リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Development of Dissolving Pulp from Phyllostachys pubescens Stem by Prehydrolysis Soda Cooking with 2-Methylanthraquinone」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Development of Dissolving Pulp from Phyllostachys pubescens Stem by Prehydrolysis Soda Cooking with 2-Methylanthraquinone

CHEM, Mouylin 筑波大学 DOI:10.15068/0002006179

2023.01.17

概要

Bamboo grows mostly in the tropics. It is also found in the subtropical and temperate zones of all continents excluding Europe. Further, it belongs to a group of large woody grasses. There are 1250 species within the 75 genera of bamboo, and most grow rapidly, attaining stand maturity in five years (Scurlock et al., 2000; Sugesty et al., 2015). Bamboo is grown in India, Myanmar, Thailand, Indonesia, China, Japan, the Philippines, Australia, South Africa, South America, and southern North America. Bamboo has many utilities in Asian countries, such as in manufacturing writing instruments, furniture, building materials, weaving materials, household utensils, and agricultural tools. In addition, bamboo is a raw material used in the making of paper, musical instruments, religious articles, medicine, weapons, and other items (Yunnan et al., 1996). Phyllostachys pubescens is originally from China, and its plantations cover an area of 20,000 km2, which accounts for 60% of the total area covered by bamboo in China. It was introduced to Japan around the 1750s. The species has been used as a source of both poles and edible shoots in South-East Asia, and the optimal temperature for its growth is approximately 13–20°C (Qiu et al., 1992).

Bamboo is a non-wood raw material alternative (long fiber) for producing dissolving pulp and is available in large quantities and diverse types (Sugesty et al., 2015). Cellulose, hemicellulose, and lignin are the main components of plant biomass. Cellulose is composed of D-glucose units bond by β-1,4,-glucosidic bonds. Cellulose with a degree of polymerization ≥ 10,000 is arranged in a microfibril structure. The hydrogen bonds in the cellulose structure provide tensile strength, are insoluble in most solvents, and are resistant to microbial degradation (Jørgensen et al., 2007). Hemicelluloses are heterogenous polymers that form different polymers of pentoses, including xylose and arabinose; hexoses, including glucose, mannose, and galactose; and sugar acids. Hemicelluloses can form side chains and exhibit some degree of acetylation when the degree of polymerization is < 200 (Jørgensen et al., 2007; Lau, 2012; Saha, 2003). Lignin is a large molecular structure composed of cross-linked polymers of phenolic monomers, including coniferyl alcohol, coumaryl alcohol, and sinapyl alcohol (Jørgensen et al., 2007). The largest component of the plant cell wall is cellulose, accounting for 35–50 wt% of plant dry mass, with hemicellulose accounting for 20–25 wt% and lignin for 10– 25 wt% (Saha, 2003). As Figure 1-1 shows, all lignocellulosic materials contain three main components: cellulose, hemicellulose, and lignin. However, the processes of extracting the components vary, which is taken into account in the type of cooking reagents adopted.

この論文で使われている画像

参考文献

Chapter1 References

Baurhoo, B., Ruiz-Feria, C. A.,, Zhao, X., 2008. Purified lignin: nutritional and health impacts on farm animals-a review. Anim. Feed Sci Technol. 144, 175–84. https://doi.org/10.1016/j.anifeedsci.2007.10.016.

Bian, J., Peng, F., Peng, X.P., Peng, P., Xu, F., Sun, R.C., 2013. Structural features and antioxidant activity of xylooligosaccharides enzymatically produced from sugarcane bagasse. Bioresour. Technol. 127, 236– 241https://doi.org/10.1016/j.biortech.2012.09.112.

Froass, P.M., Ragauskas, A.J., Jiang, J.E., 1998. Nuclear magnetic resonance studies. 4. Analysis of residual lignin after kraft pulping. Ind. Eng. Chem. Res. 37, 3388– 3394.. https://doi.org/ 10.1021/ie970812c.

Garrote, G.D.H.P., Dominguez, H., Parajo, J.C., 1999. Hydrothermal processing of lignocellulosic materials.Holz Als Roh - Und Werkstoff 57, 191–202. https://doi.org/10.1007/s001070050039.

Garrote, G., Domínguez, H., Parajó, J.C., 1999. Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem. Technol. Biotechnol. 74, 1101–9. https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1101::AID- JCTB146>3.0.CO;2-M.

Garrote, G., Yáñez, R., Alonso, J.L. and Parajó, J.C., 2008. Coproduction of oligosaccharides and glucose from corncobs by hydrothermal processing and enzymatic hydrolysis. Ind. Eng. Chem. Res. 47, 1336–1345. https://doi.org/10.1021/ie071201f.

Ghatak, H. R., 2008. Spectroscopic comparison of lignin separated by electrolysis and acid precipitation of wheat straw soda black liquor. Ind. Crops Prod. 28, 206–212. https://doi.org/10.1016/j.indcrop.2008.02.011.

Jain, I., Kumar, V., Satyanarayana, T., 2015. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits. Indian J. Exp. Biol. 53, 131– 142.

Jørgensen, H., Kristensen, J.B., Felby, C., 2007. Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefining. 1, 119–134. https://doi.org/10.1002/bbb.4.

Kabel, M.A., 2002. Characterisation of Complex Xylo-Oligosaccharides from Xylan Rich by-Products. Wageningen University. Ph.D. Thesis.

Kamm, B., Kamm, M., Schmidt, M., Hirth, T., Schulze, M., 2005. Lignocellulose‐based chemical products and product family trees, in: Kamm, B., Gruber, P.R., Kamm, M (Eds). Biorefineries‐Industrial Processes and Products: Status Quo and Future Directions, WILEY-VCH Verlag GmbH & Co. KGaA, pp. 97–149.

Kouisini, L., Paleologou, M., 2015. Method for separating lignin from black liquor. United States Patent 2(12).

Kumar, H., Christopher, L.P.,. 2017. Recent trends and developments in dissolving pulp production and application. Cellulose. 24, 2347–2365. https://doi.org/10.1007/s10570-017-1285-y.

Lai, C., Jia, Y., Wang, J., Wang, R., Zhang, Q., Chen, L., Shi, H., Huang, C., Li, X., Yong, Q., 2019. Co-production of xylooligosaccharides and fermentable sugars from poplar through acetic acid pretreatment followed by poly (ethylene glycol) ether assisted alkali treatment. Bioresour. Technol. 288. https://doi.org/10.1016/j.biortech.2019.121569.

Lau, C. S., 2012. Characterization and quantification of monomers, oligomers, and by- products from xylan during biomass pretreatment. University of Arkansas, Fayetteville. Ph.D. Thesis.

Mahmood, Z., Yameen, M., Jahangeer, M., Riaz, M., Ghaffar, A., Javid, I., 2018. Lignin as natural antioxidant capacity. Intech Open, 181–205. https://doi.org/10.5772/intechopen.73284

Moure, A., Gullón, P., Domínguez, H., Parajó, J.C., 2006. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem. 41, 1913–1923. https://doi.org/10.1016/j.procbio.2006.05.011.

Mousavioun, P., Doherty, W.O.S., 2010. Chemical and thermal properties of fractionated bagasse soda lignin. Ind Crops Prod. 31, 52–58. https://doi.org/10.1016/j.indcrop.2009.09.001.

Nadif, A., Hunkeler, D., Käuper, P., 2002. Sulfur-free lignins from alkaline pulping tested in mortar for use as mortar additives. Bioresour. Technol. 84, 49–55. https://doi.org/10.1016/S0960-8524(02)00020-2.

Ohman, F., Theliander, H., Tomani, P., Axegard, P., 2013. Method for separating lignin from black liquor. United States Patent 2(12).

Ohman, F., Theliander, H., Tomani, P., Axegard, P., 2016. Method for separating lignin from black liquor, a lignin product, and use of a lignin product for the production of fuels or materials. United States Patent 2(12).

Patil, V., Adhikari, S., Cross, P., Jahromi, H., 2020. Progress in the solvent depolymerization of lignin. Renew. Sust. Energ. Rev. 133, 110359. https://doi.org/10.1016/j.rser.2020.110359.

Saha, B.C., 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291. https://doi.org/10.1007/s10295-003-0049-x.

Sameni, J., Krigstin, S., dos Santos Rosa, D., Leao, A., Sain, M., 2014. Thermal characteristics of lignin residue from industrial processes. BioResources 9, 725– 737. https://doi.org/10.15376/biores.9.1.725-737.

Scurlock, J.M., Dayton, D.C., Hames, B., 2000. Bamboo: an overlooked biomass resource?. Biomass and Bioenergy 19, 229–244. https://doi.org/10.1016/S0961- 9534(00)00038-6.

Sixta, H., Koch, G., Ressel, J.B., Potthast, A., Krotschek, A.W., 2006. The History of Paper Making. Vol 1. https://doi.org/10.1016/S0268-0890(97)90050-5

Sugesty, S., Kardiansyah, T., Hardiani, H., 2015. Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. . Procedia Chem. 17, 194–199. https://doi.org/10.1016/j.proche.2015.12.122

Takahashi, S., Homma, M., Kajiyama, M., Ohi, H., Tanaka, J., 2011. Influence of soluble anthraquinone compound on bleaching load during kraft cooking of various woods. Japan Tappi J. 65, 792–798. https://doi.org/10.2524/jtappij.65.792.

Tejado, A., Peña, C., Labidi, J., Echeverria J.M., Mondragon, I., 2007. Physico- chemical characterization of lignins from different sources for use in phenol– formaldehyde resin synthesis Bioresour. Technol. 98, 1655–1663. https://doi.org/10.1016/j.biortech.2006.05.042.

Vaidya, A.A., Murton, K.D., Smith, D.A., Dedual, G., 2022. A review on organosolv pretreatment of softwood with a focus on enzymatic hydrolysis of cellulose. Biomass Convers. Biorefinery. https://doi.org/10.1007/s13399-022- 02373-9.

Wojtasz-Mucha, J., M. Hasani, and H. Theliander. 2021. “Dissolution of Wood Components during Hot Water Extraction of Birch.” Wood Science and Technology 55(3):811–35. https://doi.org/10.1007/s00226-021-01283-9.

Wojtasz-Mucha, J., Hasani, M., Theliander, H., 2021. Dissolution of wood components during hot water extraction of birch. Bioresour. Technol. 102, 4157–4164. https://doi.org/10.1016/j.biortech.2010.11.063.

Yoo, C. G., Ragauskas, A.J., 2021. Opportunities and challenges of lignin utilization. ACS Symp. Ser. 1377, 1–12. https://doi.org/10.1021/bk-2021-1377.ch001.

Wang K.L., Xu, J.C., Pei, S.J., Chen, S.Y., 1996. Selected non-timber forest products for natural resources conservation and community development in Southwest Yunnan, China. In The International Seminar on NTFPs (China Yunnan, Laos, Vietnam) (pp. 31-38).

Chapter2 References

Akiyama, T., Goto, H., Nawawi, D.S., Syafii, W., Matsumoto, Y., Meshitsuka, G., 2005.

Erythro/threo ratio of β-O-4-structures as an important structural characteristic of lignin. Part 4: Variation in the erythro/threo ratio in softwood and hardwood lignins and its relation to syringyl/guaiacyl ratio. Holzforschung. 59(3), 276–281. doi:10.1515/HF.2005.045

Ambjörnsson, H.A., Östberg, L., Schenzel, K., Larsson, P.T., Germgard, U., 2014. Enzyme pretreatment of dissolving pulp as a way to improve the following dissolution in NaOH/ZnO. Holzforschung. 68(4), 385–391. doi:10.1515/hf-2013-0070

Andrade, M.F., Colodette, J.L., 2014. Dissolving pulp production from sugar cane bagasse. Ind Crops Prod. 52, 58–64. doi:10.1016/j.indcrop.2013.09.041

Anita, Y., Putra, A. S., Tanifuji, K., Nakagawa-izumi, A., Ohi, H., Evelyn, E., 2021. Kraft cooking with teak wood extract and determining residual 2-methylanthraquinone in eucalyptus pulp. Japan Tappi J. 75(2), 153–163. doi: 10.2524/jtappij.75.153

Batalha, L.A.R., Colodette, J.L., Gomide, J.L., Barbosa, L.C.A., Maltha, C.R.A., Gomes, F.J.B., 2012. Dissolving pulp production from bamboo. BioResources. 7(1), 640–651. doi:10.15376/biores.7.1.0640-0651

Behin, J., Zeyghami, M., 2009. Dissolving pulp from corn stalk residue and waste water of Merox unit. Chem Eng J. 152(1), 26–35. doi:10.1016/j.cej.2009.03.024

Borrega, M., Nieminen, K., Sixta H., 2011. Degradation kinetics of the main carbohydrates in birch wood during hot water extraction in a batch reactor at elevated temperatures.

Bioresour Technol. 102(22), 10724–10732. doi:10.1016/j.biortech.2011.09.027 Chang, V.S., Holtzapple, M.T., 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol - Part A Enzym Eng Biotechnol. 84–86, 5–37. doi:10.1385/abab:84-86:1-9:5

Cherubini, F., 2010. The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Conversion and Management. 51(7), 1412–1421. doi: 10.1016/j.enconman.2010.01.015.

Do, V.T., Tanifuji, K., Jin, G., Ohi, H., 2020. Neutral sulfite semi–chemical pulping of moso– bamboo. Japan Tappi J. 74(4), 379–387. doi:10.2524/jtappij.74.379

Doherty, W.O.S., Mousavioun, P. and Fellows C. M., 2011. Value-adding to cellulosic ethanol: Lignin polymers. Industrial Crops and Products. 33(2), 259–276.

FitzPatrick, M., Champagne, P., Cunningham, M.F. and Whitney, R.A., 2010. A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource technology. 101(23), 8915–8922.

Francis, R.C., Shin, S.J., Omori, S., Amidon, T.E., Blain, T.J., 2006. Soda pulping of hardwoods catalyzed by anthraquinone and methyl substituted anthraquinones. J Wood Chem Technol. 26(2), 141–152. doi:10.1080/02773810600701737

Francis, R.C., Bolton, T.S., Abdoulmoumine, N., Lavrykova, N., Bose, S.K., 2008. Positive and negative aspects of soda/anthraquinone pulping of hardwoods. Bioresour Technol. 99(17), 8453–8457. doi:10.1016/j.biortech.2008.02.055

García, A., Toledano, A., Serrano, L., Egüés, I., González, M., Marín, F. and Labidi, J., 2009. Characterization of lignins obtained by selective precipitation. Separation and Purification Technology. 68(2), 193–198.

Garrote, G., Domínguez, H., Parajó, J.C., 2001. Generation of xylose solutions from Eucalyptus globulus wood by autohydrolysis-posthydrolysis processes: Posthydrolysis kinetics. Bioresour Technol. 79(2), 155–164. doi:10.1016/S0960-8524(01)00044-X

Garrote, G., Domínguez, H., Parajó, J.C., 1999. Mild autohydrolysis: an environmentally friendly technology for xylooligosaccharide production from wood. J Chem Technol Biotechnol. 74, 1101–1109. doi:10.1002/(SICI)1097-4660(199911)74:11<1101::AID-JCTB146>3.0.CO;2-M

Gosselink, R.J.A., Abächerli, A., Semke, H., Malherbe, R., Käuper, P., Nadif, A. and Van Dam, J.E.G., 2004. Analytical protocols for characterisation of sulphur-free lignin. Industrial Crops and Products. 19(3), 271–281.

Harsono, H., Putra, A.S., Maryana, R., Rizaluddin, A. T., H'ng, Y. Y., Nakagawa-izumi, A., Ohi, H., 2016. Preparation of dissolving pulp from oil palm empty fruit bunch by prehydrolysis soda-anthraquinone cooking method. J Wood Sci. 62(1), 65–73. doi:10.1007/s10086-015-1526-3

Hassan, N.H.M., Muhammed, S., Ibrahim, R., 2013. Effect of soda-anthraquinone pulping conditions and beating revolution on the mechanical properties of paper made from Gigantochloa scortechinii (Semantan bamboo). Malaysian J Anal Sci. 17(1), 75–84.

IARC- International Agency for Research on Cancer. 2012. Some chemicals present in industrial and consumer products, food and drinking-water. IARC Monogr Eval Carcinog Risks Hum. 101, 9–549.

Ibarra, D., Köpcke, V., Larsson, P.T., Jääskeläinen, A.S., Ek, M., 2010. Combination of alkaline and enzymatic treatments as a process for upgrading sisal paper-grade pulp to dissolving-grade pulp. Bioresour Technol. 101(19), 7416–7423. doi:10.1016/j.biortech.2010.04.050

Jahan, M.S., 2009. Studies on the effect of prehydrolysis and amine in cooking liquor on producing dissolving pulp from jute (Corchorus capsularis). Wood Sci Technol. 43(3– 4), 213–224. doi:10.1007/s00226-008-0213-6

Jahan, M.S., Rahman, M.M., 2012. Effect of pre-hydrolysis on the soda-anthraquinone pulping of corn stalks and Saccharum spontaneum (kash). Carbohydr Polym. 88(2), 583–588. doi:10.1016/j.carbpol.2012.01.005

Jahan, M.S., Islam, M.A., Rahman, M.M., Nayeem, J., Ahmed, S., Quaiyyum, M.A., 2015. Steam and hot water prehydrolysis of bamboo and its effect on residual lignin structureand pulping. Cellul Chem Technol. 51(5–6), 455–463.

Jin, Z., Jin, G., Shao, S., Katsumata, K.S., 2012. Lignin characteristics of bast fiber and core in kenaf, bark and wood of paper mulberry and mulberry. J Wood Sci. 58(2), 144–152. doi:10.1007/s10086-011-1228-4

Kumar, H., Alén, R., Sahoo, G., 2016. Characterization of hardwood soda-AQ lignins precipitated from black liquor through selective acidification. BioResources. 11(4), 9869–9879. doi:10.15376/biores.11.4.9869-9879

Leh, C.P., Rosli, W.D.W., Zainuddin, Z., Tanaka, R., 2008. Optimisation of oxygen delignification in production of totally chlorine-free cellulose pulps from oil palm empty fruit bunch fibre. Ind Crops Prod. 28(3), 260–267. doi:10.1016/j.indcrop.2008.02.016

Leschinsky, M., Sixta, H., Patt, R., 20009. Detailed mass balances of the autohydrolysis of eucalyptus globules at 170ºC . BioResources. 4(2), 687–703.

Leyva, A., Dimmel, D. R., Pullman, G. S., 1998. Teak extract as a catalyst for the pulping of loblolly pine. TAPPI J. 81(5), 237–240.

Li, X.B., 2004. Physical, chemical, and mechanical properties of bamboo and its utilization potential for fiberboard manufacturing. LSU Master's Theses. 866

Lindgren, K., Berglin, N., Brelid, H., 2002. Effects of the use of an NPE chip Kidney in a closed bleach plant. TAPPI International Pulp Bleaching Conference, 2002.

Luo, X., Liu, J., Wang, H., Huang, L., Chen, L., 2014. Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose. 21(3), 1445–1457. doi:10.1007/s10570-014-0234-2

Ma, X., Huang, L., Chen, Y., Cao, S., Chen, L., 2011. Preparation of bamboo dissolving pulp for textile production. Part 1. Study on prehydrolysis of green bamboo for producing dissolving pulp. BioResources. 6(2), 1428–1439. doi:10.15376/biores.6.2.1428-1439

Ma, X., Huang, L., Cao, S., Chen, Y., Luo, X., Chen, L., 2012. Preparation of dissolving pulp from bamboo for textile applications. Part 2. Optimization of pulping conditions of hydrolyzed bamboo and its kinetics. BioResources. 7(2), 1866–1875. doi:10.15376/biores.7.2.1866-1875

Martino, D.C., Colodette, J.L., Jardim, J.M., Chandra, R.P., Saddler, J.N. Hot water pretreatment to enhance the production of a eucalypt dissolving pulp. Published online 2015.

Maryana, R., Nakagawa-izumi, A., Kajiyama, M., Ohi, H., 2017. Environment-Friendly Non- Sulfur Cooking and Totally ChlorineFree Bleaching for Preparation of Sugarcane Bagasse Cellulose. J Fiber Sci Technol. 73(8), 182–191. doi:10.2115/fiberst.2017-0025

Moradbak, A., Tahir, P.M., Mohamed, A.Z., Halis, R., 2016. Alkaline sulfite anthraquinone and methanol pulping of bamboo (Gigantochloa scortechinii). BioResources. 11(1), 235–248. doi:10.15376/biores.11.1.235-248

Nakagawa-Izumi, A., H’ng, Y.Y., Mulyantara, L.T., Maryana, R., Do, V.T., Ohi, H., 2017. Characterization of syringyl and guaiacyl lignins in thermomechanical pulp from oil palm empty fruit bunch by pyrolysis-gas chromatography-mass spectrometry using ion intensity calibration. Ind Crops Prod. 95, 615–620. doi:10.1016/j.indcrop.2016.11.030

Ohi, H., Ishizu, A., Nakano, J., 1988. Behavior of lignin during alkaline sulfite-quinone cooking. Japan Tappi J. 42(9), 861–870. doi:10.2524/jtappij.42.861

Pakkanen, H., Alén, R., 2012. Molecular mass distribution of lignin from the alkaline pulping of hardwood, softwood, and wheat straw. J Wood Chem Technol. 32(4):279–293. doi:10.1080/02773813.2012.659321

Putra, A.S., Nakagawa-izumi, A., Kajiyama, M., Ohi, H., 2018. Peer Reviewed Biorefinery of Oil Palm Empty Fruit Bunch by Nitric Acid Prehydrolysis Soda Cooking. Production of Furfural and Dissolving Pulp. Japan Tappi J. 72(6), 641–649. doi:10.2524/jtappij.1701

Rizaluddin, A.T., Liu, Q., Panggabean, P.R., Ohi, H., Nakamata, K., 2015. Application of peroxymonosulfuric acid as a modification of the totally chlorine-free bleaching of acacia wood prehydrolysis-kraft pulp. J Wood Sci. 61(3), 292–298. doi:10.1007/s10086-015-1465-z

Rudie, A., Reiner, R., Ross-Sutherland, N., Kenealy, W. Acid Prehydrolysis of Wood. Published online 2007.

Runge, T., Houtman, C., Heinricher, J., 2012. Timber bamboo pulp. 2012 TAPPI PEERS Conf Build a Sustain Futur. 12(2), 315–322.

Salaghi, A., Putra, A.S., Maryana, R., Kajiyama, M., Ohi, H., 2018. Preparation of dissolving pulp by totally chlorine-free bleaching: Roles of hardwood syringyl and guaiacyl lignins. Japan Tappi J. 72(10), 1167–1175.

Salaghi, A., Putra, A.S., Rizaluddin, A.T., Kajiyama, M., Ohi, H., 2019. Totally chlorine-free bleaching of prehydrolysis soda pulp from plantation hardwoods consisting of various lignin structures. J Wood Sci. 65(1). doi:10.1186/s10086-019-1785-5

Santos, P.S.B. do., Erdocia, X., Gatto, D.A., Labidi, J., 2014. Characterisation of Kraft lignin separated by gradient acid precipitation. Ind Crops Prod. 55, 149–154. doi:10.1016/j.indcrop.2014.01.023

Schild, G., Sixta, H., Testova, L., 2010. Multifunctional alkaline pulping, delignification and hemicellulose extraction. Cellul Chem Technol. 44(1–3), 35–45.

Scurlock, J.M.O., Dayton, D.C., Hames, B., 2000. Bamboo: An overlooked biomass resource? Biomass and Bioenergy. 19(4), 229–244. doi:10.1016/S0961- 9534(00)00038-6

Sharma, N., Godiyal, R.D., Thapliyal, B.P. and Anupam, K., 2018. Pulping and bleaching of hydro distillation waste of citronella grass (Cymbopogon winterianus Jowitt) for papermaking. Waste and biomass valorization. 9(3), 409–419.

Shi, H., Zhou, M., Jia, W., Li, N., Niu, M., 2019. Balancing the effect of pretreatment severity on hemicellulose extraction and pulping performance during auto-hydrolysis prior to kraft pulping of acacia wood. Biotechnol Prog. 35, e2784. doi:10.1002/btpr.2784

Singha, B.L., Hassan, Y., 2017. Analysis of carbohydrate, moisture content and specific gravity of Bambusa tulda with special reference to its harvesting season. Int J Sci Res. 6(1), 279–283. doi:10.21275/art20163989

Sixta, H., Koch, G., Ressel, J.B., Potthast, A., Krotschek, A.W., 2006. The History of Paper Making. Vol 1. doi:10.1016/S0268-0890(97)90050-5

Sugesty, S., Kardiansyah, T., Hardiani, H., 2015. Bamboo as raw materials for dissolving pulp with environmental friendly technology for rayon fiber. Procedia Chem.17(December):194–199. doi:10.1016/j.proche.2015.12.122

Syamsu, K., Fahma, F. and Pari, G., 2019. Structure analysis of three non-wood materials for liner paper. Nordic Pulp & Paper Research Journal. 34(4), 453–466.

Tomani, P., 2010. The lignoboost process. Cellul Chem Technol. 44(1-3), 53–58.

Tunc, M.S., Heiningen, A.V., 2008. Hydrothermal dissolution of mixed southern hardwoods. Holzforschung. 62, 539–545. doi:10.1515/HF.2008.100

Uloth, V., 1989. “Kraft Lignin Recovery: Acid Precipitation Versus Ultrafiltration, Part I: Laboratory Test Results”, by V.C. Uloth and J.T. Wearing, Pulp and Paper Canada, 90(9): T310–T314.

Utami, S.P., Tanifuji, K., Putra, A.S., Nakagawa-Izumi, A., Ohi, H., Evelyn, E., 2021. Effects of soluble anthraquinone application on prehydrolysis soda cooking of Acacia crassicarpa wood. Japan Tappi J. 75(4), 373–379. doi:10.2524/jtappij.75.373

Vishtal, A. and Kraslawski, A., 2011. Challenges in industrial applications of technical lignins. BioResources, 6(3), 3547–3568. doi: 10.15376/biores.6.3.vishtal.

Wan Rosli, W.D., Leh, C.P., Zainuddin, Z., Tanaka, R., 2003. Optimisation of soda pulping variables for preparation of dissolving pulps from oil palm fibre. Holzforschung. 57(1), 106–113. doi:10.1515/HF.2003.017

Wu, C., Zhou, S., Zhao, C., Wang, D., 2014. Improved reactivity of bamboo dissolving pulp for the viscose process: Post-treatment with beating. BioResources. 9(2), 3449–3455. doi:10.15376/biores.9.2.3449-3455

Yuan, Z., Wen, Y., Kapu, N.S., Beatson, R., Mark Martinez, D., 2017. A biorefinery scheme to fractionate bamboo into high-grade dissolving pulp and ethanol. Biotechnol Biofuels. 10(1), 1–16. doi:10.1186/s13068-017-0723-2

Zhu, W., Westman, G., Theliander, H., 2015. The molecular properties and carbohydrate content of lignins precipitated from black liquor. Holzforschung. 69(2), 143–152. doi:10.1515/hf-2014-006

Chapter3 References

Bhaumik, P., Dhepe, P.L., 2016. Conversion of biomass into sugars. in: Biomass Sugars for Non-Fuel Applications. Green Chem. 44.

Chem, M., Tanifuji, K., Utami, S.P., Putra, A.S., Ohi, H., Nakagawa-Izumi, A., 2022.

Development of dissolving pulp from Phyllostachys pubescens stem by prehydrolysis soda cooking with 2-methylanthraquinone. . Ind. Crops Prod. 178, 114570. https://doi.org/10.1016/j.indcrop.2022.114570.

Delgado, G.T.C., Tamashiro, W.M.D.S.C., Junior, M.R.M., Moreno, Y.M.F., Pastore, G.M., 2011. The putative effects of prebiotics as immunomodulatory agents. Food Res. Int. 44, 3167–73. https://doi.org/10.1016/j.foodres.2011.07.032.

Lau, C. S., 2012. Characterization and Quantification of Monomers, Oligomers, and by- Products from Xylan during Biomass Pretreatment. University of Arkansas, Fayetteville. Ph.D. Thesis.

Mäkeläinen, H., Forssten, S., Saarinen, M., Stowell, J., Rautonen, N., Ouwehand, A., 2010. Xylo-oligosaccharides enhance the growth of bifidobacteria and Bifidobacterium lactis in a simulated colon model. . https://doi.org/10.3920/BM2009.0025.

Nabarlatz, D., Ebringerová, A., Montané, D., 2007. Autohydrolysis of agricultural by- products for the production of xylo-oligosaccharides.Carbohydr. Polym. 69, 20–28. https://doi.org/10.1016/j.carbpol.2006.08.020.

Saha, B.C., 2003. Hemicellulose bioconversion. J Ind Microbiol Biotechnol 30(5):279–91. https://doi.org/10.1007/s10295-003-0049-x.

Septiningrum, K., Ohi, H., Waeonukul, R., Pason, P., Tachaapaikoon, C., Ratanakhanokchai, K., Sermsathanaswadi, J., Deng, L., Prawitwong, P., Kosugi, A., 2015. The GH67 α- glucuronidase of Paenibacillus curdlanolyticus B-6 removes hexenuronic acid groups and facilitates biodegradation of the model xylooligosaccharide hexenuronosyl xylotriose. Enzyme Microb. Technol. 71, 28–35. . https://doi.org/10.1016/j.enzmictec.2015.01.006.

Xu, Y., Fan, L., Wang, X., Yong, Q., Yu, S.Y., 2013. Simultaneous separation and quantification of linear xylo-and cello-oligosaccharides mixtures in lignocellulosics processing products on high-performance anion-exchange chromatography coupled with pulsed amperometric detection. BioResources 8, 3247–3259. https://doi.org/10.15376/biores.8.3.3247-3259.

Yang, B., Wyman, C.E., 2008. Characterization of the degree of polymerization of xylooligomers produced by flowthrough hydrolysis of pure xylan and corn stover with water. Bioresour. Technol. 99, 5756–5762. https://doi.org/10.1016/j.biortech.2007.10.054.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る