リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「超高速磁性体プローブ光への応用を目指した軟X線域円偏光高次高調波発生」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

超高速磁性体プローブ光への応用を目指した軟X線域円偏光高次高調波発生

西村 光太郎 Kotaro Nishimura 東京理科大学 DOI:info:doi/10.20604/00003697

2022.06.17

概要

1980 年代後半に発見された高次高調波はアト秒( 10 の- 18 乗秒) の時間幅を持つ唯一の光源であり、超高速物理現象のプローブ光として新たな分野を切り開いてきた。近年では、レーザー光の振動電場によって励起される磁性体中の超高速スピン応答を実時間で測定した研究が報告され、大きな注目を集めている。この研究では、4枚の多層膜鏡からなる移相子を用いて、高次高調波の偏光を円偏光に変換し、円二色性による吸収の違いから,磁性体内部のスピン状態を調べている。しかし、この方法では極端紫外域の多層膜鏡の反射率が低いため、円偏光へ変換する過程で強度がloo分の1以下に下がってしまう。さらに、反射帯域が制限されることから同時に測定できる試料中の原子の吸収端は制限される。また、軟x線域に関しては適切な屈折率をもつ物質がないため、多層膜鏡の作成そのものが困難である。

近年、2色の円偏光のレーザー光を基本波として高次高調波発生を行うことで^移相子を使用することなく直接円偏光の高次高調波を発生させる手法が報告された。しかし、।高'次高調波が離散的なスペク.トル構造を持つため、磁性体のプローブ光としては波長領域で測定点が十分でないという問題がある。この影響は原子の急峻な吸収端付近で顕著になる。さらに、2色の基本波の波長に対する高次高調波の最大の光子エネルギ亠(以下、カットオフエネルギー)の関係は、理踰•実験どちらの面からも.明らかにされておらず、高次高調波の短波長化に向けた指針を立てることができない。

一方で、基本波が'1色の際の高次高調波のカットオフエネルギーは基本波の波長の2乗で増加していくことがよく知られている。したがって、これまで基本波に使用されていた波長0.8nmのチタンサファイアレーザーの代わりに、より長い波長のレーザーを使用することで軟X線域、特に炭素のK吸収端(284eV)‘を超えるような領域で高次高調波を発生させることができる。しかし、長波長の基本波による高次高調波発生にも問題がある。
一つは、非線形媒質として使用するガスの圧力が高いことである。高次高調波は基本波を貴ガスなどの非線形媒質中へ集光することで発生するが、このとき基本波の波長が長くなると必要なガス圧力が劇的に増加する。真空チャンバー内で差動排気により高いガス圧力を維持することは困難であり、新たな真空系の開発が必要である。もう一つは、長波長レーザーの開発が難しく基本波のパルスエネルギーが十分でないことである。これらに加えて、高次高調波の変換効率自体も従来のチタンサファイアレーザーを基本波とするものより3桁程度低く、結果として報告されている軟X線域での高次高調波のエネルギーはピコジュール程度にとどまっている。これは極端紫外域のエネルギーより6桁程度低く、このことがさまざまな応用研究を妨げている。本論文では、上で述べた円偏光の高次高調波発生における問題と、長波長の基本波による軟x線域での高次高調波発生における問題をそれぞれ解決し、軟X線域での円偏光高次高調波発生を実現する。

長波長の基本波による軟X線域での高次高調波発生のための実験装置の開発では、波長1.55 pmの高強度レーザーと高いガス圧力を達成するための二重構造パルスガスセルを新たに構築した。高強度レーザーの開発は主に共同研究者のDr. Vuxi Fuによって行われ、筆者はその改良に携わった。レーザーにはデュアルチャープ光パラメトリック増幅法を使用し、これにより先行研究と比べて1〜2桁ほどパルスエネルギーの高いレーザー光を得ることができた。二重構造パルスガスセルは、レーザー入出射用ピンホールの付いた通常の高次高調波発生用ガスセルの外側に、差動排気用のバッフアーセルを持った二重構造のガスセルである。基本波が入射するタイミングと同期したパルスバルブを用いて内側のセルにガスを供給することで、真空チャンバーへのガスの流出量を抑えつつ瞬間的に高いガス圧が得られるようにした。ガスセルの圧力は時間に依存しており、直接の測定が困難であることから計算で見積もったところ、パルスバルブの背圧10 barのときに1 barに達し、高いガス圧力を達成することができた。このとき真空チャンバー内の圧力はガスセル内部と比べて4桁低く抑えられ、パルスバルブによるガス•の供給と差動排気の効果が十分に得られた。また、高次高調波発生域の圧力はパルスバルブの背圧に対して線形に増加するため、背圧を操作することで簡便に調整することカミ可能になった。これらの実験装置の開発に関する結果は、Review of Scientific Instruments (主論文を構成する論文2)にまとめた。

以上の実験装置を使用し、長波長の基本波による軟X線域での高次高調波発生実験を行った。ここでは高強度の基本波を長焦点のレンズで集光する「ルーズフォーカス法」によって位相整合条件と吸収限界条件を満たすことで、高次高調波の変換効率を改善した。非線形媒質にNeを用いた場合は、高次高調波のカットオフエネルギーは260 eV程度となり、軟X線域に達する高次高調波発生に成功した。高次高調波発生のガス圧依存性と相互作用長依存性について検討したところ、本研究で開発した実験装置とルーズフォーカス法の組み合わせにより、位相整合条件.と吸収限界条件を適切に満足できることが示された。
非線形媒質にHeを用いた場合は、高次高調波のカットオフエネルギーは360eV程度となり、炭素のK吸収端(284 eV)を含む高次高調波発生に成功した。また、高次高調波発生のガス圧依存性から、•この二重構造パルスガスセルによって位相整合条件に必要な高いガス圧力を達成できることを示した。このようにして位相整合条件を適切に満たすことで、変換効率を先行研究と比べて1〜2桁改善することができた。基本波のパルスエネルギーの増大分と合わせて、最終的に得られた高次高調波のパルスエネルギーは3.5 nJとなり、先行研究と比べて約3桁増大させることができた。これらの結果より従来強度が十分でないために妨げられていた応用研究が実現可能となった。炭素のK吸収端に及ぶ光源は有機物のプローブ光として使用することもできるため、パリレン薄膜フィルターを試料として吸収分光実験を行った。その結果、ベンゼン環の九*軌道に起因する吸収端近傍のX線吸収微細構造を観測することでき、本光源が応用研究に十分な強度を持っていることが示された。これらの実験結果は、• Communications Physics (主論文を構成する論文1)にまとめた。

最後に、円偏光の高次高調波発生実験について述べる。円偏光の高次高調波発生には、 2色の円偏光のレーザー光を基本波とする手法を用いた。2色の基本波のうち片方には波長0.8卩mのチタンサファイアレーザーを、もう片方には波長1.28-1.95pmの光パラメトリック増幅による波長可変レーザーを用いた。非線形媒質にHe、基本波の波長に0.8 gmとl..4511mを使用した際、円偏光高次高調波のカットオフエネルギーは約180 eVとなり、現在までに報告されている最短波長を更新した。これは、鉄、コバルト、ニッケルなどの強磁性体のM吸収端やGdのN吸収端を含む軟X線域に及ぶ波長である。このとき、基本波の波長を微調整することで高次高調波の光子エネルギーを制御し、離散的なスペクトルの周期構造による不連続性を解消した。これにより、元素の急峻な吸収端付近の構造も測定することが可能となった。次に、基本波の波長と高次高調波のカットオフエネルギーの関係を測定した。カットオフエネルギーは2色の基本波の集光強度にも依存していることが予想されたため、まずはそれぞれの基本波の波長に対して適切な集光強度を決定した。その集光強度の下で、カットオフエネルギーの波長依存性を測定したところ、2色の基本波の波長比に対してカットオフエネルギーは線形に増加することが分かった。得られた結果から炭素のK吸収端( 284 e V) を含む高次高調波発生に適した2 色の基本波の波長を1.40 gmと1.64 pmと見積もった。これはチタンサファイアレーザーをポンプ光とした光パラメトリック増幅で発生可能である。

本研究では、磁性体プローブ光としての応用を目指して軟X線域での円偏光高次高調波の直接発生を進めてきた。長波長の基本波による軟X線域での高次高調波発生と2色の円偏光のレーザー光を基本波とする円偏光高次高調波発生を組み合わせることでこれを達成した。その際、波長可変性を有する基本波を用いることで、高次高調波の光子エネルギーを制御し、離散的なスペクトルの周期構造による波長領域の不連続性を解消した。•さらに、 2色の基本波の波長比.と円偏光高次高調波のカットオフエネルギーの関係を実験的に取得し、.炭素のK吸収端を含むさらなる短波長の高次高調波発生に必要な基本波の波長を提示した。軟x線域での高次高調波はパルスエネルギーが低いことが問題であるが、本研究で開発した高強度近赤外レーザーと二重構造パルスガスセルを組み合わせ、ルーズフォーカス法を用いることで解決できることを示した。また、本研究で得られた軟X線域での直線偏光の高次高調波のパルスエネルギーは3.5 nJとなり、先行研究と比べて3桁の高強度化を達成した。

参考文献

第一章 参考文献

[1.1] T. H. Maiman, “Stimulated optical radiation in Ruby,” Nature 187, 493 (1960).

[1.2] E. Hoover and J. Squier, “Advances in multiphoton microscopy technology,” Nat. Photon. 7, 93 (2013).

[1.3] T. Yajima, F. Shimizu, and K. Shimoda, “High-speed photography using a ruby optical maser,” Appl. Opt. 1, 770 (1962).

[1.4] D. E. Spence, P. N. Kean, and W. Sibbett, “60-fsec pulse generation from a self-mode- locked Ti:sapphire laser,” Opt. Lett. 16, 42 (1991).

[1.5] A. H. Zewail, “Femtochemistry: Atomic-scale dynamics of the chemical bond,” J. Phys. Chem. A 104, 5660 (2000).

[1.6] Y. C. Lin, Y. Nabekawa, and K. Midorikawa, “Optical parametric amplification of sub- cycle shortwave infrared pulses,” Nat. Commun. 11, 3413 (2020).

[1.7] K. Midorikawa, “High-order harmonic generation and attosecond science,” Jpn. J. Appl. Phys. 50, 090001 (2011).

[1.8] T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, and H. J. Wörner, “Streaking of 43-attosecond soft-X-ray pulses generated by a passively CEP- stable mid-infrared driver,” Opt. Express 25, 27506 (2017).

[1.9] M. Chini, H. Mashiko, H. Wang, S. Chen, C. Yun, S. Scott, S. Gilbertson, and Z. Chang, “Delay control in attosecond pump-probe experiments,” Opt. Express 17, 21459 (2009).

[1.10] E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Direct measurement of light waves,” Science 305, 1267 (2004).

[1.11] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond metrology,” Nature 414, 509 (2001).

[1.12] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou, H. G. Muller, and P. Agostini, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689 (2001).

[1.13] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803 (2002).

[1.14] M. Uiberacker, T. Uphues, M. Schultze, A. J. Verhoef, V. Yakovlev, M. F. Kling, J. Rauschenberger, N. M. Kabachnik, H. Schroder, M. Lezius, K. L. Kompa, H.-G. Muller, M. J. J. Vrakking, S. Hendel, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, “Attosecond real-time observation of electron tunnelling in atoms,” Nature 446, 627 (2007).

[1.15] M. Schultze, M. Fieß, N. Karpowicz, J. Gagnon, M. Korbman, M. Hofstetter, S. Neppl, A. L. Cavalieri, Y. Komninos, T. Mercouris, C. A. Nicolaides, R. Pazourek, S. Nagele, J. Feist, J. Burgdörfer, A. M. Azzeer, R. Ernstorfer, R. Kienberger, U. Kleineberg, E. Goulielmakis, F. Krausz, and V. S. Yakovlev, “Delay in photoemission,” Science 328, 1658 (2010).

[1.16] A. Wirth, M. T. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, “Synthesized light transients,” Science 334, 195 (2011).

[1.17] Y. Nabekawa, Y. Furukawa, T. Okino, A. A. Eilanlou, E. J. Takahashi, K. Yamanouchi, and K. Midorikawa, “Settling time of a vibrational wavepacket in ionization,” Nat. Commun. 6, 8197 (2015).

[1.18] M. Sabbar, H. Timmers, Y.-J. Chen, A. K. Pymer, Z.-H. Loh, S. Sayres, S. Pabst, R. Santra, and S. R. Leone, “State-resolved attosecond reversible and irreversible dynamics in strong optical fields,” Nat. Phys. 13, 472 (2017).

[1.19] F. Calegari, D. Ayuso, A. Trabattoni, L. Belshaw, S. De Camillis, S. Anumula, F. Frassetto, L. Poletto, A. Palacios, P. Decleva, J. B. Greenwood, F. Martín, and M. Nisoli, “Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses,” Science 346, 336 (2014).

[1.20] C. Ott, A. Kaldun, L. Argenti, P. Raith, K. Meyer, M. Laux, Y. Zhang, A. Blattermann, S. Hagstotz, T. Ding, R. Heck, J. Madronero, F. Martin, and T. Pfeifer, “Reconstruction and control of a time-dependent two-electron wave packet,” Nature 516, 374 (2014).

[1.21] M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner, W. Schweinberger, M. Fiess, M. Hofstetter, R. Kienberger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and F. Krausz, “Controlling dielectrics with the electric field of light,” Nature 493, 75 (2013).

[1.22] M. Schultze, K. Ramasesha, C. Pemmaraju, S. Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja, D. Prendergast, K. Yabana, D. M. Neumark, and S. R. Leone, “Attosecond band-gap dynamics in silicon,” Science 346, 1348 (2014).

[1.23] H. Mashiko, K. Oguri, T. Yamaguchi, A. Suda, and H. Gotoh, “Petahertz optical drive with wide-bandgap semiconductor,” Nat. Phys. 12, 741 (2016).

[1.24] M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann, M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gallmann, and U. Keller, “Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond,” Science 353, 916 (2016).

[1.25] M. Volkov, S. A. Sato, F. Schlaepfer, L. Kasmi, N. Hartmann, M. Lucchini, L. Gallmann, A. Rubio, and U. Keller, “Attosecond screening dynamics mediated by electron localization in transition metals,” Nat. Phys. 15, 1145 (2019).

[1.26] F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81, 163 (2009). [1.27] J. Puebla, J. Kim, K. Kondou, and Y. Otani, “Spintronic devices for energy-efficient data storage and energy harvesting,” Commun. Mater. 1, 24 (2020).

[1.28] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnar, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, “Spintronics: A spin-based electronics vision for the future,” Sicence 294, 1488 (2001).

[1.29] A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Rev. Mod. Phys. 88, 039904 (2016).

[1.30] F. Siegrist, J. A. Gessner, M. Ossiander, C. Denker, Y.-P. Chang, M. C. Schröder, A. Guggenmos, Y. Cui, J. Walowski, U. Martens, J. K. Dewhurst, U. Kleineberg, M. Münzenberg, S. Sharma, and M. Schultze, “Light-wave dynamic control of magnetism,” Nature 571, 240 (2019).

[1.31] J. K. Dewhurst, P. Elliott, S. Shallcross, E. K. U. Gross, and S. Sharma, “Laser-induced intersite spin transfer,” Nano Lett. 18, 1842 (2018).

[1.32] H. Höchst, R. Patel, and F. Middleton, “Multiple-refection λ4 phase shifter: a viable alternative to generate circular-polarized synchrotron radiation,” Nucl. Instrum. Meth. A 347, 107 (1994).

[1.33] F. Willems, C. T. L. Smeenk, N. Zhavoronkov, O. Kornilov, I. Radu, M. Schmidbauer, M. Hanke, C. von Korff Schmising, M. J. J. Vrakking, and S. Eisebitt, “Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy,” Phys. Rev. B 92, 220405 (2015).

[1.34] A. Fleischer, O. Kfir, T. Diskin, P. Sidorenko, and O. Cohen, “pin angular momentum and tunable polarization in high-harmonic generation,” Nat. Photon. 8, 543 (2014).

[1.35] T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D. D. Hickstein, D. Zusin, C. Gentry, F. J. Dollar, C. A. Mancuso, C. W. Hogle, O. Kfir, D. Legut, K. Carva, J. L. Ellis, K. M. Dorney, C. Chen, O. G. Shpyrko, E. E. Fullerton, O. Cohen, P. M. Oppeneer, D. B. Milošević, A. Becker, A. A. Jaroń-Becker, T. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism,” Proc. Natl. Acad. Sci. USA 112, 14206 (2015).

[1.36] O. Kfir, S. Zayko, C. Nolte, M. Sivis, M. Möller, B. Hebler, S. S. P. K. Arekapudi, D. Steil, S. Schäfer, M. Albrecht, O. Cohen, S. Mathias, and C. Ropers, “Nanoscale magnetic imaging using circularly polarized high-harmonic radiation,” Sci. Adv. 3, 4641 (2017).

[1.37] J. F. Ward and C. H. C. New, “Optical third harmonic generation in gases by a focused laser beam,” Phys. Rev. A 185, 57 (1969).

[1.38] J. Reintjes, C-Y. She, and R. Eckardt, “Generation of coherent radiation in XUV by fifth- and seventh-order frequency conversion in rare gases,” IEEE J. Quantum Electron. 14, 581 (1978).

[1.39] J. Bokor, P. H. Bucksbaum, and R. R. Freeman, “Generation of 35.5-nm coherent radiation,” Opt. Lett. 8, 217 (1983).

[1.40] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. McIntyre, K. Boyer, and C. K. Rhodes, “Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases,” J. Opt. Soc. Am. B 4, 595 (1987).

[1.41] M. Ferray, A. L’Huillier, X. F. Li, L. A. Lompre, G. Mainfray, and C. Manus, “Multiple-harmonic conversion of 1064 nm radiation in rare gases,” J. Phys. B 21, 1669 (1991).

[1.42] N. Sarukura, K. Hata, T. Adachi, R. Nodomi, M. Watanabe, and S. Watanabe, “Coherent soft x-ray generation by the harmonics of an ultrahigh-power KrF laser,” Phys. Rev. A 43, 1669 (1991).

[1.43] P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).

[1.44] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

[1.45] J. J. Macklin, J. D. Kmetec, and C. L. Gordon, “High-order harmonic generation using intense femtosecond pulses,” Phys. Rev. Lett. 70, 766 (1993).

[1.46] M. Nisoli, S. D. Silvestri, and O. Svelto, “Generation of high-energy 10-fs pulses by a new pulse compression technique,” Appl. Phys. Lett. 68, 2793 (1996).

[1.47] C. Spielmann, N. H. Burnett, S. Sartania, R. Koppitsch, M. Schnürer, C. Kan, M. Lenzner, P. Wobrauschek, and F. Krausz, “Generation of coherent X-rays in the water window using 5-femtosecond laser pulses,” Science 278, 661 (1997).

[1.48] E. J. Takahashi, T. Kanai, and K. Midorikawa, “High-order harmonic generation by an ultrafast infrared pulse,” Appl. Phys. B 100, 29 (2010).

[1.49] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andiukaitis, T. Balciunas, O. D. Mücke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Garta, C. Hernández-García, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers,” Science 336, 1287 (2012).

[1.50] E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent water window x ray by phase-matched high-order harmonic generation in neutral media,” Phys. Rev. Lett. 101, 253901 (2008).

[1.51] V. Cardin, B. E. Schimdt, N. Thiré, S. Beaulieu, V. Wanie, M. Negro, C. Vozzi, V. Tosa, and F. Légaré, “Self-channelled high harmonic generation of water window soft x- rays,” J. Phys. B 51, 174004 (2018).

[1.52] J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, and U. Keller, “Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz,” Optica 7, 168 (2020).

[1.53] T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard x-ray regions of the spectrum,” Proc. Natl. Acad. Sci. USA 106 10516 (2009).

[1.54] H. Xiong, H. Xu, Y. Fu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, E. J. Takahashi, K. Midorikawa, X. Liu, and J. Chen, “Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source,” Opt. Lett. 34, 1747 (2009).

[1.55] M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x- ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).

[1.56] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrier- envelope phase-dependent high harmonic generation in the water window using few- cycle infrared pulses,” Nat. Commun. 5, 3331 (2014).

[1.57] S. L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, and J. Biegert, “High- flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy,” Opt. Lett. 39, 5383 (2014).

[1.58] F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, “Spatiotemporal isolation of attosecond soft X-ray pulses in the water window,” Nat. Commun. 6, 6611 (2015).

[1.59] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, “0.5-keV soft x- ray attosecond continua,” Nat. Commun. 7, 11493 (2016).

[1.60] G. J. Stein, P. D. Keathley, P. Krogen, H. Liang, J. P. Siqueira, C.-L. Chang, C.-J. Lai, K.-H. Hong, G. M. Laurent, and F. X. Kärtner, “Water-window soft x-ray high- harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source,” J. Phys. B 49, 155601 (2016).

[1.61] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, and Z. Chang, “53-attosecond X-ray pulses reach the carbon K-edge,” Nat. Commun. 8, 186 (2017).

[1.62] A. S. Johnson, D. R. Austin, D. A. Wood, C. Brahms, A. Gregory, K. B. Holzner, S. Jarosch, E. W. Larsen, S. Parker, C. S. Strüber, P. Ye, W. John, G. Tisch, and J. P. Marangos, “High-flux soft x-ray harmonic generation from ionization-shaped few- cycle laser pulses,” Sci. Adv. 4, 3761 (2018).

[1.63] C. Schmidt, Y. Pertot, T. Balciunas, K. Zinchenko, M. Matthews, H. J. Wörner, and J.- P. Wolf, “High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression,” Opt. Express 26, 11834 (2018).

[1.64] C. Kleine, M. Ekimova, G. Goldsztejn, S. Raabe, C. Strüber, J. Ludwig, S. Yarlagadda, S. Eisebitt, M. J. J. Vrakking, T. Elsaesser, E. T. J. Nibbering, and A. Rouzée, “Soft x- ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft x-ray source,” J. Phys. Chem. Lett. 10, 52 (2019).

[1.65] J. Li, A. Chew, S. Hu, J. White, X. Ren, S. Han, Y. Yin, Y. Wang, Y. Wu, and Z. Chang, “Double optical gating for generating high flux isolated attosecond pulses in the soft X-ray regime,” Opt. Express 27, 30280 (2019).

[1.66] L. Barreau, A. D. Ross, S. Garg, P. M. Kraus, D. M. Neumark, and S. R. Leone, “Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region,” Sci. Rep. 10, 5773 (2020).

[1.67] M. Gebhardt, T. Heuermann, R. Klas, C. Liu, A. Kirsche, M. Lenski, Z. Wang, C. Gaida, J. E. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, J. Rothhardt, and J. Limpert, “Bright, high repetition rate water window soft X-ray source enabled by nonlinear pulse self-compression in antiresonant hollow-core fibre,” Light: Sci. Appl. 10, 36 (2020).

[1.68] Y. Pertot, C. Schmidt, M. Matthews, A. Chauvet, M. Huppert, V. Svoboda, A. von Conta, A. Tehlar, D. Baykusheva, J.-P. Wolf, and H. J. Wörner, “Time resolved x-ray absorption spectroscopy with a water window high-harmonic source,” Science 355, 264 (2017).

[1.69] A. R. Attar, A. Bhattacherjee, C. D. Pemmaraju, K. Schnorr, K. D. Closser, D. Prendergast, and S. R. Leone, “Femtosecond x-ray spectroscopy of an electrocyclic ring-opening reaction,” Science 356, 54 (2017).

[1.70] A. D. Smith, T. Balciunas, Y.-P. Chang, C. Schmidt, K. Zinchenko, F. B. Nunes, E. Rossi, V. Svoboda, Z. Yin, J.-P. Wolf, and H. J. Wörner, “Femtosecond soft x-ray absorption spectroscopy of liquids with a water-window high-harmonic source,” J. Phys. Chem. Lett. 11, 1981 (2020).

[1.71] Y. Wang, T. Guo, J. Li, J. Zhao, Y. Yin, X. Ren, J. Li, Y. Wu, M. Weidman, Z. Chang, M. F. Jager, C. J. Kaplan, R. Geneaux, C. Ott, D. M. Neumark, and S. R. Leone, “Enhanced high-order harmonic generation driven by a wavefront corrected high- energy laser,” J. Phys. B 51, 134005 (2018).

[1.72] M. Nisoli, S. De Silvestri, V. Magni, O. Svelto, R. Danielius, A. Piskarskas, G. Valiulis, and A. Varanavicius, “Highly efficient parametric conversion of femtosecond Ti:sapphire laser pulses at 1 kHz,” Opt. Lett. 19, 1973 (1994).

[1.73] G. Cerullo and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Instrum. 74, 1 (2003).

[1.74] I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19, 2945 (2002).

[1.75] O. D. Mücke, S. Ališauskas, A. J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, and N. Forget, “Self-compression of millijoule 1.5 µm pulses,” Opt. Lett. 34, 2498 (2009).

[1.76] A. Vaupel, N. Bodnar, B. Webb, L. Shah, and M. C. Richardson, “Concepts, performance review, and prospects of table-top, few-cycle optical parametric chirped- pulse amplification,” Opt. Eng. 53, 051507 (2013).

[1.77] Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu, and K. Midorikawa, “Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses,” Opt. Express 19, 7190 (2011).

[1.78] A. S. Johnson, D. Wood, D. R. Austin, C. Brahms, A. Gregory, K. B. Holzner, S. Jarosch, E. W. Larsen, S. Parker, C. Strüber, P. Ye, J. W. G. Tisch, and J. P. Marangos, “Apparatus for soft x-ray table-top high harmonic generation,” Rev. Sci. Instrum. 89, 083110 (2018).

[1.79] J. Tate, T. Auguste, H. G. Muller, P. Salières, P. Agostini, and L. F. DiMauro, “Scaling of wave-packet dynamics in an intense midinfrared field,” Phys. Rev. Lett. 98, 013901 (2007).

[1.80] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J-C. Kieffer, P. B. Corkum, and D. M. Villeneuve, “Wavelength scaling of high harmonic generation efficiency,” Phys. Rev. Lett. 103, 073902 (2009).

[1.81] A. Rundquist, C. G. Durfee III, Z. Chang, C. Herne, S. Backus, M. M. Murnane, and H. C. Kapteyn, “Phase-Matched Generation of Coherent Soft X-rays,” Science 280, 1412 (1998).

[1.82] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).

[1.83] S. Backus, C. G. Durfee, M. M. Murnane, and H. C. Kapteyn, “High power ultrafast lasers,” Rev. Sci. Instrum. 69, 1207 (1998).

[1.84] E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920 (2002).

[1.85] W. Boutu, T. Auguste, J. P. Caumes, H. Merdji, and B. Carré, “Scaling of the generation of high-order harmonics in large gas media with focal length,” Phys. Rev. A 84, 053819 (2011).

[1.86] C. M. Heyl, J. Güdde, A. L’Huillier, and U. Höfer, “High-order harmonic generation with µJ laser pulses at high repetition rates,” J. Phys. B 45, 074020 (2012).

[1.87] P. Rudawski, C. M. Heyl, F. Brizuela, J. Schwenke, A. Persson, E. Mansten, R. Rakowski, L. Rading, F. Campi, B. Kim, P. Johnsson, and A. L’Huillier, “A highflux high-order harmonic source,” Rev. Sci. Instrum. 84, 073103 (2013).

[1.88] C. M. Heyl, C. L. Arnold, A. Couairon, and A. L’Huillier, “Introduction to macroscopic power scaling principles for high-order harmonic generation,” J. Phys. B 50, 013001 (2016).

[1.89] A. Nayak, I. Orfanos, I. Makos, M. Dumergue, S. Kühn, E. Skantzakis, B. Bodi, K. Varju, C. Kalpouzos, H. I. B. Banks, A. Emmanouilidou, D. Charalambidis, and P. Tzallas, “Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses,” Phys. Rev. A 98, 023426 (2018).

[1.90] K. Kovács, B. Major, E. Balogh, C. P. Korös, P. Rudawski, C. M. Heyl, P. Johnsson, C. L. Arnold, A. L’Huillier, V. Tosa, and K. Varjú, “Multi-parameter optimization of a loose focusing high flux high-harmonic beamline,” J. Phys. B 52, 055402 (2019).

[1.91] J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high harmonic generation in the tight focusing regime,” New J. Phys. 16, 033022 (2014).

[1.92] D. Rupp, N. Monserud, L. Bruno, M. Sauppe, J. Zimmermann, Y. Ovcharenko, T. Möller, F. Frassetto, L. Poletto, A. Trabattoni, F. Calegari, M. Nisoli, K. Sander, C. Peltz, M. J. Vrakking, T. Fennel, and A. Rouzée, “Coherent diffractive imaging of single helium nanodroplets with a high harmonic generation source,” Nat. Commun. 8, 493 (2017).

[1.93] D. D. Hickstein, F. J. Dollar, P. Grychtol, J. L. Ellis, R. Knut, C. Hernández-García, D. Zusin, C. Gentry, J. M. Shaw, T. Fan, K. M. Dorney, A. Becker, A. Jaroń-Becker, H. C. Kapteyn, M. M. Murnane, and C. G. Durfee, “Non-collinear generation of angularly isolated circularly polarized high harmonics,” Nat. Photon. 9, 743 (2015).

[1.94] P.-C. Huang, C. Hernández-García, J.-T. Huang, P.-Y. Huang, C.-H. Lu, L. Rego, D. D. Hickstein, J. L. Ellis, A. Jaron-Becker, A. Becker, S.-Da Yang, C. G. Durfee, L. Plaja, H. C. Kapteyn, M. M. Murnane, A. H. Kung, and M.-C. Chen, “Polarization control of isolated high-harmonic pulses,” Nat. Photon. 12, 349 (2018).

[1.95] W. Komatsubara, F. Kong, C. Zhang, and P. B. Corkum, “High harmonics diffraction caused by an ellipticity grating,” J. Phys. B 53, 094002 (2020).

[1.96] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane and O. Cohen, “Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics,” Nat. Photon. 9, 99 (2015).

第二章 参考文献

[2.1] P. B. Corkum, “Plasma perspective on strong-field multiphoton ionization,” Phys. Rev. Lett. 71, 1994 (1993).

[2.2] F. Lureau, G. Matras, O. Chalus, C. Derycke, T. Morbieu, C. Radier, O. Casagrande, S. Laux, S. Ricaud, G. Rey, A. Pellegrina, C. Richard, L. Boudjemaa, C. S.-Boisson, A. Baleanu, R. Banici, A. Gradinariu, C. Caldararu, B. De Boisdeffre, P. Ghenuche, A. Naziru, G. Kolliopoulos, L. Neagu, R. Dabu, I. Dancus, and D. Ursescu, “High-energy hybrid femtosecond laser system demonstrating 2 × 10 PW capability,” High Power Laser Sci. Eng. 8, 43 (2020).

[2.3] A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

[2.4] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field,” Sov. Phys. JETP 64, 1191 (1986).

[2.5] Z. Chang, Fundamentals of Attosecond Optics (CRC Press, 2011).

[2.6] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier, and P. B. Corkum, “Theory of high-harmonic generation by low-frequency laser fields,” Phys. Rev. A 49, 2117 (1994).

[2.7] D. B. Milošević, W. Becker, and R. Kopold, “Generation of circularly polarized high- order harmonics by two-color coplanar field mixing,” Phys. Rev. A 61, 063403 (2000).

[2.8] O. Neufeld, E. Bordo, A. Fleischer, and O. Cohen, “High harmonic generation with fully tunable polarization by train of linearly polarized pulses,” New J. Phys. 19, 023051 (2017).

[2.9] O. Neufeld, D. Podolsky, and O. Cohen, “Floquet group theory and its application to selection rules in harmonic generation,” Nat. Commun. 10, 405 (2019).

[2.10] P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold, W. Becker, D. B. Milošević, A. Sanpera, and M. Lewenstein, “Feynman's path-integral approach for intense-laser-atom interactions,” Science 292, 902 (2001).

[2.11] D. B. Milošević, “Circularly polarized high harmonics generated by a bicircular field from inert atomic gases in the p state: A tool for exploring chirality-sensitive processes,” Phys. Rev. A 92, 043827 (2015).

[2.12] D. B. Milošević and W. Becker, “Improved strong-field approximation and quantum- orbit theory: Application to ionization by a bicircular laser field,” Phys. Rev. A 93, 063418 (2016).

[2.13] J. Heslar, D. A. Telnov, and S.-I Chu, “Conditions for perfect circular polarization of high-order harmonics driven by bichromatic counter-rotating laser fields,” Phys. Rev. A 99, 023419 (2019).

[2.14] D. B. Milošević and W. Becker, “High-order harmonic generation by bi-elliptical orthogonally polarized two-color fields,” Phys. Rev. A 102, 023107 (2020).

[2.15] Y. Su, K. Fang, and J. Zhang, “Shortcut to study angular momentum transfer of harmonic generation in intense laser fields,” Opt. Express 29, 22679 (2021).

[2.16] E. Pisanty, S. Sukiasyan, and M. Ivanov, “Spin conservation in high-order-harmonic generation using bicircular fields,” Phys. Rev. A 90, 043829 (2014).

[2.17] T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D. D. Hickstein, D. Zusin, C. Gentry, F. J. Dollar, C. A. Mancuso, C. W. Hogle, O. Kfir, D. Legut, K. Carva, J. L. Ellis, K. M. Dorney, C. Chen, O. G. Shpyrko, E. E. Fullerton, O. Cohen, P. M. Oppeneer, D. B. Milošević, A. Becker, A. A. Jaroń-Becker, T. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism,” Proc. Natl. Acad. Sci. USA 112, 14206 (2015).

[2.18] C. R. Mansfield and E. R. Peck, “Dispersion of Helium,” J. Opt. Soc. Am. 59, 199 (1969).

[2.19] A. Börzsönyi, Z. Heiner, M. P. Kalashnikov, A. P. Kovács, and K. Osvay, “Dispersion measurement of inert gases and gas mixtures at 800 nm,” Appl. Opt. 47, 4856 (2008).

[2.20] E. R. Peck and D. J. Fisher, “Dispersion of Argon,” J. Opt. Soc. Am. 54, 1362 (1964).

[2.21] B. L. Henke, E. M. Gullikson, and J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92,” At. Data Nucl. Data Tables 54, 181 (1993).

[2.22] M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x- ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).

[2.23] E. Constant, D. Garzella, P. Breger, M. Mevel, C. Dorrer, C. L. Blanc, F. Salin, and P. Agostini, “Optimizing high harmonic generation in absorbing gases: model and experiment,” Phys. Rev. Lett. 82, 1668 (1999).

[2.24] Y. Wang, T. Guo, J. Li, J. Zhao, Y. Yin, X. Ren, J. Li, Y. Wu, M. Weidman, Z. Chang, M. F. Jager, C. J. Kaplan, R. Geneaux, C. Ott, D. M. Neumark, and S. R. Leone, “Enhanced high-order harmonic generation driven by a wavefront corrected high- energy laser,” J. Phys. B 51, 134005 (2018).

[2.25] E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920 (2002).

[2.26] W. Boutu, T. Auguste, J. P. Caumes, H. Merdji, and B. Carré, “Scaling of the generation of high-order harmonics in large gas media with focal length,” Phys. Rev. A 84, 053819 (2011).

[2.27] C. M. Heyl, J. Güdde, A. L’Huillier, and U. Höfer, “High-order harmonic generation with µJ laser pulses at high repetition rates,” J. Phys. B 45, 074020 (2012).

[2.28] P. Rudawski, C. M. Heyl, F. Brizuela, J. Schwenke, A. Persson, E. Mansten, R. Rakowski, L. Rading, F. Campi, B. Kim, P. Johnsson, and A. L’Huillier, “A highflux high-order harmonic source,” Rev. Sci. Instrum. 84, 073103 (2013).

[2.29] C. M. Heyl, C. L. Arnold, A. Couairon, and A. L’Huillier, “Introduction to macroscopic power scaling principles for high-order harmonic generation,” J. Phys. B 50, 013001 (2016).

[2.30] A. Nayak, I. Orfanos, I. Makos, M. Dumergue, S. Kühn, E. Skantzakis, B. Bodi, K. Varju, C. Kalpouzos, H. I. B. Banks, A. Emmanouilidou, D. Charalambidis, and P. Tzallas, “Multiple ionization of argon via multi-XUV-photon absorption induced by 20-GW high-order harmonic laser pulses,” Phys. Rev. A 98, 023426 (2018).

[2.31] K. Kovács, B. Major, E. Balogh, C. P. Korös, P. Rudawski, C. M. Heyl, P. Johnsson, C. L. Arnold, A. L’Huillier, V. Tosa, and K. Varjú, “Multi-parameter optimization of a loose focusing high flux high-harmonic beamline,” J. Phys. B 52, 055402 (2019).

[2.32] J. Rothhardt, M. Krebs, S. Hädrich, S. Demmler, J. Limpert, and A. Tünnermann, “Absorption-limited and phase-matched high harmonic generation in the tight focusing regime,” New J. Phys. 16, 033022 (2014).

[2.33] C.-J. Lai and F. X. Kärtner, “The influence of plasma defocusing in high harmonic generation,” Opt. Express 19, 22377 (2011).

第三章 参考文献

[3.1] L. Xu, K. Nishimura, A. Suda, K. Midorikawa, Y. Fu, and E. J. Takahashi, “Optimization of a multi-TW few-cycle 1.7-μm source based on type-I BBO dual- chirped optical parametric amplification,” Opt. Express 28, 15138 (2020).

[3.2] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219 (1985).

[3.3] N. Thiré, S. Beaulieu, V. Cardin, A. Laramée, V. Wanie, B. E. Schmidt, and F. Légaré, “10 mJ 5-cycle pulses at 1.8 μm through optical parametric amplification,” Appl. Phys. Lett. 106, 091110 (2015).

[3.4] I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19, 2945 (2002).

[3.5] J. V. Rudd, R. J. Law, T. S. Luk, and S. M. Cameron, “High-power optical parametric chirped-pulse amplifier system with a 1.55 µm signal and a 1.064 µm pump,” Opt. Lett. 30, 1974 (2005).

[3.6] Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu, and K. Midorikawa, “Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses,” Opt. Express 19, 7190 (2011).

[3.7] Y. Fu, K. Midorikawa, and E. J. Takahashi, “Towards a petawatt-class few- cycleinfrared laser system via dual-chirped optical parametric amplification,” Sci. Rep. 8, 7692 (2018).

[3.8] E. B. Treacy, “Optical pulse compression with diffraction gratings”, IEEE J. Quantum Electron. 5, 454 (1969).

[3.9] R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9, 150 (1984).

[3.10] R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, B. A. Richman, and D. J. Kane, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum. 68, 3277 (1997).

[3.11] Y. Fu, B. Xue, K. Midorikawa, and E. J. Takahashi, “TW-scale mid-infrared pulses near 3.3 μm directly generated by dual-chirped optical parametric amplification,” Appl. Phys. Lett. 112, 241105 (2018).

[3.12] S. Semushin and V. Malka, “High density gas jet nozzle design for laser target production,” Rev. Sci. Instrum. 72, 2961 (2001).

[3.13] V. E. Leshchenko, B. K. Talbert, Y. H. Lai, S. Li, Y. Tang, S. J. Hageman, G. Smith, P. Agostini, L. F. DiMauro, and C. I. Blaga, “High-power few-cycle Cr:ZnSe mid- infrared source for attosecond soft x-ray physics,” Optica 7, 981 (2020).

[3.14] H. Xiong, H. Xu, Y. Fu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, E. J. Takahashi, K. Midorikawa, X. Liu, and J. Chen, “Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source,” Opt. Lett. 34, 1747 (2009).

[3.15] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, “0.5-keV soft x- ray attosecond continua,” Nat. Commun. 7, 11493 (2016).

[3.16] C. Schmidt, Y. Pertot, T. Balciunas, K. Zinchenko, M. Matthews, H. J. Wörner, and J.- P. Wolf, “High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression,” Opt. Express 26, 11834 (2018).

[3.17] A. S. Johnson, D. Wood, D. R. Austin, C. Brahms, A. Gregory, K. B. Holzner, S. Jarosch, E. W. Larsen, S. Parker, C. Strüber, P. Ye, J. W. G. Tisch, and J. P. Marangos, “Apparatus for soft x-ray table-top high harmonic generation,” Rev. Sci. Instrum. 89, 083110 (2018).

[3.18] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrier- envelope phase-dependent high harmonic generation in the water window using few- cycle infrared pulses,” Nat. Commun. 5, 3331 (2014).

[3.19] N. Saito, Ultrafast transient absorption spectroscopy using attosecond soft X-ray pulses in the water window (PhD thesis, The University of Tokyo, 2019).

[3.20] C. Schmidt, Y. Pertot, T. Balciunas, K. Zinchenko, M. Matthews, H. J. Wörner, and J.- P. Wolf, “High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression,” Opt. Express 26, 11834 (2018).

[3.21] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, and Z. Chang, “53-attosecond X-ray pulses reach the carbon K-edge,” Nat. Commun. 8, 186 (2017).

[3.22] G. J. Stein, P. D. Keathley, P. Krogen, H. Liang, J. P. Siqueira, C.-L. Chang, C.-J. Lai, K.-H. Hong, G. M. Laurent, and F. X. Kärtner, “Water-window soft x-ray high- harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source,” J. Phys. B 49, 155601 (2016).

[3.23] V. Cardin, B. E. Schimdt, N. Thiré, S. Beaulieu, V. Wanie, M. Negro, C. Vozzi, V. Tosa, and F. Légaré, “Self-channelled high harmonic generation of water window soft x- rays,” J. Phys. B 51, 174004 (2018).

[3.24] E. Takahashi, Y. Nabekawa, and K. Midorikawa, “Generation of 10-µJ coherent extreme-ultraviolet light by use of high-order harmonics,” Opt. Lett. 27, 1920 (2002).

[3.25] Opto Diode Corporation, “Data sheet,” https://optodiode.com/pdf/AXUV100GDS. pdf.

[3.26] N. Nakano, H. Kuroda, T. Kita, and T. Harada, “Development of a flat-field grazing- incidence XUV spectrometer and its application in picosecond XUV spectroscopy,” Appl. Opt. 23, 2386 (1984).

[3.27] National Institute of Standards and Technology, “NIST Atomic Spectra Database Lines Form,” https://physics.nist.gov/PhysRefData/ASD/lines_form.html.

第四章 参考文献

[4.1] R. H. Garvey, C. H. Jackman, and A. E. S. Green, “Independent-particle-model potentials for atoms and ions with 36 < Z < 54 and a modified Thomas-Fermi atomic energy formula,” Phys. Rev. A 12, 1144 (1975).

[4.2] S. Minemoto, T. Umegaki, Y. Oguchi, T. Morishita, A.-T. Le, S. Watanabe, and H. Sakai, “Retrieving photorecombination cross sections of atoms from high-order harmonic spectra,” Phys. Rev. A 78, 061402(R) (2008).

[4.3] A. D. Shiner, B. E. Schmidt, C. Trallero-Herrero, H. J. Wörner, S. Patchkovskii, P. B. Corkum, J-C. Kieffer, F. Légaré, and D. M. Villeneuve, “Probing collective multi- electron dynamics in xenon with high-harmonic spectroscopy,” Nat. Phys. 7, 464 (2011).

[4.4] A. S. Johnson, D. R. Austin, D. A. Wood, C. Brahms, A. Gregory, K. B. Holzner, S. Jarosch, E. W. Larsen, S. Parker, C. S. Strüber, P. Ye, W. John, G. Tisch, and J. P. Marangos, “High-flux soft x-ray harmonic generation from ionization-shaped few- cycle laser pulses,” Sci. Adv. 4, 3761 (2018).

[4.5] V. Cardin, B. E. Schimdt, N. Thiré, S. Beaulieu, V. Wanie, M. Negro, C. Vozzi, V. Tosa, and F. Légaré, “Self-channelled high harmonic generation of water window soft x- rays,” J. Phys. B 51, 174004 (2018).

[4.6] S. P. Le Blanc, R. Sauerbrey, S. C. Rae, and K. Burnett, “Spectral blue shifting of a femtosecond laser pulse propagating through a high-pressure gas,” J. Opt. Soc. Am. B 10, 1801 (1993).

[4.7] A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization of atoms in an alternating electric field,” Sov. Phys. JETP 23, 924 (1966).

[4.8] C.-J. Lai and F. X. Kärtner, “The influence of plasma defocusing in high harmonic generation,” Opt. Express 19, 22377 (2011).

[4.9] E. J. Takahashi, T. Kanai, and K. Midorikawa, “High-order harmonic generation by an ultrafast infrared pulse,” Appl. Phys. B 100, 29 (2010).

[4.10] E. J. Takahashi, T. Kanai, K. L. Ishikawa, Y. Nabekawa, and K. Midorikawa, “Coherent water window x ray by phase-matched high-order harmonic generation in neutral media,” Phys. Rev. Lett. 101, 253901 (2008).

[4.11] J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, and U. Keller, “Water window soft x-ray source enabled by a 25 W few-cycle 2.2 µm OPCPA at 100 kHz,” Optica 7, 168 (2020).

[4.12] T. Popmintchev, M.-C. Chen, A. Bahabad, M. Gerrity, P. Sidorenko, O. Cohen, I. P. Christov, M. M. Murnane, and H. C. Kapteyn, “Phase matching of high harmonic generation in the soft and hard x-ray regions of the spectrum,” Proc. Natl. Acad. Sci. USA 106 10516 (2009).

[4.13] H. Xiong, H. Xu, Y. Fu, J. Yao, B. Zeng, W. Chu, Y. Cheng, Z. Xu, E. J. Takahashi, K. Midorikawa, X. Liu, and J. Chen, “Generation of a coherent x ray in the water window region at 1 kHz repetition rate using a mid-infrared pump source,” Opt. Lett. 34, 1747 (2009).

[4.14] M.-C. Chen, P. Arpin, T. Popmintchev, M. Gerrity, B. Zhang, M. Seaberg, D. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright, coherent, ultrafast soft x- ray harmonics spanning the water window from a tabletop light source,” Phys. Rev. Lett. 105, 173901 (2010).

[4.15] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, and J. Itatani, “Carrier- envelope phase-dependent high harmonic generation in the water window using few- cycle infrared pulses,” Nat. Commun. 5, 3331 (2014).

[4.16] S. L. Cousin, F. Silva, S. Teichmann, M. Hemmer, B. Buades, and J. Biegert, “High- flux table-top soft x-ray source driven by sub-2-cycle, CEP stable, 1.85-µm 1-kHz pulses for carbon K-edge spectroscopy,” Opt. Lett. 39, 5383 (2014).

[4.17] F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, and J. Biegert, “Spatiotemporal isolation of attosecond soft X-ray pulses in the water window,” Nat. Commun. 6, 6611 (2015).

[4.18] S. M. Teichmann, F. Silva, S. L. Cousin, M. Hemmer, and J. Biegert, “0.5-keV soft x- ray attosecond continua,” Nat. Commun. 7, 11493 (2016).

[4.19] G. J. Stein, P. D. Keathley, P. Krogen, H. Liang, J. P. Siqueira, C.-L. Chang, C.-J. Lai, K.-H. Hong, G. M. Laurent, and F. X. Kärtner, “Water-window soft x-ray high- harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 µm OPCPA source,” J. Phys. B 49, 155601 (2016).

[4.20] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, and Z. Chang, “53-attosecond X-ray pulses reach the carbon K-edge,” Nat. Commun. 8, 186 (2017).

[4.21] C. Schmidt, Y. Pertot, T. Balciunas, K. Zinchenko, M. Matthews, H. J. Wörner, and J.- P. Wolf, “High-order harmonic source spanning up to the oxygen K-edge based on filamentation pulse compression,” Opt. Express 26, 11834 (2018).

[4.22] C. Kleine, M. Ekimova, G. Goldsztejn, S. Raabe, C. Strüber, J. Ludwig, S. Yarlagadda, S. Eisebitt, M. J. J. Vrakking, T. Elsaesser, E. T. J. Nibbering, and A. Rouzée, “Soft x- ray absorption spectroscopy of aqueous solutions using a table-top femtosecond soft x-ray source,” J. Phys. Chem. Lett. 10, 52 (2019).

[4.23] L. Barreau, A. D. Ross, S. Garg, P. M. Kraus, D. M. Neumark, and S. R. Leone, “Efficient table-top dual-wavelength beamline for ultrafast transient absorption spectroscopy in the soft X-ray region,” Sci. Rep. 10, 5773 (2020).

[4.24] M. Gebhardt, T. Heuermann, R. Klas, C. Liu, A. Kirsche, M. Lenski, Z. Wang, C. Gaida, J. E. Antonio-Lopez, A. Schülzgen, R. Amezcua-Correa, J. Rothhardt, and J. Limpert, “Bright, high repetition rate water window soft X-ray source enabled by nonlinear pulse self-compression in antiresonant hollow-core fibre,” Light: Sci. Appl. 10, 36 (2020).

第五章 参考文献

[5.1] B. Xue, Y. Tamaru, Y. Fu, H. Yuan, P. Lan, O. D. Mücke, A. Suda, K. Midorikawa, and E. J. Takahashi, “Fully stabilized multi-TW optical waveform synthesizer: Toward gigawatt isolated attosecond pulses,” Sci. Adv. 6, 2802 (2020).

[5.2] S. Minemoto, T. Umegaki, Y. Oguchi, T. Morishita, A.-T. Le, S. Watanabe, and H. Sakai, “Retrieving photorecombination cross sections of atoms from high-order harmonic spectra,” Phys. Rev. A 78, 061402(R) (2008).

[5.3] H. Mashiko, M. J. Bell, A. R. Beck, M. J. Abel, P. M. Nagel, C. P. Steiner, J. Robinson, D. M. Neumark, and S. R. Leone, "Tunable frequency-controlled isolated attosecond pulses characterized by either 750 nm or 400 nm wavelength streak fields," Opt. Express 18, 25887 (2010).

[5.4] E. J. Takahashi, P. Lan, O. D. Mücke, Y. Nabekawa, and K. Midorikawa, “Attosecond nonlinear optics using gigawatt-scale isolated attosecond pulses,” Nat. Commun. 4, 2691 (2013).

[5.5] J. Li, Andrew Chew, S. Hu, J. White, X. Ren, S. Han, Y. Yin, Y. Wang, Y. Wu, and Z. Chang, “Double optical gating for generating high flux isolated attosecond pulses in the soft X-ray regime,” Opt. Express 27, 30280 (2019).

[5.6] T. Fan, P. Grychtol, R. Knut, C. Hernández-García, D. D. Hickstein, D. Zusin, C. Gentry, F. J. Dollar, C. A. Mancuso, C. W. Hogle, O. Kfir, D. Legut, K. Carva, J. L. Ellis, K. M. Dorney, C. Chen, O. G. Shpyrko, E. E. Fullerton, O. Cohen, P. M. Oppeneer, D. B. Milošević, A. Becker, A. A. Jaroń-Becker, T. Popmintchev, M. M. Murnane, and H. C. Kapteyn, “Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism,” Proc. Natl. Acad. Sci. USA 112, 14206 (2015).

[5.7] O. Kfir, P. Grychtol, E. Turgut, R. Knut, D. Zusin, D. Popmintchev, T. Popmintchev, H. Nembach, J. M. Shaw, A. Fleischer, H. Kapteyn, M. Murnane and O. Cohen, “Generation of bright phase-matched circularly-polarized extreme ultraviolet high harmonics,” Nat. Photon. 9, 99 (2015).

[5.8] The Center for X-ray Optics, “X-Ray Interactions with Matter,” https://henke.lbl. gov/optical_constants/.

[5.9] E. J. Takahashi, Y. Nabekawa, and K. Midorikawa, “Low-divergence coherent soft x- ray source at 13 nm by high-order harmonics,” Appl. Phys. Lett. 84, 4 (2004).

[5.10] E.J. Takahashi, T. Kanai, and K. Midorikawa, “High-order harmonic generation by an ultrafast infrared pulse,” Appl. Phys. B 100, 29 (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る