リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「イネいもち病菌が産生するpyriculol類の未解明生合成経路および生理機能の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

イネいもち病菌が産生するpyriculol類の未解明生合成経路および生理機能の解析

古山 祐貴 東京理科大学 DOI:info:doi/10.20604/00003579

2021.06.09

概要

糸状菌は二次代謝産物と呼ばれる多様な構造、活性を示す代謝産物を生産する。二次代謝産物は生育には必須ではないものの、糸状菌の生存戦略にとって重要であると考えられている。自然界における糸状菌の生態理解には二次代謝産物の生理機能の解明が有効だと考えられるが、生理機能が明らかになっている例は少ない。

本研究では、植物病原糸状菌であるイネいもち病菌Pyriculariaoryzaeの産生するpyriculol(1),およびその類縁体(pyriculol類)に着目した。1はイネの葉に対し病斑様の壊死斑を形成させる活性があることから、毒性化合物であるとされてきた。本菌は感染初期段階には宿主を殺さず感染後期になってから宿主を殺す感染様式をとるため、1は感染後期において毒素として使われていると推測されている。一方で、dihydropyriculol(2)はイネの葉に活性を示さないことが知られており、非活性型類縁体とされてきた。これまでに提唱されているpyriculol類生合成経路では1が2に先立って生合成されていること、1と2が相互に変換されていることが推定されている。生理機能のない化合物をわざわざ生産しているとは考えにくいことから、2には未解明な生理機能があることが推測される。しかし、現在まで明確な活性報告はなされていない。また、上述の生合成経路は1の上流側に位置すると考えられる推定中間体の重水素ラベル化体を有機化学的に合成し、イネいもち病菌培養液に添加した際の結果に基づいて推定されたものであった。しかし、イネいもち病菌の培養液からこの推定中間体が検出されたという報告はない。加えて、それぞれの反応に関与している遺伝子もほとんど特定されていない。近年、2を1に変換する反応に関与している遺伝子が報告されたが、1を2へと変換している反応に関わる遺伝子は未だ特定されていなかった。本研究ではpyiculol類の生合成における未解明部分を明らかにすることを目指し、1を2へ変換する反応に関与している遺伝子を特定することを目的とした。また、2には未解明な生理機能があると仮定し、その解析を行った。

はじめに、1を2に変換する反応に関与している遺伝子を明らかにすべく、推定生合成遺伝クラスターの遺伝子の解析を行った。クラスターの中にはaldo/keto reductase遺伝子であるPYC7があり、この遺伝子が1を2に変換する反応に関与していることが推定された。そこで、PYC7の破壊株を作製し代謝産物解析を行ったところ、PYC7破壊株では2の生産条件において1が生産されることが観察された。さらに、小麦胚芽無細胞発現系によりPYC7タンパク質を取得し、invitroにおいてPYC7が1を2へと変換することが確認された。このことから、PYC7が実際に1を2へと変換する反応に関与していることが示された。前述の通り、既存の推定pyriculol類生合成経路では1が2よりも先に生成されると推定されており、1の上流側に位置する中間体が推定されてきた。しかし、この推定中間体がイネいもち病菌の培養液から検出されたという報告はない。そこで、この推定中間体が検出できるのではないかと考え、PYC7破壊株の代謝産物を経時的に分析した。その結果、予想に反して野生型株とPYC7破壊株の両方において培養初期に2が生産されていることが確認された。一方で、培養後期ではPYC7破壊株においてのみ2の生産が消失し、1の生産が見られた。この結果は1に先立って2が生合成されていることを示している。また、PYC7破壊株においてもアルコールである2が生合成されたことから、polyketidesynthase(PKS)からの放出産物もアルコールであると推定された。ドメイン検索の結果から、pyriculolの生合成関わるPKSであるPYC1には産物の放出産物に関わるドメインがない。そのため、産物がアルコールとしてPKSから放出されるためには、別の還元酵素が関与する必要がある。この酵素を探索するために推定生合成遺伝子クラスター内の他の遺伝子の解析を行った結果、short-chaindehydrogenase/reductase(SDR)遺伝子であるPYC5がPKSからの産物の放出に関与している可能性が示された。以上のことから、PKSから放出されたアルコール中間体から2が生合成され、その後1へと変換されるという生合成モデルを提唱するに至った。また、1と2は酵素反応により変換されていること、最終産物である1がPYC7によって再度2へと変換されていることが示された。この機構により毒性化合物である1の生産量が調整されていると推測される。

続いて、これまで非活性とされてきた2の生理機能の解析を行った。酵素反応により変換されていることから、2は単なる生合成中間体ではなく何らかの生理機能を有していることが考えられた。そこで、2の生産を誘導する因子の探索を行ったところ、放線菌の生産するタンパク質合成阻害剤であるシクロヘキシミドによって2の生産が誘導されることを見出した。このことから、2がタンパク質合成阻害剤生産菌との相互作用に関与していると仮定し、イネいもち病菌と放線菌との対置培養を行った。Pyriculol類生産能を消失したPKS遺伝子破壊株との対置培養時と比較して、野生型株との対置培養時には放線菌の生育が抑制されることが観察された。対置培養プレート中の代謝産物を分析した結果、野生型株では2が主に生産されていた。また、野生型株の培養液から2を単離しペーパーディスクアッセイを行ったところ、放線菌に対する生育阻害活性が認められた。これは、非活性であるとされてきた2の活性を示した初めての報告である。これらの結果から、2が放線菌との競合に関与していることが示唆された。さらに、対置培養時におけるpyriculdl類の局在解析を試みた。その結果、2は培地中に広く拡散し放線菌コロニー周辺まで到達していることが観察された。一方で、1はイネいもち病菌コロニーの内側において検出された。局在解析の結果を経時的に比較したところ、pyriculol類の生産はコロニーの内側にて行われている可能性が示された。このことから、2は生産量が多いためにコロニーの外側まで拡散するが、1は生産量が少なくコロニーの外側までは拡散していないと考えられた。この結果は1ではなく2が放線菌との相互作用に関与していることを支持するものである。

本研究では、pyriculol(1)を非活性型とされてきたdihydropyriculol(2)へ変換する酵素を特定し、1と2が酵素反応により相互に変換されていることを示した。また、これまで推定されてきたこととは異なり2が1より先に生合成されることを明らかにし、新たな生合成経路を提唱した。2へと変換されることにより1の生産量が調整されていることが推測された。一方で、2がタンパク質合成阻害剤によって生産誘導され、生産菌である放線菌に対して生育阻害活性を有することを見出した。この結果から2が放線菌との相互作用に関与していることが示唆された。これらのことから、2は非活性型というよりも1とは異なった生理機能を有しており、状況に応じて選択的に類縁体が生産されている可能性が示された。

参考文献

Akase, K. and Kusaba, M. (2017). Overwintering of Pyricularia oryzae in wild infected foxtails. Journal of General Plant Pathology, 83, 197-204.

Barajas, J.F., Phelan, R.M., Schaub, A.J., Kliewer, J.T., Kelly, P.J., Jackson, D.R., Luo, R., Keasling, J.D. and Tsai, S.C. (2015). Comprehensive structural and biochemical analysis of the terminal myxalamid reductase domain for the engineered production of primary alcohols. Chemistry and Biology 22, 1018-1029.

Barski, O. A., Tipparaju, S. M. and Bhatnagar, A. (2008). The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metabolism Reviews 40, 553-624.

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M.C.C., Charles, T., Chen,X., Cocolin, L., Eversole, K., Kazou, G.H.C.M., Kinkel, L., Lange, L., Lima, N., Loy,A., Macklin, J.A., Maguin, E., Mauchline, T., McClure, R., Mitter, B., Ryan, M., Sarand, I., Smidt, H., Schelkle, B., Roume, H., Kiran, G.S., Selvin, J., Correa de Souza, R.S., Overbeek, L.V., Singh, B.K., Wagner, M., Walsh, A., Sessitsch, A. and Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103.

Böttche, T. (2020). Unveiling the hidden theatre of microbes. ChemBioChem 21, 1-2.

Brakhage, A.A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology 11, 21-32.

Chambers, M.C., Maclean, B., Burke, R., Amodei, D., Ruderman, D.L., Neumann, S., Gatto, Lo, Fischer, B., Pratt, B., Egertson, J., Hoff, K., Kessner, D., Tasman, N., Shulman, N., Frewen, B., Baker, T.A., Brusniak, M.Y., Paulse, C., Creasy, D., Flashner, Lo, Kani, K., Moulding, C., Seymour, S.L, Nuwaysir, L.M., Lefebvre, B., Kuhlmann, F., Roark, J., Rainer, P., Detlev, S., Hemenway, T., Huhmer, A., Langridge, J., Connolly, B., Chadick, T., Holly, K., Eckels, J., Deutsch, E. W., Moritz, R.L., Katz, J.E., Agus, D.B., MacCoss, M., Tabb, D.L, Mallick, P (2012). A cross-platform toolkit for mass spectrometry and proteomics. Nature Biotechnology. 30, 918-920

Chooi, Y.-H. and Tang, Y (2012). Navigating the fungal polyketide chemical space: From Genes to Molecules. Jornal of Organic Chemistry 77, 9933- 9953.

Chumley, F.G., and Valent, B. (1990). Geneticanalysis of melanin-deficient, nonpathogenic mutants of Magnapothe Grisea. Molecular Plant-Microbe Interactions 3, 135-143.

Collemare, J., Billard, A., Boehnert, H.U. and Lebrun, M.H. (2008). Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycological Research 112, 207-215.

Cox, R. J. (2007). Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Organic Biomolecular Chemistry 5, 2010- 2026.

Dean, R., Van Kan, J.A.L., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G.D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13, 804-804.

Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H.Q., et al. (2005). The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434, 980-986.

Du, L.C. and Lou, L.L. (2010). PKS and NRPS release mechanisms. Natural Product Reports 27, 255-278.

Dunwell, J.M., Culham, A., Carter, C.E., Sosa-Aguirre, C.R. and Goodenough, P.W. (2001). Evolution of functional diversity in the cupin superfamily. Trends in Biochemical Sciences 26, 740-746.

Dunwell, J.M., Purvis, A. and Khuri, S. (2004). Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7-17.

Feng, P., Shang, Y.F., Cen, K. and Wang, C.S. (2015). Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proceedings of the National Academy of Sciences of the United States of America 112, 11365-11370.

Fernandez, J. and Orth, K. (2018). Rise of a Cereal Killer: The biology of Magnaporthe oryzae biotrophic growth. Trends in Microbiology 26, 582-597. Groot, M.J.A.D., Bundock, P., Hooykaas, P.J.J. and Beijersbergen, A.G.M. (1998). Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature biotechnology 16, 839-842.

Howard, R.J. and Ferrari, M.A. (1989). Role of melanin in appressorium function. Experimental Mycology 13, 403-418.

Iwasaki, S., Nozoe, S., Okuda, S., Sato, Z. and Kozaka, T. (1969). Isolation and structural elucidation of a phytotoxic substance produced by Pyricuaria oryzae cavara. Tetrahedron Letters 45, 3977-3980.

Jacob, S., Grotsch, T., Foster, A.J., Schuffler, A., Rieger, P.H., Sandjo, L.P., Liermann, J.C., Opatz, T. and Thines, E. (2017). Unravelling the biosynthesis of pyriculol in the rice blast fungus Magnaporthe oryzae. Microbiology 163, 541-553.

Jonas N., Huomiao R., Viola W., Wen-Bing Y. and Shu-Ming L. (2020). Biosynthesis of the prenylated salicylaldehyde flavoglaucin requires temporary reduction to salicyl alcohol for decoration before reoxidation to the final product. Organic Letters 22, 2256- 2260.

Kaneko, A., Merishita, y., Tsukada, K., Taniguchi, T. and Asai, T. (2019). Post-genomic approach based discovery of alkyresorcinols from a cricket-associated fungus, Penicillium soppi. Organic and Biomolecular Chemistry. 17, 5239-5243.

Kasahara, K., Miyamoto, T., Fujimoto, T., Oguri, H., Tokiwano, T., Oikawa, H., Ebizuka, Y. and Fujii, I. (2010). Solanapyrone synthase, a possible Diels-Alderase and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani, ChemBioChem, 11, 1245-1252.

Kawahara, Y., Oono, V., Kanamori, H., Matsumoto, T., Itoh, T. and Minami, E. (2012). Simultaneous RNA-Seq analysis of a mixed transcriptome of rice and blast fungus interaction. Plos One 7, €49423.

Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S. and Tsuge, T. (1997). The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Molecular Plant-Microbe Interactions 10, 446-453.

Keller, N.P. (2015). Translating biosynthetic gene clusters into fungal armor and weaponry. Nature Chemical Biology 11, 671-677.

Keller, N.P. (2018). Fungal secondary metabolism: regulation, function and drug discovery. Nature reviews microbiology 17, 167-180.

Keller, N.P., Turner, G. and Bennett, J.W. (2005). Fungal secondary metabolism - From biochemistry to genomics. Nature Reviews Microbiology 3, 937-947.

Kim, J.C., Min, J.Y., Kim, H.T., Cho, K.Y. and Yu, S.H. (1998). Pyricuol, a new phytotoxin from Magnaporthe grisea. Bioscience Biotechnology and Biochemistry 62, 173-174.

Kono, Yo, Sekido, S., Yamaguchi, I., Kundo, h., Suzuki, Y., Neto, G., Sakurai, A. and Yaegashi, H. (1991). Structures of two novel pyriculol-related compounds and identification of naturally produced epipyriculol from Pyricularia oryzae and identification of naturally produced epipyriculol from Pyricularia oryzae. Agricultural and Biological Chemistry 55, 2785-2791.

Langfelder, K., Streibel, M., Jahn, B., Haase, G. and Brakhage, A.A. (2003). Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genetics and Biology 38, 143-158.

Law, J. W.F., Ser, H.L., Khan, T. M., Chuah, L.H., Pusparajah, P., Chan, K.G., Goh, B.H. and Lee, L.H. (2017). The potential of Streptomyces as biocontrol agents against the rice blast fungus, Magnaporthe oryzae (Pyricularia oryzae). Frontiers in Microbiology 8:3.

Li, G.T., Zhou, X.Y. and Xu, J.R. (2012). Genetic control of infection-related development in Magnaporthe oryzae. Current Opinion in Microbiology 15, 678-684.

Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., Valiante, V. and Brakhage, A.A. (2016). Regulation and role of fungal secondary metabolites. In Annual Review of Genetics 50, 371-392.

Marcel, S., Paszkowski, U., Sawers, R., Oakeley, E. and Angliker, H. (2010). Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. Plant Cell 22, 3177-3187.

Masi M, Santoro E, Clement S, et al. (2020). Further secondary metabolites produced by the fungus Pyricularia grisea isolated from buffelgrass (Cenchrus ciliaris). Chirality 32, 1234-1242.

Mersereau, M., Pazour, G. J. and Das, A. (1990). Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene 90, 149-151.

Motoyama, T., Kadokura, K., Ohira, T., Ichiishi, A., Fujimura, M., Yamaguchi, I. and Kudo, T. (2005). A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action. Fungal Genetics and Biology 42, 200-212.

Motoyama, T., Nogawa, T., Hayashi, T., Hirota, H. and Osada, H. (2019). Induction of Nectriapyrone Biosynthesis in the rice blast fungus Pyricularia oryzae by disturbance of the two-component signal transduction system. ChemBioChem 20, 693-700.

Myers, O., Sumner, S., Shuzhao, L., Stephen B. and Xiuxia D. (2017). One step forward for reducing false positive and false negative compound identifications from mass spectrometry metabolomics data: new algorithms for constructing extracted ion chromatograms and detecting chromatographic peaks. Analytical Chemistry 89, 8696- 8703.

Namai, T., Nukina, M. and Togashi, J. (1996). Effects of two toxins and a derivative of one toxin produced by rice blast fungus on its infection to inner epidermal tissue of rice leaf sheath. Annals of the Phytopathological Society of Japan 62, 114-118.

Netzker, T., Fischer, J., Weber, J., Mattern, D.J., Konig, C.C., Valiante, V., Schroeckh, V. and Brakhage, A.A. (2015). Microbial communication leading to the activation of silent fungal secondary metabolite gene clusters. Frontiers in Microbiology 6, 299.

Newman, D. and Cragg, G. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products 83, 770-803.

Nowrousian, M. (2009). A novel polyketide biosynthesis gene cluster is involved in fruiting body morphogenesis in the filamentous fungi Sordaria macrospora and Neurospora crassa. Current Genetics 55, 185-198.

Nukina M. (1998) On the phylogenetic correlations of phytotoxins and related metabolites among blast disease fungi. Developments in Plant Pathology 13, 165-166.

Nukina, M. (1999). The blast disease fungi and their metabolic products. Journal of Pesticide Science 24, 293-298.

Nukina, M., Sassa, T., Ikeda, M., Umezawa, T. and Tasaki, H. (1981). Pyriculariol, a new phytotoxic metabolite of Pyricularia Oryzae Cavara. Agricultural and Biological Chemistry 45, 2161-2162.

Osbourn, A. (2010). Secondary metabolic gene clusters: evolutionary toolkits for chemical innovation. Trends in Genetics 26, 449-457.

Penning, T. M. (2015). The aldo-keto reductases (AKRs): Overview. Chemico-Biological Interactions 234, 236-246.

Pihet, M., Vandeputte, P., Tronchin, G., Renier, G., Saulnier, P., Georgeault, S., Mallet, R., Chabasse, D., Symoens, F. and Bouchara, J.P. (2009). Melanin is an essential component for the integrity of the cell wall of Aspergillus fumigatus conidia. BMC Microbiology 9, 177.

Pluskal, T., Castillo, S., Villar-Briones, A. et al. (2010) MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics 11, 395.

Rao, A.N. and Suryanarayanan, S. (1974). Studies on the toxins of pyricularia... Detection of pyriculol in cultures of pyricularia. Proceedings of the Indian Academy of Sciences Section B 80, 31-40.

Raveloson, H., Ratsimiala Ramonta, I., Tharreau, D. and Sester, M. (2018). Long-term survival of blast pathogen in infected rice residues as major source of primary inoculum in high altitude upland ecology. Plant Pathology 67, 610-618.

Rho, H. S., Kang, S. and Lee, Y. H. (2001). Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Molecules and Cells 12, 407-411.

Rizner, T.L. (2012). Enzymes of the AKR1B and AKRIC subfamilies and uterine diseases. Frontiers in Pharmacology 3, 34.

Rizner, T.L. and Penning, T.M. (2014). Role of aldo-keto reductase family 1 (AKR1) enzymes in human steroid metabolism. Steroids 79, 49-63.

Ruiz, F. X., Porté, S., Parés, X. and Farrés, J. (2012). Biological role of aldo-keto reductases in retinoic acid biosynthesis and signaling. Front. Pharmacology 3, 58.

Sasaki, A., Tanaka, K., Sato, Y., Kuwahara, S. and Kiyota, H. (2009). First synthesis and absolute configuration of (-)-pyriculariol, a phytotoxin isolated from rice blast fungus, Magnaporthe grisea use of microwave irradiation to control Stille coupling reaction products. Tetrahedron Letters 50, 4637-4638.

Sambrook J, Fritsch EF and Maniatis T. (2001). Molecular cloning: A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press.

Sesma, A. and Osbourn, A. E. (2004). The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature 431, 582-586.

Stroe, M., Netzker, T., Scherlach, K., Krüger, T., Hertweck, C., Valiante, Vi. and Brakhage, A. (2020). Targeted induction of a silent fungal gene cluster encoding the bacteria-specific germination inhibitor fumigermin. eLife 9, e52541.

Tanaka, K., Nakamura, Y., Sasaki, A., Ueda, R., Suzuki, Y., Kuwahara, S. and Kiyota, H. (2009). Synthesis and plant growth inhibitory activity of both enantiomers of pyricuol, a phytotoxin isolated from rice blast disease fungus Magnaporthe grisea.Tetrahedron 65, 6115-6122.

Tanaka, K., Sasaki, A., Cao, H.Q, Yamada, T., Igarashi, M., Komine, I., Nakahigashi, H., Minami, N., Kuwahara, S., Nukina, M., et al. (2011). Synthesis and biotransformation of plausible biosynthetic intermediates of salicylaldehyde-type phytotoxins of rice blast fungus, Magnaporthe grisea. European Journal of Organic Chemistry 31, 6276-6280.

Tosa, Y. and Chuma, I. (2014). Classification and parasitic specialization of blast fungi. Journal of General Plant Pathology 80, 202-209.

Tsurushima T., Nakayashiki H., Tosa Y. and Mayama S. (2009) Pathogenicity-related compounds produced by blast fungus. Advances in Genetics, Genomics and Control of Rice Blast Disease 247-255.

Uberto, R. and Moomaw, E. W. (2013). Protein similarity networks reveal relationships among sequence, structure, and function within the cupin superfamily. Plos One 8, e74477.

Victor G.M., Germán M., Rachel S., Francisca M., Jesús M., Olga G. and José R. T. (2018). Ultraviolet (IUV) and mass spectrometry (IMS) imaging for the deconvolution of microbial interactions. BMC Systems Biology 12, 99.

Wilson, R.A. and Talbot, N.J. (2009). Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology 7, 185-195.

Yun, C.S., Motoyama, T. and Osada, H. (2015). Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS-PKS hybrid enzyme. Nature Communications 6, 8758.

Zabala O. A., Xu, W., Chooi, Y.H. and Tang, Y. (2012). Characterization of a silent azaphilone gene cluster from Aspergillus niger ATCC 1015 reveals a hydroxylation-mediated pyran-ring formation. Chemistry and Biology 19, 1049-1059.

Zhiyue Z, Youmin Y., Yiu-Sun H. and Vi T. (2019). Genome mining reveals Neurospora crassa can produce the salicylaldehyde Sordarial. Journal of Natural Products 82, 1029-1033.

池田治生.(2015).ポストゲノム時代に向けた微生物由来天然物医薬品の探索研究.化学と生物54.17-26.

鎌倉高志。本山高幸。山口.(2001).いもち病菌感染の分子機構. 化学と生物39,340-347.

鎌倉高志.(2006)。イネいもち病菌の付着器分化に関わる遺伝子群の研究で全てが解るのか?日本農薬学会誌 31.479-483.

清田洋正。佐々木香。田中功二。中村菓子。上田美。鈴木雄二。桑原重文。貫名学.(2011) サリチルアルデヒド型イネいもち病菌毒素の合成化学的研究.天然有機化合物討論会講演要旨集 53

玉基一郎.赤城靖典.高尾和実.難波英二.山本幹博.秋光和也。柘植尚志.(2014).ゲノム解析からみた植物病原糸状菌の二次代謝産物生合成系と病原性の進化・多様性。日植病報80.207-216.

曽根輝雄.(1996).いもち病菌の生物学的多様性。化学と生物34.676-682.

貫名学.(1987).いもち病菌の代謝産物の菌株間比較と新代謝産物Pyrichalasin Hの構造.天然物有機化合物討論会講演要旨集 29

貫名学.(1998).いもち病菌の2次代謝産物.化学と生物36,582-588.

林長生.(2005).農業生物資源研究所生物遺伝資源利用マニュアル(18)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る