リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「口腔扁平上皮癌におけるcytokeratin 19の発現と機能に関する研究 : ΔNp63との関わりについて」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

口腔扁平上皮癌におけるcytokeratin 19の発現と機能に関する研究 : ΔNp63との関わりについて

田中, 翔一 TANAKA, Shoichi タナカ, ショウイチ 九州大学

2020.03.23

概要

⼝腔扁平上⽪癌(oral squamous cell carcinoma: OSCC)は、⼝腔粘膜由来の悪性腫瘍であり、⼝腔がんの約 90%を占める。OSCC 患者では、しばしば頸部リンパ節転移が認められ、転移症例の⽣存率は⾮転移症例と⽐較して有意に低下することから、転移をいかに制御するかが極めて重要である。そこでわれわれは、転移の最初のプロセスである癌の浸潤に焦点をあてて研究を⾏ってきた。その結果、癌抑制遺伝⼦ p53 のホモログであるΔNp63 の発現減弱により上⽪-間葉転換が誘導され、OSCC の浸潤能が促進することを⽰した。しかしながら、ΔNp63 がいかにして OSCCの浸潤能を制御しているのかは不明であった。本研究では、様々な癌腫で浸潤との関連が報告されている cytokeratin (CK) 19 に着⽬し、OSCC での発現や癌の浸潤における ΔNp63 と CK19 との関わりについて検討を⾏なった。

1. OSCC 生検組織における CK19 の発現と病理組織学的所見との関連OSCC 患者 100 名(男性: 60 名、⼥性: 40 名)の⽣検組織を⽤いて、CK19 の発現を免疫組織化学的に検索した。CK19 の発現は OSCC 浸潤先端部で強かったが、その陽性率(labeling index:LI)は症例によって⼤きく異なっていた。そこで、受信者動作特性曲線より算出したカットオフ値(5%と 77%)に基づいて、A 群(LI <5%)、B 群(5%≤ LI <77%)、C 群(LI ≥77%)の 3 群に分類し、病理組織学的所⾒との関連について検討した。その結果、C 群では組織学的悪性度の⾼い症例が多く、頸部リンパ節転移の発⽣頻度が有意に⾼かった。次に、頸部リンパ節転移巣におけるCK19 の発現を検索したところ、原発巣と転移巣における CK19 の発現様式は類似しており、またC 群では多発転移や節外浸潤を認めた症例が多かった。さらに、疾患特異的 5 年累積⽣存率は A群が 93.1%、B 群が 97.1%、C 群が 88.5%であり、統計学的有意差は認められなかったものの、C群で最も低かった。

2. OSCC における CK19 および ΔNp63 の発現と機能に関する検討まず、OSCC ⽣検組織においてΔNp63 と CK19 の局在を検索したところ、CK19 は腫瘍中⼼部よりも浸潤先端部で強く発現していたが、ΔNp63 の発現は浸潤先端部で減弱していた。次に、5種類の OSCC 細胞株(低転移株:HSC-2、HSC-3、SQUU-A、SAS、⾼転移株:SQUU-B)およびヒト正常⾓化上⽪細胞(HaCaT)を⽤いて、CK19 および ΔNp63 の発現を RT-PCR 法により検索した。その結果、⾼転移株である SQUU-B 細胞では CK19 の発現が⾼く、ΔNp63 の発現は低かったが、低転移株である HSC-2 細胞では逆に CK19 の発現が低く、ΔNp63 の発現が⾼かった。また、同⼀患者より樹⽴した SQUU-A 細胞と SQUU-B 細胞における CK19 の発現をフローサイトメトリーにて検索したところ、SQUU-A 細胞と⽐べて SQUU-B 細胞では CK19 の発現が⾼かった。さらに、SQUU-A 細胞でΔNp63 をノックダウンすると、CK19 の発現が有意に増強された。⼀⽅、SQUU-B 細胞に CK19 siRNA を導⼊したところ、遊⾛能および浸潤能が著明に抑制された。

以上の結果から、ΔNp63 の発現減弱により CK19 の発現が増強することで、OSCC の運動能が亢進し、その結果癌の進展に寄与することが⽰唆された。

この論文で使われている画像

参考文献

1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics. CA cancer J Clin. 2018; 68: 394−424.

2. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009; 45: 309−316.

3. Gupta B, Johnson NW, Kumar N. Global epidemiology of head and neck cancers. Oncology. 2016; 91: 13−23.

4. Capote-Moreno A, Naval L, Munoz-Guerra MF, Sastre J, Rodriguez- Campo FJ. Prognostic factors influencing contralateral neck lymph node metastases in oral and oropharyngeal carcinoma. J Oral Maxillofac Surg. 2010; 68: 268−275.

5. Sano D, Myers JN. Metastasis of squamous cell carcinoma of the oral tongue. Cancer Metastasis Rev. 2007; 26: 645−662.

6. Kowalski LP, Bagietto R, Lara JR, Santos RL, Silva JF, Jr., Magrin J. Prognostic significance of the distribution of neck node metastasis from oral carcinoma. Head Neck. 2000; 22: 207−214.

7. Goerres GW, Schmid DT, Gratz KW, von Schulthess GK, Eyrich GK. Impact of whole body positron emission tomography on initial staging and therapy in patients with squamous cell carcinoma of the oral cavity. Oral Oncol. 2003; 39: 547−551.

8. Teknos TN, Rosenthal EL, Lee D, Taylor R, Marn CS. Positron emission tomography in the evaluation of stage III and IV head and neck cancer. Head Neck. 2001; 23: 1056−1060.

9. Araki Y, Okada Y, Izumi M, and Katagiri M. An Analysis of Distant Metastases in Oral Squamous Cell Carcinoma. J Hard Tissue Biol. 2010; 19: 27−32.

10. Kawano S, Zheng Y, Oobu K, Matsubara R, Goto Y, Chikui T, et al. Clinicopathological evaluation of pre-operative chemoradiotherapy with S-1 as a treatment for locally advanced oral squamous cell carcinoma. Oncol Lett. 2016; 3369−3376.

11. Fidler IJ. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3: 453−458.

12. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997; 80: 1529−1537.

13. Liotta LA, Rao CN, Barsky SH. Tumor invasion and the extracellular matrix. Laboratory investigation; J Tech Met Pathol. 1983; 49: 636−649.

14. Hanahan Dand Weinberg RA. The hallmarks of cancer. Cell. 2000; 100: 57−70.

15. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002; 2: 573−583.

16. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86: 353−364.

17. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007; 7: 737−749.

18. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, et al. p63, a p53 homolog at 3q27-29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell. 1998; 2: 305−316.

19. Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 1999; 6: 1154−1161.

20. Augustin M, Bamberger C, Paul D, Schmale H. Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog Ket to mouse chromosome 16. Mammalian Genome: Official Journal of the International Mammalian Genome Society. 1998; 9: 899−902.

21. Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D. A new human p53 homologue. Nat Med. 1998; 4: 747−748.

22. Jost CA, Marin MC, Kaelin WG, Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997; 389: 191−194.

23. Hagiwara K, McMenamin MG, Miura K, Harris CC. Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res. 1999; 59: 4165−4169.

24. Higashikawa K, Yoneda S, Tobiume K, Saitoh M, Taki M, Mitani Y, et al. DeltaNp63alpha-dependent expression of Id-3 distinctively suppresses the invasiveness of human squamous cell carcinoma. Int J Cancer. 2009; 12: 2837−44.

25. DeCastro AJ, Cherukuri P, Balboni A, DiRenzo J. ΔNP63α transcriptionally activates chemokine receptor 4 (CXCR4) expression to regulate breast cancer stem cell activity and chemotaxis. Mol Cancer Ther. 2015; 14: 225−35.

26. Citro S, Bellini A, Miccolo C, Ghiani L, Carey TE, Chiocca S. Synergistic antitumour activity of HDAC inhibitor SAHA and EGFR inhibitor gefitinib in head and neck cancer: a key role for ΔNp63α. Br J Cancer. 2019; 120: 658−667.

27. Moll R, Franke WW, Schiller DL, Geiger B and Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982; 31: 11−24.

28. Moll R, Krepler R, and Franke WW. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation 1983; 23: 256–269.

29. Wu YJ and Rheinwald JG. A new small (40 kd) keratin filament protein made by some cultured human squamous cell carcinomas. Cell. 1981; 25: 627−635.

30. Sugama Y, Kitamura S, Kawai T, Ohkubo A, Hasegawa S, Kuriyama T, et al. Clinical usefulness of CYFRA assay in diagnosing lung cancer: measurement of serum cytokeratin fragment. Jpn J Cancer Res. 1994; 85: 1178−1184.

31. Wieskopf B, Demangeat C, Purohit A, Strenger R, Gries P, Kreisman H, et al. Cyfa21-1 as a biologic marker of non-small cell lung cancer. Chest. 1995; 108: 163−169.

32. Takahashi H, Kurishima K and Ishikawa H. Optimal cutoff points of CYFRA21-1 for survival prediction in non-small cell lung cancer patients based on running statistical analysis. Anticancer Res. 2010; 30: 3833−3837.

33. Ju JH, Yang W, Lee KM, Oh S, Nam K, Shim S, et al. Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin Cancer Res. 2013; 19: 4335−4346.

34. Saha SK, Yin Y, Chae HS and Cho SG. Opposing Regulation of Cancer Properties via KRT19-Mediated Differential Modulation of Wnt/β-Catenin/Notch Signaling in Breast and Colon Cancers. Cancers (Basel). 2019; 15: 11.

35. Govaere O, Komuta M, Berkers J, Spee B, Janssen C, de Luca F, et al. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut. 2014; 63: 674−685.

36. Ernst J, Ikenberg K, Apel B, Schumann DM, Huber G, Studer G, et al. Expression of CK19 is an independent predictor of negative outcome for patients with squamous cell carcinoma of the tongue. Oncotarget. 2016; 7: 76151−76158.

37. Ram Prasad VV, Nirmal NR, Kotian MS. Immunohistochemical evaluation of expression of cytokeratin 19 in different histological grades of leukoplakia and oral squamous cell carcinoma. Indian J Dent Res. 2005; 16: 6−11.

38. Zhong LP, Zhao SF, Chen GF, Ping FY, Xu ZF, Hu JA. Increased levels of CK19 mRNA in oral squamous cell carcinoma tissue detected by relative quantification with real-time polymerase chain reaction. Arch Oral Biol. 2006; 51: 1112−1119.

39. Zhong LP, Chen WT, Zhang CP, Zhang ZY. Increased CK19 expression correlated with pathologic differentiation grade and prognosis in oral squamous cell carcinoma patients. Oral Surg Oral Med Oral Pathol Oral Endod. 2007; 104: 377−384.

40. Amin MB, Edge SB, Greene FL, et al. AJCC cancer staging manual (8th ed.), Springer, New York; 2017.

41. Gale N, Pilch BZ, D S. Epithelial precursor lesions. World Health Organization Classification of Tumors. 2005: 177−179.

42. Yamamoto E, Kohama G, Sunakawa H, Iwai M, Hiratsuka H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer. 1983; 51: 2175−2180.

43. Morifuji M, Taniguchi S, Sakai H, Nakabeppu Y, Ohishi M. Differential expression of cytokeratin after orthotopic implantation of newly established human tongue cancer cell lines of defined metastatic ability. Am J Pathol. 2000; 156: 1317−1326.

44. Bombeccari GP, Giannì AB, Spadari F. Immunoexpression of cytokeratin-19 in the oral lichen planus and related oral squamous cell carcinoma. Ann Stomatol (Roma). 2018; 8: 104−109.

45. Morifuji M, Taniguchi S, Sakai H, Nakabeppu Y, and Ohishi M. Differential expression of cytokeratin after orthotopic implantation of newly established human tongue cancer cell lines defined metastatic ability. Am J Pathol. 2000; 156: 1317-26.

46. Noorlag R, van Es RJJ, de Bree, Willems SM. Cytokeratin 19 expression in early oral squamous cell carcinoma and their metastasis: Inadequate biomarker for one-step nucleic acid amplification implementation in sentinel lymph node biopsy procedure. Head Neck. 2017; 39: 1864−1868.

47. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002; 2: 442−454.

48. Potenta S, Zeisberg E, Kalluri R. The role of endothelial-to-mesenchymal transition in cancer progression. Br J Cancer. 2008; 99: 1375–1379.

49. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cellular Physiol. 2007; 213: 374−383.

50. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982; 95: 333−339.

51. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119: 1420−1428.

52. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009; 119: 1429−1437.

53. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006; 66: 8319−8326.

54. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008; 14: 818−829.

55. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7: 415−428.

56. Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol. 2008; 319: 406−415.

57. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139: 871−890.

58. Higashikawa K, Yoneda S, Tobiume K, Taki M, Shigeishi H, Kamata N. Snail-induced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma. Cancer Res. 2007; 67: 9207−9213.

59. Anastas JN, Moon RT. Wnt signalling pathways as therapeutic targets in cancer. Nat Rev Cancer. 2013; 13: 11−26.

60. Kikuchi A, Yamamoto H and Sato A. Selective activation mechanisms of Wnt signaling pathways. Trends Cell Biol. 2009; 19: 119−129.

61. Angers S and Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol. 2009; 10: 468−77.

62. Li C, Chen H, Hu L, Xing Y, Sasaki T, Villosis MF, et al. Ror2 modulates the canonical Wnt signaling in lung epithelial cells through cooperation with Fzd2. BMC Mol Biol. 2008; 23: 9: 11.

63. Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol. 2010; 20: 346−54.

64. Kikuchi A, Yamamoto H, Sato A, and Matsumoto S. Wnt5a: its signaling, functions and implication in diseases. Acta Physiol. 2012; 204: 17−33.

65. Lu C, Wang X, Zhu H, Feng J, Ni S, and Huang J. Overexpression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget. 2015; 6: 24912−21.

66. Pourreyron C, Reilly L, Proby C, Panteleyev A, Fleming C, McLean K, S, et al. Wnt5a is Strongly Expressed at the Leading Edge in Non- Melanoma Skin Cancer, Forming Active Gradients, while Canonical Wnt Signalling is repressed. Plos Ons. 2012; 7: e31827.

67. Edris B, Espinosa I, Muhlenberg T, Mikels A, Lee CH, Steigen SE, et al. ROR2 is a novel prognostic biomarker and a potential therapeutic target in leiomyosarcoma and gastrointestinal stromal tumour. J Pathol. 2012; 227: 223−33.

68. Lu BJ, Wang YQ, Wei XJ, Rong LQ, Wei D, Yan CM, et al. Expression of WNT-5a and ROR2 correlates with disease severity in osteosarcoma. Mol Med Rep. 2012; 5: 1033−6.

69. Sakamoto T, Kawano S, Matsubara R, Goto Y, Jinno T, Maruse Y, et al. Critical roles of Wnt5a-Ror2 signaling in aggressiveness of tongue squamous cell carcinoma and production of matrix metalloproteinase-2 via ΔNp63β-mediated epithelial-mesenchymal transition. Oral Oncol. 2017; 69: 15−25.

70. Saha SK, Choi HY, Kim BW, Dayem AA, Yang GM, Kim KS, et al. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB- dependent NOTCH signaling pathway and breast cancer properties. Oncogene. 2017; 19: 332−349.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る