リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Patient Identification Based on Deep Metric Learning for Preventing Human Errors in Follow-up X-Ray Examinations」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Patient Identification Based on Deep Metric Learning for Preventing Human Errors in Follow-up X-Ray Examinations

Ueda, Yasuyuki 上田, 康之 ウエダ, ヤスユキ Morishita, Junji 杜下, 淳次 モリシタ, ジュンジ 九州大学

2023.06.12

概要

Biological fingerprints extracted from clinical images can be used for patient identity verification to determine misfiled clinical images in picture archiving and communication systems. However, such

この論文で使われている画像

参考文献

1. Morishita J, Ueda Y: New solutions for automated image recognition and identification: challenges to radiologic technology

and forensic pathology. Radiol Phys Technol 14:123-133, 2021.

https://​doi.​org/​10.​1007/​s12194-​021-​00611-9.

2. Morishita J, Katsuragawa S, Kondo K, Doi K: An automated

patient recognition method based on an image-matching technique

using previous chest radiographs in the picture archiving and communication system environment. Med Phys 28(6):1093–1097,

2001. https://​doi.​org/​10.​1118/1.​13734​03

3. Morishita J, Watanabe H, Katsuragawa S, et al.: Investigation of

misfiled cases in the PACS environment and a solution to prevent

18. 19. 20. filing errors for chest radiographs. Acad Radiol 12(1):97-103,

2005. https://​doi.​org/​10.​1016/j.​acra.​2004.​11.​008.

Bittle MJ, Charache P, Wassilchalk DM: Registration-associated

patient misidentification in an academic medical center: causes

and corrections. Jt Comm J Qual Patient Saf 33(1):25-33, 2007.

https://​doi.​org/​10.​1016/​S1553-​7250(07)​33004-3

Danaher LA, Howells J, Holmes P, Scally P: Is it possible to eliminate

patient identification errors in medical imaging? J Am Coll Radiol

8(8):568-574, 2011. https://​doi.​org/​10.​1016/j.​jacr.​2011.​02.​021.

Seiden SC, Barach P. Wrong-side/wrong-site, wrong-procedure,

and wrong-patient adverse events: Are they preventable? Arch Surg

141(9):931-939, 2006. https://​doi.​org/​10.​1001/​archs​urg.​141.9.​931

Henneman PL, Fisher DL, Henneman EA, Pham TA, Campbell

MM, Nathanson BH: Patient identification errors are common in

a simulated setting. Ann Emerg Med 55(6):503-509, 2010. https://​

doi.​org/​10.​1016/j.​annem​ergmed.​2009.​11.​017.

Schulmeister L: Patient misidentification in oncology care. Clin

J Oncol Nurs 12(3):495-498, 2008. https://​doi.​org/​10.​1188/​08.​

CJON.​495-​498.

The Joint Commission: National Patient Safety Goals Effective

July 2020 for the Hospital Program. 2020. Available at https://​

www.​j oint​c ommi​s sion.​o rg/-/​m edia/​t jc/​d ocum​e nts/​stand​a rds/​

natio​nal-​patie​nt-​safety-​goals/​2020/​npsg_​chapt​er_​hap_​jul20​20.​

pdf. Accessed Sep 28, 2021.

Emergency Care Research Institute: Patient identification errors.

2016. Available at https://​www.​ecri.​org/​Resou​rces/​HIT/​Patie​nt%​

20ID/​Patie​nt_​Ident​ifica​tion_​Evide​nce_​Based_​Liter​ature_​final.​

pdf. Accessed Sep 28, 2021.

Healthcare Financial Management Association. 2016. The Value

of Precise Patient Identification. Accessed Sep 28, 2021. https://​

www.​impri​vata.​com/​resou​rces/​white​papers/​hfma-​educa​tional-​

report-​value-​preci​se-​patie​nt-​ident​ifica​tion.

Packhäuser K, Gündel S, Münster N, et al.: Deep learning-based

patient re-identification is able to exploit the biometric nature of

medical chest X-ray data. Sci Rep 12:14851, 2022. https://d​ oi.o​ rg/​

10.​1038/​s41598-​022-​19045-3

Ueda Y, Morishita J, Kudomi S, Ueda K: Usefulness of biological

fingerprint in magnetic resonance imaging for patient verification.

Med Biol Eng Comput 54:1341-1351, 2016. https://​doi.​org/​10.​

1007/​s11517-​015-​1380-x.

Ueda Y, Morishita J, Hongyo T: Biological fingerprint using scout

computed tomographic images for positive patient identification.

Med Phys 46:4600-4609, 2019. https://d​ oi.o​ rg/1​ 0.1​ 002/m

​ p.1​ 3779.

Ueda Y, Morishita J, Kudomi S: Biological fingerprint for patient

verification using trunk scout views at various scan ranges in

computed tomography. Radiol Phys Technol 15: 398-408, 2022.

https://​doi.​org/​10.​1007/​s12194-​022-​00682-2

Morishita J, Katsuragawa S, Sasaki Y, Doi K: Potential usefulness of biological fingerprints in chest radiographs for automated

patient recognition and identification. Acad Radiol 11:309–315,

2004. https://​doi.​org/​10.​1016/​s1076-​6332(03)​00655-x.

Shimizu Y, Matsunobu Y, Morishita J: Evaluation of the usefulness of modified biological fingerprints in chest radiographs for

patient recognition and identification. Radiol Phys Technol 9:240244, 2016. https://​doi.​org/​10.​1007/​s12194-​016-​0355-4.

Shimizu Y, Morishita J: Development of a method of automated

extraction of biological fingerprints from chest radiographs as

preprocessing of patient recognition and identification. Radiol

Phys Technol 10:376-381, 2017. https:// ​ d oi. ​ o rg/ ​ 1 0. ​ 1 007/​

s12194-​017-​0400-y.

Kao EF, Lin WC, Jaw TS, Liu GC, Wu JS, Lee CN: Automated patient

identity recognition by analysis of chest radiograph features. Acad

Radiol 20:1024-1031, 2013. https://​doi.​org/​10.​1016/j.​acra.​2013.​04.​006.

Shamir L, Ling S, Rahimi S, Ferrucci L, Goldberg IG: Biometric identification using knee X-rays. Int J Biom 1:365-370, 2009.

https://​doi.​org/​10.​1504/​IJBM.​2009.​024279.

13

21. Lamb JM, Agazaryan N, Low DA: Automated patient identification and localization error detection using 2-dimensional to

3-dimensional registration of kilovoltage x-ray setup images. Int

J Radiat Oncol Biol Phys 87:390-393, 2013. https://​doi.​org/​10.​

1016/j.​ijrobp.​2013.​05.​021.

22. Silverstein E, Snyder M: Implementation of facial recognition

with Microsoft Kinect v2 sensor for patient verification. Med Phys

44:2391-2399. 2017. https://​doi.​org/​10.​1002/​mp.​12241

23. Wiant DB, Verchick Q, Gates P, et al.: A novel method for radiotherapy patient identification using surface imaging. J Appl Clin Med

Phys 17:271-278, 2016. https://​doi.​org/​10.​1120/​jacmp.​v17i2.​6066

24. Parks CL, Monson KL: Automated facial recognition of computed tomography-derived facial images: patient privacy implications. J Digit Imaging 30:204-214, 2017. https://​doi.​org/​10.​1007/​

s10278-​016-​9932-7

25. Koike-Akino T, Mahajan R, Marks TK, et al.: High-accuracy user

identification using EEG biometrics. Conf Proc IEEE Eng Med

Biol Soc 2016: 854-858, 2016.

26. Toge R, Morishita J, Sasaki Y, Doi K: Computerized image-searching

method for finding correct patients for misfiled chest radiographs in a

PACS server by use of biological fingerprints. Radiol Phys Technol

6:437–443, 2013. https://​doi.​org/​10.​1007/​s12194-​013-​0221-6

27. Sakai Y, Takahashi K, Shimizu Y, Ishibashi E, Kato T, Morishita J:

Clinical application of biological fingerprints extracted from averaged

chest radiographs and template-matching technique for preventing

left-right flipping mistakes in chest radiography. Radiol Phys Technol

12:216-223, 2019. https://​doi.​org/​10.​1007/​s12194-​019-​00504-y

28. Nguyen K, Nguyen HH, Tiulpin A: AdaTriplet: Adaptive gradient

triplet loss with automatic margin learning for forensic medical image

matching. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI

2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13438,

725–735, 2022. https://​doi.​org/​10.​1007/​978-3-​031-​16452-1_​69

29. Ciaffi R, Gibelli D, Cattaneo C: Forensic radiology and personal identification of unidentified bodies: a review. Radiol Med

116:960-968, 2011. https://​doi.​org/​10.​1007/​s11547-​011-​0677-6

30. Clemente MA, La Tegola L, Mattera M, Guglielmi G: Forensic

radiology: An update. J Belg Soc Radiol 101(Suppl 2):21, 2017.

https://​doi.​org/​10.​5334/​jbr-​btr.​1420

31. Matsunobu Y, Morishita J, Usumoto Y, Okumura M, Ikeda N:

Bone comparison identification method based on chest computed

tomography imaging. Leg Med (Tokyo) 29:1-5, 2017. https://​doi.​

org/​10.​1016/j.​legal​med.​2017.​08.​002

32. Wada Y, Morishita J, Yoon Y, Okumura M, Ikeda N: A simple

method for the automatic classification of body parts and detection

of implanted metal using postmortem computed tomography scout

view. Radiol Phys Technol 13:378-384, 2020. https://​doi.​org/​10.​

1007/​s12194-​020-​00581-4

33. Kawazoe Y, Morishita J, Matsunobu Y, Okumura M, Shin S, Usumoto

Y, Ikeda N: A simple method for semi-automatic readjustment for

positioning in post-mortem head computed tomography imaging. J

Forensic Radiol Imaging 16:57–64, 2019. https://​doi.​org/​10.​1016/j.​

jofri.​2019.​01.​004

34. Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK:

A review of sex estimation techniques during examination of skeletal

remains in forensic anthropology casework. Forensic Sci Int 261:165.

e1-165.e1658, 2016. https://​doi.​org/​10.​1016/j.​forsc​iint.​2016.​02.​007

35. Tsubaki S, Morishita J, Usumoto Y, et al.: Sex determination

based on a thoracic vertebra and ribs evaluation using clinical

chest radiography. Leg Med (Tokyo) 27:19-24, 2017. https://​doi.​

org/​10.​1016/j.​legal​med.​2017.​06.​003

36. Kim TK, Yi PH, Wei J et al.: Deep learning method for automated classification of anteroposterior and posteroanterior chest

radiographs. J Digit Imaging 32:925-930, 2019. https://​doi.​org/​

10.​1007/​s10278-​019-​00208-0

13

Journal of Digital Imaging

37. Bae J, Yu S, Oh J, Kim TH, Chung JH, Byun H, Yoon MS, Ahn C,

Lee DK: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and

non-displaced fracture on plain X-ray. J Digit Imaging. 34:10991109, 2021. https://​doi.​org/​10.​1007/​s10278-​021-​00499-2

38. Suzuki T, Maki S, Yamazaki T, Wakita H, Toguchi Y, Horii M,

Yamauchi T, Kawamura K, Aramomi M, Sugiyama H, Matsuura

Y, Yamashita T, Orita S, Ohtori S: Detecting distal radial fractures from wrist radiographs using a deep convolutional neural

network with an accuracy comparable to hand orthopedic surgeons. J Digit Imaging. 35:39-46, 2022. https://​doi.​org/​10.​1007/​

s10278-​021-​00519-1

39. Liu F, Gao L, Wan J, Lyu ZL, Huang YY, Liu C, Han M: Recognition of digital dental X-ray images using a convolutional neural

network. J Digit Imaging. 36:73-79, 2023. https://d​ oi.o​ rg/1​ 0.1​ 007/​

s10278-​022-​00694-9.

40. Çallı E, Sogancioglu E, van Ginneken B, van Leeuwen KG, Murphy

K: Deep learning for chest X-ray analysis: A survey. Med Image

Anal. 72:102125, 2021. https://​doi.​org/​10.​1016/j.​media.​2021.​

102125

41. Agrawal T, Choudhary P: Segmentation and classification on chest

radiography: a systematic survey. Vis Comput. 39:875-913, 2023.

https://​doi.​org/​10.​1007/​s00371-​021-​02352-7

42. Baltruschat IM, Nickisch H, Grass M et al.: Comparison of deep

learning approaches for multi-label chest X-ray classification. Sci

Rep 9: 6381, 2019. https://​doi.​org/​10.​1038/​s41598-​019-​42294-8

43. Ieki H, Ito K, Saji M et al.: Deep learning-based age estimation

from chest X-rays indicates cardiovascular prognosis. Commun Med (Lond) 2:159, 2022. https://​doi.​org/​10.​1038/​s43856-​

022-​00220-6

44. Gichoya JW, Banerjee I, Bhimireddy AR et al.: AI recognition

of patient race in medical imaging: a modelling study. Lancet

Digit Health. 4:e406-e414, 2022. https://​doi.​org/​10.​1016/​S2589-​

7500(22)​00063-2.

45. Yang M, Tanaka H, Ishida T: Performance improvement in multilabel thoracic abnormality classification of chest X-rays with

noisy labels. Int J Comput Assist Radiol Surg 18(1):181-189,

2022. https://​doi.​org/​10.​1007/​s11548-​022-​02684-2.

46. Kawakubo M, Waki H, Shirasaka T, Kojima T, Mikayama R,

Hamasaki H, Akamine H, Kato T, Baba S, Ushiro S, Ishigami

K: A deep learning model based on fusion images of chest radiography and X-ray sponge images supports human visual characteristics of retained surgical items detection. Int J Comput Assist

Radiol Surg 2022. https://​doi.​org/​10.​1007/​s11548-​022-​02816-8.

47. Wu C, Wu H, Lei S, Li X, Tong H: Deep learning in automatic fingerprint identification. 2021 IEEE 6th International Conference on Smart

Cloud. 111–116, 2021. https://​doi.​org/​10.​1109/​Smart​Cloud​52277.​

2021.​00027

48. Finizola J, Targino J, Teodoro F, Lima C: Comparative study

between deep face, autoencoder and traditional machine learning

techniques aiming at biometric facial recognition. 2019 International Joint Conference on Neural Networks (IJCNN) 1–8, 2022.

https://​doi.​org/​10.​1109/​IJCNN.​2019.​88522​73

49. Priyadharshini AR, Arivazhagan S, Arun M: A deep learning

approach for person identification using ear biometrics. Appl

Intell (Dordr). 51:2161–2172, 2021. https://​doi.​org/​10.​1007/​

s10489-​020-​01995-8

50. Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM: ChestXRay8: Hospital-scale chest X-ray database and benchmarks on

weakly-supervised classification and localization of common

thorax diseases. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), Honolulu, HI, USA, 3462–3471,

2017. https://​doi.​org/​10.​1109/​CVPR.​2017.​369

51. Bustos A, Pertusa A, Salinas JM, de la Iglesia-Vayá M: PadChest:

A large chest x-ray image dataset with multi-label annotated

Journal of Digital Imaging 52. 53. 54. 55. 56. 57. reports. Med Image Anal 66, 101797, 2020. https://​doi.​org/​10.​

1016/j.​media.​2020.​101797

Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S, Chute C,

Marklund H, Haghgoo B, Ball R, Shpanskaya K, Seekins J. CheXpert: A large chest radiograph dataset with uncertainty labels and

expert comparison. In Proceedings of the AAAI Conference on

Artificial Intelligence 33:590-597, 2019. https://​doi.​org/​10.​1609/​

aaai.​v33i01.​33015​90

Kwon J, Kim J, Park H, Choi IK: Asam: Adaptive sharpnessaware minimization for scale-invariant learning of deep neural

networks. In Proceedings of the 38th International Conference on

Machine Learning. PMLR. 2021. https://​proce​edings.​mlr.​press/​

v139/​kwon2​1b.​html.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen LC.: Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR)

4510–4520, 2018. https://​doi.​org/​10.​1109/​CVPR.​2018.​00474

Tan M, Chen B, Pang R, et al.: MnasNet: Platform-aware neural

architecture search for mobile. 2019 IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR). 2815–2823,

2019. https://​doi.​org/​10.​1109/​CVPR.​2019.​00293

Tan M, Le Q: EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the 36th International

Conference on Machine Learning, ICML 2019. 6105–6114, 2019.

Tan M, Le Q: EfficientNetV2: Smaller models and faster training. Proceedings of the 38th International Conference on Machine

Learning, PMLR 139:10096–10106, 2021.

58. Musgrave K, Belongie S, Lim SN: A metric learning reality check.

In: Vedaldi A, Bischof H, Brox T, Frahm JM. (eds) Computer

Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer

Science, 12370. 681–699, Springer, Cham. 2020. https://​doi.​org/​

10.​1007/​978-3-​030-​58595-2_​41

59. Zhang X, Zhao R, Qiao Y, Wang X, Li H: AdaCos: Adaptively

scaling cosine logits for effectively learning deep face representations. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 10815–10824, 2019. https://d​ oi.o​ rg/1​ 0.​

1109/​CVPR.​2019.​01108

60. Nguyen HV, Bai L: Cosine similarity metric learning for face

verification. In: Kimmel R, Klette R, Sugimoto A. (eds) Computer

Vision – ACCV 2010. ACCV 2010. Lecture Notes in Computer

Science, vol 6493. 709–720, https://​doi.​org/​10.​1007/​978-3-​642-​

19309-5_​55

61. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the

areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 44:837-845,

1988. https://​doi.​org/​10.​2307/​25315​95

62. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D:

Grad-CAM: visual explanations from deep networks via gradientbased localization. Int J Comput Vis 128:336-359, 2020. https://​doi.​

org/​10.​1007/​s11263-​019-​01228-7

Publisher's Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

13

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る