensory pathways. Front Neurosci. 5 (1): 40, 2011.

Blaustein MP, Zhang J, Chen L, Hamilton BP. How does salt retention raise blood

pressure?. Am J Physiol Regul Integr Comp Physiol. 290 (3): R514-R523, 2006.

Böhm M, Gierschik P, Knorr A, Larisch K, Weismann K, Erdmann E. Role of altered

G-protein expression in the regulation of myocardial adenylate cyclase activity and force of

contraction in spontaneous hypertensive cardiomyopathy in rats. J Hypertens. 10 (10):

1115-1128, 1992.

Bolívar JJ. Essential hypertension: An approach to its etiology and neurogenic

pathophysiology. Int J Hypertens. 2013 (1): 547809, 2013

Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain-gut axis

in psychiatric and inflammatory disorders. Front Psychiatry. 9 (1): 44, 2018.

Brown MJ, Causon RC, Barnes V, Brennan P, Barnes G, Greenberg G, Miall WE. The

105

role of adrenaline in essential hypertension in man. 9th Int Congr Pharmacol. 2 (1): 53-56,

1984.

Bruno RM, Ghiadoni L, Seravalle G, Dell'oro R, Taddei S, Grassi G. Sympathetic

regulation of vascular function in health and disease. Front Physiol. 3 (1): 284, 2012.

Burr RL. Interpretation of normalized spectral heart rate variability indices in sleep research:

A critical review. Sleep. 30 (7): 913-919, 2007.

Carlson SH, Wyss JM. Neurohormonal regulation of the sympathetic nervous system: New

insights into central mechanisms of action. Curr Hypertens Rep. 10 (3): 233-240, 2008.

Castrop H, Höcherl K, Kurtz A, Schweda F, Todorov V, Wagner C. Physiology of

kidney renin. Physiol Rev. 90 (2): 607-673, 2010.

Catania MV, Landwehrmeyer GB, Testa CM, Standaert DG, Penney JB Jr, Young AB.

Metabotropic glutamate receptors are differentially regulated during development.

Neuroscience. 61 (3): 481-495, 1994.

Chan RK, Chan YS, Wong TM. Electrophysiological properties of neurons in the rostral

ventrolateral medulla of normotensive and spontaneously hypertensive rats. Brain Res. 549

(1): 118-126, 1991.

Chang CC, Hsiao TC, Chiang YY, Hsu HY. The usefulness of the coefficient of variation

of electrocardiographic RR interval as an index of cardiovascular function and its correlation

with age and stroke. Tungs' Med J. 6 (2): 41-48, 2013.

Chen CY, Bonham AC. Glutamate suppresses GABA release via presynaptic metabotropic

glutamate receptors at baroreceptor neurones in rats. J Physiol. 562 (Pt 2): 535-551, 2005.

Chen CY, Ling Eh EH, Horowitz JM, Bonham AC. Synaptic transmission in nucleus

tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic

glutamate receptors in rats. J Physiol. 538 (Pt 3): 773-786, 2002.

Chen K, Pittman RN, Popel AS. Nitric oxide in the vasculature: Where does it come from

106

and where does it go? A quantitative perspective. Antioxid Redox Signal. 10 (7): 1185-1198,

2008.

Cheng Z, Powley TL, Schwaber JS, Doyle FJ 3rd. A laser confocal microscopic study of

vagal afferent innervation of rat aortic arch: Chemoreceptors as well as baroreceptors. J

Auton Nerv Syst. 67 (1-2): 1-14, 1997.

Chopra S, Baby C, Jacob JJ. Neuro-endocrine regulation of blood pressure. Indian J

Endocrinol Metab. Suppl 4 (S4): S281-S288, 2011.

Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR Jr, Lopes OU. Role of

the medulla oblongata in hypertension. Hypertension. 38 (3 Pt 2): 549-554, 2001.

Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu

Rev Pharmacol Toxicol. 137 (1): 205-237, 1997.

Crestani CC, Alves FH, Busnardo C, Resstel LB, Correa FM. N-methyl-D-aspartate

glutamate receptors in the hypothalamic paraventricular nucleus modulate cardiac component

of the baroreflex in unanesthetized rats. Neurosci Res. 67 (4): 317-326, 2010.

Crupi R, Impellizzeri D, Cuzzocrea S. Role of metabotropic glutamate receptors in

neurological disorders. Front Mol Neurosci. 12 (1): 20, 2019.

Daughton CG, Ruhoy IS. Lower-dose prescribing: Minimizing "side effects" of

pharmaceuticals on society and the environment. Sci Total Environ. 443 (1): 324-337, 2013.

Deperrois N, Graupner M. Short-term depression and long-term plasticity together tune

sensitive range of synaptic plasticity. PLoS Comput Biol. 16 (9): e1008265, 2020.

Dickhout JG, Lee RM. Blood pressure and heart rate development in young spontaneously

hypertensive rats. Am J Physiol. 274 (3): H794-H800, 1998.

Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 100 (2):

314-329, 2018.

107

Dodd PR. Excited to death: Different ways to lose your neurones. Biogerontology. 3 (1-2):

51-56, 2002.

Duchin KL, McKinstry DN, Cohen AI, Migdalof BH. Pharmacokinetics of captopril in

healthy subjects and in patients with cardiovascular diseases. Clin Pharmacokinet. 14 (4):

241-259, 1988.

Dünser MW, Hasibeder WR. Sympathetic overstimulation during critical illness: Adverse

effects of adrenergic stress. J Intensive Care Med. 24 (5): 293-316, 2009.

Farah VM, Moreira ED, Pires MD, Irigoyen MC, Krieger EM. Comparison of three

methods for the determination of baroreflex sensitivity in conscious rats. Braz J Med Biol Res.

32 (3): 361-369, 1999.

Fares H, DiNicolantonio JJ, O'Keefe JH, Lavie CJ. Amlodipine in hypertension: A

first-line agent with efficacy for improving blood pressure and patient outcomes. Open Heart.

3 (2): e000473, 2016.

Ferro G, Duilio C, Spinelli L, Liucci GA, Mazza F, Indolfi C. Relation between diastolic

perfusion time and coronary artery stenosis during stress-induced myocardial ischemia.

Circulation. 92 (3): 342-347, 1995.

Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans:

Implications for hypertension. J Hum Hypertens. 26 (8): 463-475, 2012.

Flor PJ, Battaglia G, Nicoletti F, Gasparini F, Bruno V. Neuroprotective activity of

metabotropic glutamate receptor ligands. Adv Exp Med Biol. 513 (1): 197-223, 2002.

Foley CM, Moffitt JA, Hay M, Hasser EM. Glutamate in the nucleus of the solitary tract

activates both ionotropic and metabotropic glutamate receptors. Am J Physiol. 275 (6):

R1858-R1866, 1998.

Franco OH, Peeters A, Bonneux L, de Laet C. Blood pressure in adulthood and life

expectancy with cardiovascular disease in men and women: Life course analysis.

Hypertension. 46 (2): 280-286, 2005.

108

Frishman WH. Cardiology patient page. Beta-adrenergic blockers. Circulation. 107 (18):

e117-e119, 2003.

Furlan R, Heusser K, Minonzio M, Shiffer D, Cairo B, Tank J, Jordan J, Diedrich A,

Gauger P, Zamuner AR, Dipaola F, Porta A, Barbic F. Cardiac and vascular sympathetic

baroreflex control during orthostatic pre-syncope. J Clin Med. 8 (9): 1434, 2019.

Galloway MP, Westfall TC. The release of endogenous norepinephrine from the coccygeal

artery of spontaneously hypertensive and Wistar-Kyoto rats. Circ Res. 51 (2): 225-232, 1982.

Gehrmann J, Hammer PE, Maguire CT, Wakimoto H, Triedman JK, Berul CI.

Phenotypic screening for heart rate variability in the mouse. Am J Physiol Heart Circ Physiol.

279 (2): H733-H740, 2000.

Glascock JJ, Osman EY, Coady TH, Rose FF, Shababi M, Lorson CL. Delivery of

therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in

mice. J Vis Exp. 56 (1): 2968, 2011.

Glazewski S, Remiszewska M, Wutkiewicz M, Jastrzebski Z, Danysz W. On the role of

NMDA receptors in blood pressure regulation in spontaneously hypertensive rats (SHR).

Amino Acids. 8 (4): 379-383, 1995.

Goel A, Su B, Flavahan S, Lowenstein CJ, Berkowitz DE, Flavahan NA. Increased

endothelial exocytosis and generation of endothelin-1 contributes to constriction of aged

arteries. Circ Res. 107 (2): 242-251, 2010.

Gołembiowska K, Konieczny J, Ossowska K, Wolfarth S. The role of striatal metabotropic

glutamate receptors in degeneration of dopamine neurons: Review article. Amino Acids. 23

(1-3): 199-205, 2002.

Granata AR. Modulatory inputs on sympathetic neurons in the rostral ventrolateral medulla

in the rat. Cell Mol Neurobiol. 23 (4-5): 665-680, 2003.

Grisk O, Rettig R. Interactions between the sympathetic nervous system and the kidneys in

109

arterial hypertension. Cardiovasc Res. 61 (2): 238-246, 2004.

Hammoud S, Karam R, Mourad R, Saad I, Kurdi M. Stress and heart rate variability

during university final examination among Lebanese students. Behav Sci (Basel). 9 (1): 3,

2018.

Hay M, McKenzie H, Lindsley K, Dietz N, Bradley SR, Conn PJ, Hasser EM.

Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla

oblongata of the rat. J Comp Neurol. 403 (4): 486-501, 1999.

Head GA, Adams MA. Characterization of the baroreceptor heart rate reflex during

development in spontaneously hypertensive rats. Clin Exp Pharmacol Physiol. 19 (8):

587-597, 1992.

Head GA. Baroreflexes and cardiovascular regulation in hypertension. J Cardiovasc

Pharmacol. 26 (S2): S7-S16, 1995.

Hemingway H, Shipley M, Brunner E, Britton A, Malik M, Marmot M. Does autonomic

function link social position to coronary risk? The Whitehall II study. Circulation. 111 (23):

3071-3077, 2005.

Huang M, Gu X, Gao X. Nanotherapeutic strategies for the treatment of neurodegenerative

diseases. In: Brain targeted drug delivery system. 1st ed. Academic Press, Cambridge, MA,

United States, 321-356, 2019.

Hunt MG, Rushton J, Shenberger E, Murayama S. Positive effects of diaphragmatic

breathing on physiological stress reactivity in varsity athletes. J Clin Sport Psychol. 12 (1):

27-38, 2018.

Imre G. The preclinical properties of a novel group II metabotropic glutamate receptor

agonist LY379268. CNS Drug Rev. 13 (4): 444-464, 2007.

Jin LE, Wang M, Galvin VC, Lightbourne TC, Conn PJ, Arnsten AFT, Paspalas CD.

mGluR2 versus mGluR3 metabotropic glutamate receptors in primate dorsolateral prefrontal

cortex: Postsynaptic mGluR3 strengthen working memory networks. Cereb Cortex. 28 (3):

110

974-987, 2018.

Joyner MJ, Limberg JK. Blood pressure regulation: Every adaptation is an integration?.

Eur J Appl Physiol. 114 (3): 445-450, 2014.

Judy WV, Farrell SK. Arterial baroreceptor reflex control of sympathetic nerve activity in

the spontaneously hypertensive rat. Hypertension. 1 (6): 605-614, 1979.

Julius S, Nesbitt S. Sympathetic overactivity in hypertension. A moving target. Am J

Hypertens. 9 (11): 113S-120S, 1996.

Kandler MR, Mah GT, Tejani AM, Stabler SN, Salzwedel DM. Hydralazine for essential

hypertension. Cochrane Database Syst Rev. 1 (11): CD004934, 2011.

Khozhai LI. Expression of mGluR2/3 metabotropic glutamate receptors in the ventrolateral

part of the solitary tract nucleus in rats during the early postnatal period in health and in

prenatal serotonin deficiency. Neurosci Behav Physi. 48 (7): 894-898, 2018.

Kim JH, Beeler J, Vezina P. Group II, but not group I, metabotropic glutamate receptors in

the

rat

nucleus

accumbens

contribute

to

amphetamine-induced

locomotion.

Neuropharmacology. 39 (10): 1692-1699, 2000.

Kline DD. Plasticity in glutamatergic NTS neurotransmission. Respir Physiol Neurobiol. 164

(1-2): 105-111, 2008.

Koenig J, Hill LK, Williams DP, Thayer JF. Estimating cardiac output from blood pressure

and heart rate: The liljestrand & zander formula. Biomed Sci Instrum. 51 (1): 85-90, 2015.

Kokubo M, Uemura A, Matsubara T, Murohara T. Noninvasive evaluation of the time

course of change in cardiac function in spontaneously hypertensive rats by echocardiography.

Hypertens Res. 28 (7): 601-609, 2005.

Kost CK Jr, Herzer WA, Li PJ, Jackson EK. Pertussis toxin-sensitive G-proteins and

regulation of blood pressure in the spontaneously hypertensive rat. Clin Exp Pharmacol

Physiol. 26 (5-6): 449-455, 1999.

111

Kuwahara M, Hashimoto S, Tsubone H, Sugano S. Developmental changes of autonomic

nervous activity in the spontaneously hypertensive rats: Investigation by power spectral

analysis of heart rate variability. J Ambul Monit. 9 (1): 51-58, 1996.

Kuwahara M, Yayou K, Ishii K, Hashimoto S, Tsubone H, Sugano S. Power spectral

analysis of heart rate variability as a new method for assessing autonomic activity in the rat. J

Electrocardiol. 27 (4): 333-337, 1994.

LaCroix C, Freeling J, Giles A, Wess J, Li YF. Deficiency of M2 muscarinic acetylcholine

receptors increases susceptibility of ventricular function to chronic adrenergic stress. Am J

Physiol Heart Circ Physiol. 294 (2): H810-H820, 2008.

Lai CC, Yuan ZF, Chu LY, Chuang KT, Lin HH. Roles of cocaine- and

amphetamine-regulated transcript peptide in the rostral ventrolateral medulla in

cardiovascular regulation in rats. Brain Res. 1710 (1): 117-124, 2019.

Lamprea-Montealegre JA, Zelnick LR, Hall YN, Bansal N, de Boer IH. Prevalence of

hypertension and cardiovascular risk according to blood pressure thresholds used for

diagnosis. Hypertension. 72 (3): 602-609, 2018.

Le Tourneau C, Lee JJ, Siu LL. Dose escalation methods in phase I cancer clinical trials. J

Natl Cancer Inst. 101 (10): 708-720, 2009.

Lee AC, Godfrey DA. Cochlear damage affects neurotransmitter chemistry in the central

auditory system. Front Neurol. 5 (1): 227, 2014.

Li Y, Anand-Srivastava MB. Inactivation of enhanced expression of G(i) proteins by

pertussis toxin attenuates the development of high blood pressure in spontaneously

hypertensive rats. Circ Res. 91 (3): 247-254, 2002.

Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell.

104 (4): 545-556, 2001.

Liu MH, Lin AH, Ko HK, Perng DW, Lee TS, Kou YR. Prevention of bleomycin-induced

112

pulmonary inflammation and fibrosis in mice by paeonol. Front Physiol. 8 (1): 193, 2017.

Lu L, Uejima JL, Gray SM, Bossert JM, Shaham Y. Systemic and central amygdala

injections of the mGluR(2/3) agonist LY379268 attenuate the expression of incubation of

cocaine craving. Biol Psychiatry. 61 (5): 591-598, 2007.

Luft FC. Mendelian forms of human hypertension and mechanisms of disease. Clin Med Res.

1 (4): 291-300, 2003.

Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term

depression (LTP/LTD). Cold Spring Harb Perspect Biol. 4 (6): a005710, 2012.

Manabe N, Foldes FF, Töröcsik A, Nagashima H, Goldiner PL, Vizi ES. Presynaptic

interaction between vagal and sympathetic innervation in the heart: Modulation of

acetylcholine and noradrenaline release. J Auton Nerv Syst. 32 (3): 233-242, 1991.

Mandel DA, Schreihofer AM. Glutamatergic inputs to the CVLM independent of the NTS

promote tonic inhibition of sympathetic vasomotor tone in rats. Am J Physiol Heart Circ

Physiol. 295 (4): H1772-H1779, 2008.

Marcil J, Thibault C, Anand-Srivastava MB. Enhanced expression of Gi-protein precedes

the development of blood pressure in spontaneously hypertensive rats. J Mol Cell Cardiol. 29

(3): 1009-1022, 1997.

Matsumura K, Tsuchihashi T, Kagiyama S, Abe I, Fujishima M. Subtypes of

metabotropic glutamate receptors in the nucleus of the solitary tract of rats. Brain Res. 842

(2): 461-468, 1999.

Matsuura T, Kumagai H, Kawai A, Onimaru H, Imai M, Oshima N, Sakata K, Saruta

T. Rostral ventrolateral medulla neurons of neonatal Wistar-Kyoto and spontaneously

hypertensive rats. Hypertension. 40 (4): 560-565, 2002.

Mayet J, Hughes A. Cardiac and vascular pathophysiology in hypertension. Heart. 89 (9):

1104-1109, 2003.

113

McCorry LK. Physiology of the autonomic nervous system. Am J Pharm Educ. 71 (4): 78,

2007.

Meneely GR, Battarbee HD. High sodium-low potassium environment and hypertension.

Am J Cardiol. 38 (6): 768-785, 1976.

Messerli FH, Bangalore S. Half a century of hydrochlorothiazide: Facts, fads, fiction, and

follies. Am J Med. 124 (10): 896-899, 2011.

Mischel NA, Subramanian M, Dombrowski MD, Llewellyn-Smith IJ, Mueller PJ.

(In)activity-related neuroplasticity in brainstem control of sympathetic outflow: Unraveling

underlying molecular, cellular, and anatomical mechanisms. Am J Physiol Heart Circ Physiol.

309 (2): H235-H243, 2015.

Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A,

Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M; TOX-OER and

CARDIOTOX Hradec Králové Researchers and Collaborators. Comprehensive review

of cardiovascular toxicity of drugs and related agents. Med Res Rev. 38 (4): 1332-1403, 2018.

Motulsky HJ, Christopoulos A. Fitting dose-response curves. In: Fitting models to

biological data using linear and nonlinear regression: A practical guide to curve fitting. 1st ed.

GraphPad Software Inc., San Diego, CA, United States, 256-295, 2003.

Nash DT. Alpha-adrenergic blockers: Mechanism of action, blood pressure control, and

effects of lipoprotein metabolism. Clin Cardiol. 13 (11): 764-772, 1990.

Nguyen Phuc Thu T, Hernández AI, Costet N, Patural H, Pichot V, Carrault G,

Beuchée A. Improving methodology in heart rate variability analysis for the premature

infants: Impact of the time length. PLoS One. 14 (8): e0220692, 2019.

Niswender CM, Conn PJ. Metabotropic glutamate receptors: Physiology, pharmacology,

and disease. Annu Rev Pharmacol Toxicol. 50 (1): 295-322, 2010.

Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J.

27 (1): 282-293, 1963.

114

Palatini P, Casiglia E, Pauletto P, Staessen J, Kaciroti N, Julius S. Relationship of

tachycardia with high blood pressure and metabolic abnormalities: A study with mixture

analysis in three populations. Hypertension. 30 (5): 1267-1273, 1997.

Paolini AG, Morgan SJ, Kim JH. Auditory fear conditioning alters neural gain in the

cochlear nucleus: A wireless neural recording study in freely behaving rats. Neuronal Signal.

4 (4): NS20200009, 2020.

Paxinos G, Watson C. Figures. In: Paxinos and Watson’s the rat brain in stereotaxic

coordinates. 7th ed. Academic Press, San Diego, CA, United States, 2014.

Petersen LJ, Petersen JR, Talleruphuus U, Ladefoged SD, Mehlsen J, Jensen HA. The

pulsatility index and the resistive index in renal arteries. Associations with long-term

progression in chronic renal failure. Nephrol Dial Transplant. 12 (7): 1376-1380, 1997.

Petralia RS, Wang YX, Zhao HM, Wenthold RJ. Ionotropic and metabotropic glutamate

receptors show unique postsynaptic, presynaptic, and glial localizations in the dorsal cochlear

nucleus. J Comp Neurol. 372 (3): 356-383, 1996.

Pinto YM, Paul M, Ganten D. Lessons from rat models of hypertension: From Goldblatt to

genetic engineering. Cardiovasc Res. 39 (1): 77-88, 1998.

Potts JT. Inhibitory neurotransmission in the nucleus tractus solitarii: Implications for

baroreflex resetting during exercise. Exp Physiol. 91 (1): 59-72, 2006.

Rahn KA, Slusher BS, Kaplin AI. Glutamate in CNS neurodegeneration and cognition and

its regulation by GCPII inhibition. Curr Med Chem. 19 (9): 1335-1345, 2012.

Rea RF, Biaggioni I, Robertson RM, Haile V, Robertson D. Reflex control of sympathetic

nerve activity in dopamine beta-hydroxylase deficiency. Hypertension. 15 (1): 107-112, 1990.

Rosenthal T, Oparil S. The effect of antihypertensive drugs on the fetus. J Hum Hypertens.

16 (5): 293-298, 2002.

115

Ross CA, Ruggiero DA, Park DH, Joh TH, Sved AF, Fernandez-Pardal J, Saavedra JM,

Reis DJ. Tonic vasomotor control by the rostral ventrolateral medulla: Effect of electrical or

chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart

rate, and plasma catecholamines and vasopressin. J Neurosci. 4 (2): 474-494, 1984.

Rubinger D, Backenroth R, Sapoznikov D. Sympathetic activation and baroreflex function

during intradialytic hypertensive episodes. PLoS One. 7 (5): e36943, 2012.

Sala F, Nistri A, Criado M. Nicotinic acetylcholine receptors of adrenal chromaffin cells.

Acta Physiol (Oxf). 192 (2): 203-212, 2008.

Sata Y, Head GA, Denton K, May CN, Schlaich MP. Role of the sympathetic nervous

system and its modulation in renal hypertension. Front Med (Lausanne). 5 (1): 82, 2018.

Sekizawa S, Bechtold AG, Tham RC, Bonham AC. A novel postsynaptic group II

metabotropic glutamate receptor role in modulating baroreceptor signal transmission. J

Neurosci. 29 (38): 11807-11816, 2009.

Sekizawa S, Bonham AC. Group I metabotropic glutamate receptors on second-order

baroreceptor neurons are tonically activated and induce a Na+-Ca2+ exchange current. J

Neurophysiol. 95 (2): 882-892, 2006.

Shah SU, Anjum S, Littler WA. Use of diuretics in cardiovascular diseases: (1) Heart

failure. Postgrad Med J. 80 (942): 201-205, 2004.

Shan ZZ, Dai SM, Su DF. Relationship between baroreceptor reflex function and end-organ

damage in spontaneously hypertensive rats. Am J Physiol. 277 (3): H1200-H1206, 1999.

Silva GJ, Pereira AC, Krieger EM, Krieger JE. Genetic mapping of a new heart rate QTL

on chromosome 8 of spontaneously hypertensive rats. BMC Med Genet. 8 (1): 17, 2007.

Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic

coupling in the spontaneously hypertensive rat: Does it contribute to hypertension?. J Physiol.

587 (3): 597-610, 2009.

116

Sved AF, Ito S, Madden CJ. Baroreflex dependent and independent roles of the caudal

ventrolateral medulla in cardiovascular regulation. Brain Res Bull. 51 (2): 129-133, 2000.

Takahashi H, Yoshika M, Komiyama Y, Nishimura M. The central mechanism underlying

hypertension: A review of the roles of sodium ions, epithelial sodium channels, the

renin-angiotensin-aldosterone system, oxidative stress and endogenous digitalis in the brain.

Hypertens Res. 34 (11): 1147-1160, 2011.

Takeuchi Y, Matsushima S, Matsushima R, Hopkins DA. Direct amygdaloid projections

to the dorsal motor nucleus of the vagus nerve: A light and electron microscopic study in the

rat. Brain Res. 280 (1): 143-147, 1983.

Talman WT. Glutamatergic transmission in the nucleus tractus solitarii: From server to

peripherals in the cardiovascular information superhighway. Braz J Med Biol Res. 30 (1): 1-7,

1997.

Tawakol A, Ishai A, Takx RA, Figueroa AL, Ali A, Kaiser Y, Truong QA, Solomon CJ,

Calcagno C, Mani V, Tang CY, Mulder WJ, Murrough JW, Hoffmann U, Nahrendorf

M, Shin LM, Fayad ZA, Pitman RK. Relation between resting amygdalar activity and

cardiovascular events: A longitudinal and cohort study. Lancet. 389 (10071): 834-845, 2017.

Templin C, Hänggi J, Klein C, Topka MS, Hiestand T, Levinson RA, Jurisic S, Lüscher

TF, Ghadri JR, Jäncke L. Altered limbic and autonomic processing supports brain-heart

axis in Takotsubo syndrome. Eur Heart J. 40 (15): 1183-1187, 2019.

Thaeomor A, Wyss JM, Jirakulsomchok D, Roysommuti S. High sugar intake via the

renin-angiotensin system blunts the baroreceptor reflex in adult rats that were perinatally

depleted of taurine. J Biomed Sci. 17 (S1): S30, 2010.

Tochinai R, Komatsu K, Murakami J, Nagata Y, Ando M, Hata C, Suzuki T, Kado S,

Kobayashi T, Kuwahara M. Histopathological and functional changes in a single-dose

model of combretastatin A4 disodium phosphate-induced myocardial damage in rats. J

Toxicol Pathol. 31 (4): 307-313, 2018.

Tsuchihashi T, Liu Y, Kagiyama S, Matsumura K, Abe I, Fujishima M. Metabotropic

117

glutamate receptor subtypes involved in cardiovascular regulation in the rostral ventrolateral

medulla of rats. Brain Res Bull. 52 (4): 279-283, 2000.

Vaarmann A, Kovac S, Holmström KM, Gandhi S, Abramov AY. Dopamine protects

neurons against glutamate-induced excitotoxicity. Cell Death Dis. 4 (1): e455, 2013.

van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency

variability of sympathetic nerve activity in severe heart failure. Circulation. 95 (6):

1449-1454, 1997.

Viard E, Sapru HN. Cardiovascular responses to activation of metabotropic glutamate

receptors in the nTS of the rat. Brain Res. 952 (2): 308-321, 2002.

Watanabe K, Ooishi Y, Kashino M. Sympathetic tone induced by high acoustic tempo

requires fast respiration. PLoS One. 10 (8): e0135589, 2015.

Weber MA, Schiffrin EL, White WB, Mann S, Lindholm LH, Kenerson JG, Flack JM,

Carter BL, Materson BJ, Ram CV, Cohen DL, Cadet JC, Jean-Charles RR, Taler S,

Kountz D, Townsend R, Chalmers J, Ramirez AJ, Bakris GL, Wang J, Schutte AE,

Bisognano JD, Touyz RM, Sica D, Harrap SB. Clinical practice guidelines for the

management of hypertension in the community a statement by the American Society of

Hypertension and the International Society of Hypertension. J Hypertens. 32 (1): 3-15, 2014.

Weiss D, Kools JJ, Taylor WR. Angiotensin II-induced hypertension accelerates the

development of atherosclerosis in apoE-deficient mice. Circulation. 103 (3): 448-454, 2001.

Widmaier EP, Raff H, Strang KT. Cardiovascular physiology. In: Vander's human

physiology: The mechanisms of body function. 12th ed. McGraw-Hill Companies Inc., New

York, NY, United States, 353-433, 2011.

Wijnen HJ, Palkovits M, de Jong W, Versteeg DH. Elevated adrenaline content in nuclei

of the medulla oblongata and the hypothalamus during the development of spontaneous

hypertension. Brain Res. 157 (1): 191-195, 1978.

Wood CM, Wafford KA, McCarthy AP, Hewes N, Shanks E, Lodge D, Robinson ESJ.

118

Investigating the role of mGluR2 versus mGluR3 in antipsychotic-like effects, sleep-wake

architecture and network oscillatory activity using novel Han Wistar rats lacking mGluR2

expression. Neuropharmacology. 140 (1): 246-259, 2018.

World Health Organization. A global brief on hypertension: Silent killer, global public

health

crisis.

April

2013

[Cited

2020

March

04].

Available

from:

http://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/

Zbinden G, Flury-Roversi M. Significance of the LD50-test for the toxicological evaluation

of chemical substances. Arch Toxicol. 47 (2): 77-99, 1981.

Zhang J, Mifflin SW. Differential roles for NMDA and non-NMDA receptor subtypes in

baroreceptor afferent integration in the nucleus of the solitary tract of the rat. J Physiol. 511

Pt3 (Pt3): 733-745, 1998.

Zoccal DB, Furuya WI, Bassi M, Colombari DS, Colombari E. The nucleus of the solitary

tract and the coordination of respiratory and sympathetic activities. Front Physiol. 5 (1): 238,

2014.

119

Acknowledgements

Throughout my doctoral course, including completion of this dissertation and studying

abroad, I have received an abundance of assistance and support.

First, I would like to express my deepest and highest appreciation to my supervisor, Dr.

Masayoshi Kuwahara, for giving me an opportunity to study abroad. His patience and

generosity for devoting his time to provide precious guidance and constructive suggestions in

each process of the whole research helped me in completing this work. Dr. Kuwahara is the

best role model for me being a researcher.

I am highly grateful for the assistance provided by the Laboratory of Veterinary

Physiology, particularly from Dr. Takashi Matsuwaki and Dr. Naomi Teramoto. Dr.

Matsuwaki was very supportive of my research career, which encouraged me in completing

this work.

I offer my thanks to the members of my own laboratory, the Laboratory of Veterinary

Pathophysiology and Animal Health, including Dr. Shin-ichi Sekizawa, Dr. Ryota Tochinai,

Dr. Kentaro Kaneko, Dr. Masumi Yoshida, Mr. Martín Márquez, and Ms. Mao Miyamoto. It

is a pleasure to know and spend time with all of you in my daily life.

I would like to thank Mr. Yoshiharu Tsuru, staff of Primetech Corporation, for his help

in handling data of ultrasound measurements. In addition, I wish to thank my friends, Ms.

Aki Matsuwaki and Ms. Tomo Yoshizumi, for their thoughtful company and care during my

stressful research life.

I extend my thanks to my mentor, Dr. Yu-Ru Kou of National Yang Ming U ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る