リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「口腔扁平上皮癌におけるprotease-activated receptor 1の発現と機能に関する研究 : ΔNp63を介した上皮間葉転換との関連」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

口腔扁平上皮癌におけるprotease-activated receptor 1の発現と機能に関する研究 : ΔNp63を介した上皮間葉転換との関連

服部, 多市 HATTORI, Taichi ハットリ, タイチ 九州大学

2020.09.25

概要

近年、癌の浸潤・転移に上皮-間葉転換(epithelial-mesenchymal transition: EMT)が深く関与することが明らかとなってきた。これまでに我々は、口腔扁平上皮癌(oral squamous cell carcinoma: OSCC)の浸潤先端部でΔ Np63 の発現が減弱することにより EMT が誘導されることを報告した。またその際に、浸潤先端部の癌細胞で thrombin 受容体であるprotease-activated receptor(PAR)1 が強く発現していることを見出した。さらに、OSCC細胞でΔNp63 をノックダウンすると、PAR1 の発現が増強していたことから、癌細胞でのEMT 誘導にPAR1 シグナルが関与していることが示唆された。しかしながら、EMT における PAR1 の役割やΔNp63 との関わりについての詳細は不明であった。そこで本研究では、OSCC 生検標本における PAR1 の局在を検索し、その発現様式と臨床病理学的所見や予後との関連を明らかにするとともに、ΔNp63 を介したEMT におけるPAR1 の機能について解析を行った。

1. OSCC 生検標本におけるPAR1 の免疫組織化学的検討
OSCC 生検標本 116 例における PAR1 の発現を免疫組織化学的に検索した。まず腫瘍細胞に着目してPAR1 の発現を観察すると、発現が全く認められない症例から、ほとんどすべての細胞で発現しているものまで様々であった。また、一部の症例では癌胞巣を取り囲む間質細胞にもPAR1 の発現を認めた。これらのPAR1 の発現様式から全症例を、Group A: 腫瘍細胞および間質細胞がともに陰性、Group B: 腫瘍細胞が陰性かつ間質細胞が陽性、Group C: 腫瘍細胞および間質細胞がともに陽性の3 群に分類した。そこで、PAR1 の発現様式と臨床病理学的所見との関連について検討したところ、Group C は、Group A およびB と比較して組織学的悪性度の高い症例が多く、頸部リンパ節転移の発生頻度が有意に高かった。また、頸部リンパ節転移の発生要因となり得る因子についてロジスティック回帰分析による多変量解析を行ったところ、PAR1 の発現様式にのみ統計学的有意差を認め、Group C ではGroup A と比較して頸部リンパ節転移の発生リスクが有意に高かった。疾患特異的累積5 年生存率はGroup A が97.8%、Group Bが93.3%、Group C が79.8%であった。さらに、浸潤先端部の腫瘍細胞におけるthrombin とΔNp63 の発現を検索したところ、Group A ではthrombin の発現は認められなかったが、ΔNp63 は強く発現していた。一方、Group C では thrombin の発現は強かったものの、ΔNp63 の発現強度は逆に減弱しており、PAR1 の発現はΔNp63 の発現と逆相関していた。

2. OSCC 細胞株におけるPAR1 の発現と機能に関する研究
本研究では、5 種類のOSCC 細胞株(低転移株: HSC-2、HSC-3、SQUU-A、SAS、高転移株: SQUU-B)とヒト正常角化上皮細胞株(HaCaT)を用いた。また、SQUU-B 細胞にΔNp63βを過剰発現させたSQUU-BO 細胞とempty vector を導入した SQUU-BC 細胞も使用した。まずΔNp63、PAR1 および thrombin の発現を RT-PCR 法にて検索したところ、 SQUU-B 細胞ではΔNp63 の発現は低く、PAR1 とthrombin の発現は高かった。一方、低転移株とSQUU-BO 細胞ではΔ Np63 の発現は高いもののPAR1 とthrombin の発現は低かった。そこで、SQUU-A 細胞を用いてΔNp63 をノックダウンすると、PAR1 とthrombin の発現が増強した。さらに、SQUU-B 細胞で PAR1 をノックダウンしたところ、上皮系マーカーであるE-cadherin、cytokeratin(CK)5、CK14 の発現量増加、間葉系マーカー(vimentin、N-cadherin、 fibronectin)およびEMT 関連因子(ZEB1、ZEB2、snail、slug、twist)の発現量減少を認め、遊走能と浸潤能が著明に抑制された。

以上の結果から、ΔNp63 の発現減弱により、PAR1 シグナルが活性化することで EMT が誘導され、OSCC の運動能が亢進するものと考えられた。

この論文で使われている画像

参考文献

1. Carvalho AL, Nishimoto IN, Califano JA, Kowalski LP. Trends in incidence and prognosis for head and neck cancer in the United States: a site-specific analysis of the SEER database. Int J Cancer. 2005; 114: 806-816.

2. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009; 45: 309-316.

3. Gupta B, Johnson NW, Kumar N. Global epidemiology of head and neck cancers: a continuing challenge. Oncology. 2016; 91(1):JL3-23.

4. Cooper JS, Pajak TF, Forastiere AA, Jacobs J, Campbell BH, Saxman SB, et al. Postoperative concurrent radiotherapy and chemotherapy for high-risk squamous-cell carcinoma of the head and neck. N Engl J Med. 2004; 350: 1937-1944.

5. Pignon JP, Bourhis J, Domenge C, Designe L. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC Collaborative Group. Meta-Analysis of Chemotherapy on Head Neck Cancer. Lancet. 2000; 355: 949-955.

6. Bernier J, Domenge C, Ozsahin M, Matuszewska K, Lefebvre JL, Greiner RH, et al. Postoperative irradiation with or without concomitant chemotherapy for locally advanced head and neck cancer. N Engl J Med. 2004; 350: 1945-1952.

7. Funk GF, Karnell LH, Robinson RA, Zen WK, Trask DK, and Hoffman HT. Presentation, treatment and outcome of oral cavity cancer: A national cancer data base report. Head Neck. 2002; 24:165-180.

8. Sihver W, Pietzsch J, et al. Radiolabeled cetuximab conjugates for EGFR targeted cancer diagnostics and therapy. Pharmaceuticals. 2014; 7: 311-338,.

9. Herbst RS, Langer CJ. Epidermal growth factor receptors as a target for cancer treatment: the emerging role of IMC-C225 in the treatment of lung and head and neck cancers. Semin Oncol. 2002. 29: 27-36.

10. Woodhouse EC, Chuaqui RF, Liotta LA. General mechanisms of metastasis. Cancer. 1997; 80:1529-1537.

11. Fidler Ij. The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer. 2003; 3: 453-458.

12. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100: 57-70.

13. Stacker SA, Achen MG, Jussila L, Baldwin ME, Alitalo K. Lymphangiogenesis and cancer metastasis. Nat Rev Cancer. 2002; 2: 573- 2583.

14. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996; 86: 353-364.

15. Sahai E. Illuminating the metastatic process. Nat Rev Cancer. 2007; 7: 737-749.

16. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002; 2: 442-454.

17. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14: 818-829.

18. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, et al. Epithelial-mesenchymal and mesenchymal-epithelial transitions in carcinoma progression. J Cellular Physiol. 2007; 213: 374-383.

19. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982; 95: 333-339.

20. Hay ED. An overview of epithelio-mesenchymal transformation. Acta Anatomica. 1995; 154: 8-20.

21. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119: 1420-1428.

22. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Invest. 2009; 119: 1429-1437.

23. Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res. 2006; 66: 8319-8326.

24. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007; 7: 415-428.

25. Wu SY, Yang YP, McClay DR. Twist is an essential regulator of the skeletogenic gene regulatory network in the sea urchin embryo. Dev Biol. 2008; 319: 406-415.

26. Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009; 139: 871-890.

27. Ikawa S, Nakagawara A, Ikawa Y. p53 family genes: structural comparison, expression and mutation. Cell Death Differ. 1999; 6:1154-1161.

28. Augustin M, Bamberger C, Paul D, Schmale H. Cloning and chromosomal mapping of the human p53-related KET gene to chromosome 3q27 and its murine homolog Ket to mouse chromosome 16. Mammalian Genome : Official Journal of the International Mammalian Genome Society. 1998; 9: 899-902.

29. Trink B, Okami K, Wu L, Sriuranpong V, Jen J, Sidransky D. A new human p53 homologue. Nat Med. 1998; 4: 747-748.

30. Osada M, Ohba M, Kawahara C, Ishioka C, Kanamaru R, Katoh I, et al· Cloning and functional analysis of human p51, which structurally and functionally resembles p53. Nat Med. 1998; 4: 839-843.

31. Jost CA, Marin MC, Kaelin WG, Jr. p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature. 1997; 389: 191-194.

32. Hagiwara K, McMenamin MG, Miura K, Harris CC. Mutational analysis of the p63/p73L/p5l/p40/CUSP/KET gene in human cancer cell lines using intronic primers. Cancer Res. 1999; 59: 4165-4169.

33. Lindsay J, McDade SS, Pickard A, McCloskey KD, McCance DJ. Role of DeltaNp63gamma in epithelial to mesenchymal transition. J Biol Chem. 2011; 286: 3915-3924.

34. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP, et al.p53 isoforms can regulate p53 transcriptional activity. Genes Dev. 2005;19: 2122-2137.

35. Ratovitski EA, Patturajan M, Hibi K, Trink B, Yamaguchi K, Sidransky D. p53 associates with and targets Delta Np63 into a protein degradation pathway. Proc Natl Acad Sci. 2001;98:1817-1822.

36. Wu G, Nomoto S, Hoque MO, Dracheva T, Osada M, Lee CC, et al. DeltaNp63alpha and TAp63alpha regulate transcription of genes with distinct biological functions in cancer and development. Cancer Res. 2003; 63: 2351-2357.

37. Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE, et al. AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci. 2000; 97: 5462-5467.

38. Crook T, Nicholls JM, Brooks L, O'Nions J, Allday MJ. High level expression of deltaN-p63: a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene. 2000;19: 3439-3444.

39. Matsubara R, Kawano S, Kiyosue T, Goto Y, Hirano M, Jinno T, et al. Increased DeltaNp63 expression is predictive of malignant transformation in oral epithelial dysplasia and poor prognosis in oral squamous cell carcinoma. IntJClin Oncol. 2011;39:1391-1399.

40. Goto Y, Kawano S, Matsubara R, Kiyosue T, Hirano M, Jinno T, et al. Possible involvement of DeltaNp63 downregulation in the invasion and metastasis of oral squamous cell carcinoma via induction of a mesenchymal phenotype. Clin Exp Metastasis. 2014; 31:293-306.

41. Kaneko N, Kawano S, Yasuda K, Hashiguchi1 i, Sakamoto T, Matsubara R, et al. Differential roles of kallikrein-related peptidase 6 in malignant transformation and ΔΝρ63 β -mediated epithelial-mesenchymal transition of oral squamous cell carcinoma. Oral Oncol. 2017; 75:148-157.

42. Vu TK, Hung DT, Wheaton VI, Coughlin SR. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991;64:1057-1068.

43. Nystedt S, Emilsson K, Wahlestedt C, Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci. 1994; 91:9208- 9212.

44. Kahn ML, Zheng YW, Huang W, Bigornia V, Zeng D, Moff S, et al.A dual thrombin receptor system for platelet activation. Nature. 1998; 394: 690- 694.

45. Coughlin SR. Thrombin signalling and protease-activated receptors. Nature. 2000; 407(6801):258-264.

46. Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD. Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov. 2012; 11(1): 69-86.

47. Ludeman MJ, Kataoka H, Srinivasan Y, Esmon NL, Esmon CT, Coughlin SR. PARI cleavage and signaling in response to activated protein C and thrombin. J Biol Chem. 2005; 280(13): 13122-13128.

48. Pei D. Matrix metalloproteinases target protease-activated receptors on the tumor cell surface. Cancer Cell. 2005; 7(3): 207-208.

49. Toyoda N, Gabazza EC, Inoue H, Araki K, Nakashima S, Oka S, et al. Expression and cytoprotective effect of protease-activated receptor 1 in gastric epithelial cells. Scand J Gastroenterol. 2003; 38(3): 253-259.

50. Boire A, Covic L, Agarwal A, Jacques S, Sherifi S, Kuliopulos A. PARI is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells. Cell. 2005; 120(3): 303-313.

51. Grisaru-Granovsky S, Salah Z, Maoz M, Pruss D, Beller U, Bar-Shavit R. Differential expression of protease activated receptor 1(Pari) and pY397FAK in benign and malignant human ovarian tissue samples. Int J Cancer. 2005; 113(3): 372-378.

52. Kaushal V, Kohli M, Dennis RA, Siegel ER, Chiles WW, Mukunyadzi P. Thrombin receptor expression is upregulated in prostate cancer. Prostate. 2006; 66(3):273-282.

53. Cisowski J, O'Callaghan K, Kuliopulos A, Yang J, Nguyen N, Deng Q, et al. Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol. 2011; 179(1): 513-523.

54. Tekin C, Shi K, Daalhuisen JB, Ten Brink MS, Bijlsma MF, Spek CA. PARI signaling on tumor cells limits tumor growth by maintaining a mesenchymal phenotype in pancreaticcancer. Oncotarget. 2018; 9(62): 32010-32023.

55. Ghio P, Cappia S, Selvaggi G, Novello S, Lausi P, Zecchina G, et al. Prognostic role of protease-activated receptors 1 and 4 in resected stage IB non-small-cell lung cancer. Clin Lung Cancer 2006; 7(6): 395-400.

56. Diaz J, Aranda E, Henriquez S, Quezada M, Espinoza E, Bravo ML, et al. Progesterone promotes focal adhesion formation and migration in breast cancer cells through induction of protease-activated receptor-1.J Endocrinol. 2012; 214(2): 165-175.

57. Amin MB, Edge SB, Greene FL, et al· AJCC cancer staging manual (8th ed.). Springer. New York. 2017.

58. Gale N, Pilch BZ, D S. Epithelial precursor lesions. WHO Classification of Tumors. 2005; 177-179.

59. Yamamoto E, Kohama G, Sunakawa H, Iwai M, Hiratsuka H. Mode of invasion, bleomycin sensitivity, and clinical course in squamous cell carcinoma of the oral cavity. Cancer. 1983; 51:2175-2180.

60. Morifuji M, Taniguchi S, Sakai H, Nakabeppu Y, Ohishi M. Differential expression of cytokeratin after orthotopic implantation of newly established human tongue cancer cell lines of defined metastatic ability. Am J Pathol 2000; 156: 1317-1326.

61. Fan HX, Chen Y, Ni BX, Wang S, Sun M, Chen D, Zheng JH. Expression of MMP-l/PAR-1 and patterns of invasion in oral squamous cell carcinoma as potential prognostic markers. Onco Targets Ther. 2015; 8:1619-1626.

62. Mueller MM, Fusenig NE. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat Rev Cancer. 2004; 4: 839-849.

63. Hida K, Hida Y, Amin DN, Flint AF, Panigrahy D, Morton CC, Klagsbrun M. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 2004 15; 64: 8249-8255.

64. Mahadevan D, Von Hoff DD. Tumor-stroma interactions in pancreatic ductal adenocarcinoma. Mol Cancer Ther. 2007; 6:1186-1197.

65. Queiroz KC, Shi K, Duitman J, Aberson HL, Wilmink JW, vanNoeselCJ, Richel DJ, Spek CA. Protease-activated receptor-1 drives pancreatic cancer progression and chemoresistance. Int J Cancer. 2014; 135(10): 2294-2304.

66. Jia Y, Zhang S, Miao L, Wang J, Jin Z, Gu B, et al· Activation of platelet protease-activated receptor-1 induces epithelial-mesenchymal transition and chemotaxis of colon cancer cell line SW620. Oncol Rep. 2015; 33(6): 2681- 2688.

67. Wang W, Mize GJ, Zhang X, Takayama TK. Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease- activated receptor-1.Int J Cancer. 2010; 126(3): 599-610.

68. Yang E, Cisowski J, Nguyen N, O'Callaghan K, Xu J, Agarwal A, et al· Dysregulated protease activated receptor 1(PARI) promotes metastatic phenotype in breast cancer through HMGA2. Oncogene. 2016; 35(12): 1529-1540.

69. Zhong W, Chen S, Qin Y, Zhang H, Wang H, Meng J, et al. Doxycycline inhibits breast cancer EMT and metastasis through PAR-l/NF- κ B/miR- 17/E-cadherin pathway. Oncotarget. 2017; 8(62):104855-104866.

70. Cisowski J, O'Callaghan K, Kuliopulos A, Yang J, Nguyen N, Deng Q, et al· Targeting protease-activated receptor-1 with cell-penetrating pepducins in lung cancer. Am J Pathol. 2011; 179(1): 513-523.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る