リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Microwell bag culture for large-scale production of homogeneous islet-like clusters」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Microwell bag culture for large-scale production of homogeneous islet-like clusters

Suenaga, Ryo Konagaya, Shuhei Yamaura, Junji Ito, Ryo Tanaka, Satoshi Ishizaki, Yoichi Toyoda, Taro 京都大学 DOI:10.1038/s41598-022-09124-w

2022

概要

Pluripotent stem-cell derived cells can be used for type I diabetes treatment, but we require at least 10⁵–10⁶ islet-like clusters per patient. Although thousands of uniform cell clusters can be produced using a conventional microwell plate, numerous obstacles need to be overcome for its clinical use. In this study, we aimed to develop a novel bag culture method for the production of uniform cell clusters on a large scale (10⁵–10⁶ clusters). We prepared small-scale culture bags (< 10⁵ clusters) with microwells at the bottom and optimized the conditions for producing uniform-sized clusters in the bag using undifferentiated induced pluripotent stem cells (iPSCs). Subsequently, we verified the suitability of the bag culture method using iPSC-derived pancreatic islet cells (iPICs) and successfully demonstrate the production of 6.5 × 10⁵ uniform iPIC clusters using a large-scale bag. In addition, we simplified the pre- and post-process of the culture—a degassing process before cell seeding and a cluster harvesting process. In conclusion, compared with conventional methods, the cluster production method using bags exhibits improved scalability, sterility, and operability for both clinical and research use.

この論文で使われている画像

参考文献

1. Yamanaka, S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 27, 523–531. https://​doi.​org/​10.​

1016/j.​stem.​2020.​09.​014 (2020).

2. Cossu, G. et al. Lancet commission: Stem cells and regenerative medicine. Lancet 391, 883–910. https://​doi.​org/​10.​1016/​S0140-​

6736(17)​31366-1 (2018).

3. Pagliuca, F. W. et al. Generation of functional human pancreatic β cells in vitro. Cell 159, 428–439. https://​doi.​org/​10.​1016/j.​cell.​

2014.​09.​040 (2014).

4. Hering, B. J. et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia. Diabetes

Care 39, 1230–1240. https://​doi.​org/​10.​2337/​dc15-​1988 (2016).

5. Markmann, J. F. et al. Phase 3 trial of human islet-after-kidney transplantation in type 1 diabetes. Am. J. Transplant. 21, 1477–1492.

https://​doi.​org/​10.​1111/​ajt.​16174 (2021).

6. Lehmann, R. et al. Superiority of small islets in human islet transplantation. Diabetes 56, 594–603. https://​doi.​org/​10.​2337/​db06-​

0779 (2007).

7. Fujita, Y. et al. Large human islets secrete less insulin per islet equivalent than smaller islets in vitro. Islets 3, 1–5. https://​doi.​org/​

10.​4161/​isl.3.​1.​14131 (2011).

8. Yu, Y. et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro

and restore normoglycaemia in mice. Diabetologia 61, 2016–2029. https://​doi.​org/​10.​1007/​s00125-​018-​4672-5 (2018).

9. Hilderink, J. et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. J. Cell. Mol. Med. 19, 1836–1846. https://​doi.​org/​10.​1111/​jcmm.​12555 (2015).

10. Antonchuk, J. Formation of embryoid bodies from human pluripotent stem cells using AggreWell™ plates. Methods Mol. Biol. 946,

523–533. https://​doi.​org/​10.​1007/​978-1-​62703-​128-8_​32 (2013).

11. Veres, A. et al. Charting cellular identity during human in vitro β-cell differentiation. Nature 569, 368–373. https://​doi.​org/​10.​

1038/​s41586-​019-​1168-5 (2019).

12. Sato, H., Idiris, A., Miwa, T. & Kumagai, H. Microfabric vessels for embryoid body formation and rapid differentiation of pluripotent

stem cells. Sci. Rep. 6, 31063. https://​doi.​org/​10.​1038/​srep3​1063 (2016).

13. Hogrebe, N. J., Augsornworawat, P., Maxwell, K. G., Velazco-Cruz, L. & Millman, J. R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 38, 460–470. https://​doi.​org/​10.​1038/​s41587-​020-​0430-6

(2020).

14. Nair, G. G. et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells. Nat.

Cell Biol. 21, 263–274. https://​doi.​org/​10.​1038/​s41556-​018-​0271-4 (2019).

15. Takebe, T. et al. Massive and reproducible production of liver buds entirely from human pluripotent stem cells. Cell Rep. 21,

2661–2670. https://​doi.​org/​10.​1016/j.​celrep.​2017.​11.​005 (2017).

16. Tumaini, B. et al. Simplified process for the production of anti-CD19-CAR-engineered T cells. Cytotherapy 15, 1406–1415. https://​

doi.​org/​10.​1016/j.​jcyt.​2013.​06.​003 (2013).

17. Phinney, D. G., Galipeau, J. & MSC COMMITTEE OF THE INTERNATIONAL SOCIETY OF CELL AND GENE THERAPY.

Manufacturing mesenchymal stromal cells for clinical applications: A survey of Good Manufacturing Practices at US academic

centers. Cytotherapy 21, 782–792 (2019). Doi:https://​doi.​org/​10.​1016/j.​jcyt.​2019.​04.​003

18. Ricordi, C. et al. Islet isolation assessment in man and large animals. Acta Diabetol. Lat. 27, 185–195. https://​doi.​org/​10.​1007/​

BF025​81331 (1990).

19. Kim, J., Koo, B. K. & Knoblich, J. A. Human organoids: Model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol.

21, 571–584. https://​doi.​org/​10.​1038/​s41580-​020-​0259-3 (2020).

20. Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420. https://​doi.o

​ rg/​10.​1038/​s41578-0​ 21-​00279-y (2021).

21. Borys, B. S. et al. Optimized serial expansion of human induced pluripotent stem cells using low-density inoculation to generate

clinically relevant quantities in vertical-wheel bioreactors. Stem Cells Transl. Med. 9, 1036–1052. https://​doi.​org/​10.​1002/​sctm.​

19-​0406 (2020).

22. Lipsitz, Y. Y., Tonge, P. D. & Zandstra, P. W. Chemically controlled aggregation of pluripotent stem cells. Biotechnol. Bioeng. 115,

2061–2066. https://​doi.​org/​10.​1002/​bit.​26719 (2018).

23. Manstein, F. et al. High density bioprocessing of human pluripotent stem cells by metabolic control and in silico modeling. Stem

Cells Transl. Med. 10, 1063–1080. https://​doi.​org/​10.​1002/​sctm.​20-​0453 (2021).

24. Hu, W., Berdugo, C. & Chalmers, J. J. The potential of hydrodynamic damage to animal cells of industrial relevance: Current

understanding. Cytotechnology 63, 445–460. https://​doi.​org/​10.​1007/​s10616-​011-​9368-3 (2011).

25. Reichard, A. & Asosingh, K. Best practices for preparing a single cell suspension from solid tissues for flow cytometry. Cytometry

A 95, 219–226. https://​doi.​org/​10.​1002/​cyto.a.​23690 (2019).

26. Cao, R., Avgoustiniatos, E., Papas, K., de Vos, P. & Lakey, J. R. T. Mathematical predictions of oxygen availability in micro- and

macro-encapsulated human and porcine pancreatic islets. J. Biomed. Mater. Res. B Appl. Biomater. 108, 343–352. https://​doi.​org/​

10.​1002/​jbm.b.​34393 (2020).

27. Desai, T. & Shea, L. D. Advances in islet encapsulation technologies. Nat. Rev. Drug Discov. 16, 338–350. https://​doi.​org/​10.​1038/​

nrd.​2016.​232 (2017).

28. Tomei, A. A., Villa, C. & Ricordi, C. Development of an encapsulated stem cell-based therapy for diabetes. Exp. Opin. Biol. Ther.

15, 1321–1336. https://​doi.​org/​10.​1517/​14712​598.​2015.​10552​42 (2015).

29. Place, T. L., Domann, F. E. & Case, A. J. Limitations of oxygen delivery to cells in culture: An underappreciated problem in basic

and translational research. Free Radic. Biol. Med. 113, 311–322. https://​doi.​org/​10.​1016/j.​freer​adbio​med.​2017.​10.​003 (2017).

30. Doi, D. et al. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease.

Nat. Commun. 11, 3369. https://​doi.​org/​10.​1038/​s41467-​020-​17165-w (2020).

31. Tabei, R. et al. Development of a transplant injection device for optimal distribution and retention of human induced pluripotent

stem cell - Derived cardiomyocytes. J. Heart Lung Transplant. 38, 203–214. https://​doi.​org/​10.​1016/j.​healun.​2018.​11.​002 (2019).

Scientific Reports |

Vol:.(1234567890)

(2022) 12:5221 |

https://doi.org/10.1038/s41598-022-09124-w

10

www.nature.com/scientificreports/

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

32. Bhang, S. H. et al. Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells. Biomaterials 32, 2734–2747. https://​doi.​org/​10.​1016/j.​bioma​teria​ls.​2010.​12.​035 (2011).

33. Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296.

https://​doi.​org/​10.​1038/​nn1402 (2005).

34. Shimizu, T., Yamagata, K. & Osafune, K. Kidney organoids: Research in developmental biology and emerging applications. Dev.

Growth Differ. 63, 166–177. https://​doi.​org/​10.​1111/​dgd.​12714 (2021).

35. Nakagawa, M. et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci.

Rep. 4, 3594. https://​doi.​org/​10.​1038/​srep0​3594 (2014).

36. Velazco-Cruz, L. et al. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Rep. 12, 351–365. https://​

doi.​org/​10.​1016/j.​stemcr.​2018.​12.​012 (2019).

37. Mochida, T. et al. Insulin-deficient diabetic condition upregulates the insulin-secreting capacity of human induced pluripotent

stem cell-derived pancreatic endocrine progenitor cells after implantation in mice. Diabetes 69, 634–646. https://​doi.​org/​10.​2337/​

db19-​0728 (2020).

Acknowledgements

The authors sincerely thank Shinya Yamanaka and Kenji Osafune (CiRA, Kyoto, Japan), as well as Yasushi Kajii,

Atsushi Nakanishi, and Seigo Izumo (Takeda Pharmaceutical, Kanagawa, Japan), for supporting the collaborative

research between Takeda Pharmaceutical and CiRA (T-CiRA, Kanagawa, Japan). The authors appreciate Kensuke

Sakuma (Orizuru Therapeutics, Kanagawa, Japan) for providing help for the statistical analysis. The authors are

grateful for the technical assistance of Shintaro Hokaiwado, Ayako Makita, Miho Ohra, Aika Takahashi, and

Ayumi Osawa (all from Orizuru Therapeutics), as well as Yoshinori Okuyama, Takahiko Totani, and Takaharu

Nishiyama (from Toyo Seikan Group Holdings, Yokohama, Japan). The authors would like to express gratitude

toward Taisuke Mochida (Takeda Pharmaceutical), Noriko Tsubooka-Yamazoe, Hikaru Ueno, Hiroaki Sugiyama,

and Akifumi Yoshihara (all from Orizuru Therapeutics) for helpful discussions. This research was supported in

part by AMED under Grant Number JP21be0404008 and the iPS Cell Research Fund.

Author contributions

R.S., S.K., J.Y., and T.T. designed the study. R.S. designed and prototyped all the new equipment used in this

study. R.S. and S.K. performed experiments and analyses. R.S., S.K., and T.T. wrote the manuscript. J.Y., R.I., S.T.,

Y.I., and T.T. discussed the results and commented on the manuscript. R.I., Y.I., and T.T. supervised the study.

Competing interests This study was performed as a collaborative study between Kyoto University, Takeda Pharmaceutical Company,

and Toyo Seikan Group Holdings. T.T. is a scientific advisor of Orizuru Therapeutics. The remaining authors

declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​022-​09124-w.

Correspondence and requests for materials should be addressed to R.S. or T.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

Scientific Reports |

(2022) 12:5221 |

https://doi.org/10.1038/s41598-022-09124-w

11

Vol.:(0123456789)

...

参考文献をもっと見る