リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「超高精細CT による冠動脈CTA のための基礎的検討」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

超高精細CT による冠動脈CTA のための基礎的検討

黒川, 遼 東京大学 DOI:10.15083/0002004988

2022.06.22

概要

背景
320列CTにモデルベース逐次近似再構成法(model-based iterative reconstruction; MBIR)を組み合わせた冠動脈造影CT(Coronary computed tomography angiography; CCTA)では被曝線量の低減を実現しつつ冠動脈狭窄率を高い診断精度で描出することが可能である。しかしながら、不安定プラークの検出における十分な診断能を持ったCCTAのプロトコルは確立されていない。また、近年、従来の320列CTの2倍の空間分解能を有する超高精細CT(Quarter-detector CT; QDCT)にMBIRであるorward projected modelbased Iterative Reconstruction SoluTion(FIRST)による再構成を組み合わせたCCTAの撮像も可能となっているが、新しい技術であるために冠動脈狭窄率やプラークの性状評価におけるまとまった知見は得られていない。

目的
不安定プラーク検出を可能とするCCTAを施行することを最終目的として、段階的な検討のため、①FIRSTにおけるCCTAの造影プロトコルの確立(研究1),②CCTAにおけるプラーク検出に類似した側頭骨CTにおける骨ラセン板検出につき、最適なFIRSTのモード検討,およびプラークの性状評価に用いられるCARDIAC SHARP modeに類似したモードの探索(研究2),③側頭骨CTにおけるMBIRとハイブリッド逐次近似再構成法(hybrid iterative reconstruction; HIR)との比較(研究3),を行った。

結果
研究1
FIRSTでの再構成を用いた320列CTによるCCTAでは、bolus-tracking Region of Interestを背側に設置したほうが腹側に設置した場合よりも有意にcontrast arrival timeが短く、また冠動脈内腔の吸収値は右冠動脈で有意に低く、左冠動脈でも低い傾向を示した。

研究2
QDCTによる側頭骨の撮像では、再構成に用いるFIRSTの各モードのうちBONE,LUNG,CARDIACSHARPで相対的に骨ラセン板の描出が優れており、またこの順でcontrast-to-noise ratioが全モード中最も低かった。冠動脈プラークの詳細な評価に用いられるCARDIAC SHARP modeに類似したモードはBONE modeおよびLUNG modeと考えられた。

研究3
QDCTによる側頭骨の微小構造の描出能を比較した結果、骨ラセン板の描出能はMBIR(FIRST)の方がHIR(Adaptive Iterative Dose Reduction 3D(AIDR3D) enhanced)よりも有意に劣っており、鼓膜およびsingular canalの描出能に両群で有意差は認めなかった。

結論
QDCTによるCCTAでは、プラークの性状評価はAIDR3Denhancedで行うのが良いと考えられた。

この論文で使われている画像

参考文献

[1] F.R. de Graaf, J.D. Schuijf, J.E. van Velzen, L.J. Kroft, A. de Roos, J.H. Reiber, E. Boersma, M.J. Schalij, F. Spano, J.W. Jukema, E.E. van der Wall, J.J. Bax, Diagnostic accuracy of 320-row multidetector computed tomography coronary angiography in the non-invasive evaluation of significant coronary artery disease, Eur Heart J 31(15) (2010) 1908-15.

[2] Z. Gao, X. Liu, S. Qi, W. Wu, W. Hau, H. Zhang, Automatic segmentation of coronary tree in CT angiography images., International Journal of Adaptive Control and Signal Processing 33 (2013) 1239‒1247.

[3] W. Guo, X. Liu, Z. Gao, S. Pirbhulal, W. Huang, W.H. Lin, H. Zhang, N. Tan, Y.T. Zhang, Quantification of three-dimensional computed tomography angiography for evaluating coronary luminal stenosis using digital subtraction angiography as the standard of reference, Biomed Eng Online 14(50) (2015) 50.

[4] C. Shi, D. Zhang, K. Cao, T. Zhang, L. Luo, X. Liu, H. Zhang, A study of noninvasive fractional flow reserve derived from a simplified method based on coronary computed tomography angiography in suspected coronary artery disease, Biomed Eng Online 16(1) (2017) 43.

[5] S.-H. investigators, CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallelgroup, multicentre trial., Lancet 385(9985) (2015) 2383-2391.

[6] L.F. Ybarra, G. Szarf, W. Ishikawa, D. Chamie, A. Caixeta, R. Puri, M.A. Perin, Diagnostic accuracy of 320-row computed tomography for characterizing coronary atherosclerotic plaques: Comparison with intravascular optical coherence tomography, Cardiovasc Revasc Med (2019).

[7] R.C. Nelson, S. Feuerlein, D.T. Boll, New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages?, J Cardiovasc Comput Tomogr 5(5) (2011) 286- 92.

[8] K.P. Murphy, L. Crush, M. Twomey, P.D. McLaughlin, I.C. Mildenberger, N. Moore, J. Bye, O.J. O'Connor, S.E. McSweeney, F. Shanahan, M.M. Maher, Model-Based Iterative Reconstruction in CT Enterography, AJR Am J Roentgenol 205(6) (2015) 1173-81.

[9] V. Vardhanabhuti, J. James, R. Nensey, C. Hyde, C. Roobottom, Model-based iterative reconstruction in low-dose CT colonography-feasibility study in 65 patients for symptomatic investigation, Acad Radiol 22(5) (2015) 563-71.

[10] C. Kim, K.Y. Lee, C. Shin, E.Y. Kang, Y.W. Oh, M. Ha, C.S. Ko, J. Cha, Comparison of Filtered Back Projection, Hybrid Iterative Reconstruction, ModelBased Iterative Reconstruction, and Virtual Monoenergetic Reconstruction Images at Both Low- and Standard-Dose Settings in Measurement of Emphysema Volume and Airway Wall Thickness: A CT Phantom Study, Korean J Radiol 19(4) (2018) 809-817.

[11] Q. Jia, J. Zhuang, J. Jiang, J. Li, M. Huang, C. Liang, Image quality of ct angiography using model-based iterative reconstruction in infants with congenital heart disease: Comparison with filtered back projection and hybrid iterative reconstruction, Eur J Radiol 86 (2017) 190-197.

[12] Y. Kuo, Y.Y. Lin, R.C. Lee, C.J. Lin, Y.Y. Chiou, W.Y. Guo, Comparison of image quality from filtered back projection, statistical iterative reconstruction, and model-based iterative reconstruction algorithms in abdominal computed tomography, Medicine (Baltimore) 95(31) (2016) e4456.

[13] E. Maeda, N. Tomizawa, S. Kanno, K. Yasaka, T. Kubo, K. Ino, R. Torigoe, K. Ohtomo, The feasibility of Forward-projected model-based Iterative Reconstruction SoluTion (FIRST) for coronary 320-row computed tomography angiography: A pilot study, J Cardiovasc Comput Tomogr 11(1) (2017) 40-45.

[14] W.C. Little, M. Constantinescu, R.J. Applegate, M.A. Kutcher, M.T. Burrows, F.R. Kahl, W.P. Santamore, Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?, Circulation 78(5 Pt 1) (1988) 1157-66.

[15] K. Komukai, Y. Ino, H. Kitabata, T. Akasaka, Intravascular imaging modalities for assessing tissue characterization of coronary plaques. Journal of Japanese Coronary Association., Journal of Japanese Coronary Association 17(107-113) (2011).

[16] K. Yoshioka, R. Tanaka, H. Takagi, Y. Ueyama, K. Kikuchi, T. Chiba, K. Arakita, J.D. Schuijf, Y. Saito, Ultra-high-resolution CT angiography of the artery of Adamkiewicz: a feasibility study, Neuroradiology 60(1) (2018) 109-115.

[17] M. Yanagawa, A. Hata, O. Honda, N. Kikuchi, T. Miyata, A. Uranishi, S. Tsukagoshi, N. Tomiyama, Subjective and objective comparisons of image quality between ultra-high-resolution CT and conventional area detector CT in phantoms and cadaveric human lungs, Eur Radiol 28(12) (2018) 5060-5068.

[18] A. Hata, M. Yanagawa, O. Honda, N. Kikuchi, T. Miyata, S. Tsukagoshi, A. Uranishi, N. Tomiyama, Effect of Matrix Size on the Image Quality of Ultra-highresolution CT of the Lung: Comparison of 512 x 512, 1024 x 1024, and 2048 x 2048, Acad Radiol 25(7) (2018) 869-876.

[19] H. Takagi, R. Tanaka, K. Nagata, R. Ninomiya, K. Arakita, J.D. Schuijf, K. Yoshioka, Diagnostic performance of coronary CT angiography with ultra-highresolution CT: Comparison with invasive coronary angiography, Eur J Radiol 101 (2018) 30-37.

[20] M. Moradi, P. Hashemi, M. Momeni, The influence of cardiac function on coronary arterial enhancement at coronary computed tomography angiography: A cross-sectional study, J Res Med Sci 21 (2016) 132.

[21] M. Markl, M.T. Draney, D.C. Miller, J.M. Levin, E.E. Williamson, N.J. Pelc, D.H. Liang, R.J. Herfkens, Time-resolved three-dimensional magnetic resonance velocity mapping of aortic flow in healthy volunteers and patients after valvesparing aortic root replacement, J Thorac Cardiovasc Surg 130(2) (2005) 456-63.

[22] S. Miyazaki, K. Itatani, T. Furusawa, T. Nishino, M. Sugiyama, Y. Takehara, S. Yasukochi, Validation of numerical simulation methods in aortic arch using 4D Flow MRI, Heart Vessels 32(8) (2017) 1032-1044.

[23] P.J. Kilner, G.Z. Yang, R.H. Mohiaddin, D.N. Firmin, D.B. Longmore, Helical and retrograde secondary flow patterns in the aortic arch studied by threedirectional magnetic resonance velocity mapping, Circulation 88(5 Pt 1) (1993) 2235-47.

[24] J. Burk, P. Blanke, Z. Stankovic, A. Barker, M. Russe, J. Geiger, A. Frydrychowicz, M. Langer, M. Markl, Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR, J Cardiovasc Magn Reson 14 (2012) 84.

[25] J.P. Kvitting, T. Ebbers, L. Wigstrom, J. Engvall, C.L. Olin, A.F. Bolger, Flow patterns in the aortic root and the aorta studied with time-resolved, 3-dimensional, phase-contrast magnetic resonance imaging: implications for aortic valve-sparing surgery, J Thorac Cardiovasc Surg 127(6) (2004) 1602-7.

[26] T.A. Hope, R.J. Herfkens, Imaging of the thoracic aorta with time-resolved three-dimensional phase-contrast MRI: a review, Semin Thorac Cardiovasc Surg 20(4) (2008) 358-64.

[27] M. Markl, P.J. Kilner, T. Ebbers, Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance, J Cardiovasc Magn Reson 13 (2011) 7.

[28] J. Valentin, Managing patient dose in multi-detector computed tomography(MDCT). ICRP Publication 102, Ann ICRP 37(1) (2007) 1-79, iii.

[29] M. Weininger, J.M. Barraza, C.A. Kemper, J.F. Kalafut, P. Costello, U.J. Schoepf, Cardiothoracic CT angiography: current contrast medium delivery strategies, AJR Am J Roentgenol 196(3) (2011) W260-72.

[30] J. Soulis, G. Giannoglou, M. Dimitrakopoulou, V. Papaioannou, S. Logothetides, D. Mikhailidis, Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch, Open Cardiovasc Med J 3 (2009) 128- 42.

[31] S. Singh, M.K. Kalra, J. Hsieh, P.E. Licato, S. Do, H.H. Pien, M.A. Blake, Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques, Radiology 257(2) (2010) 373-83.

[32] A. Love, M.L. Olsson, R. Siemund, F. Stalhammar, I.M. Bjorkman-Burtscher, M. Soderberg, Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels, Br J Radiol 86(1031) (2013) 20130388.

[33] S.T. Schindera, D. Odedra, S.A. Raza, T.K. Kim, H.J. Jang, Z. Szucs-Farkas, P. Rogalla, Iterative reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability is preserved?, Radiology 269(2) (2013) 511-8.

[34] S.T. Schindera, D. Odedra, D. Mercer, S. Thipphavong, P. Chou, Z. SzucsFarkas, P. Rogalla, Hybrid iterative reconstruction technique for abdominal CT protocols in obese patients: assessment of image quality, radiation dose, and lowcontrast detectability in a phantom, AJR Am J Roentgenol 202(2) (2014) W146- 52.

[35] A. Urikura, T. Hara, K. Ichikawa, E. Nishimaru, T. Hoshino, T. Yoshida, Y. Nakaya, Objective assessment of low-contrast computed tomography images with iterative reconstruction, Phys Med 32(8) (2016) 992-8.

[36] L. Lambert, P. Ourednicek, J. Jahoda, A. Lambertova, J. Danes, Model-based vs hybrid iterative reconstruction technique in ultralow-dose submillisievert CT colonography, The British journal of radiology 88(1048) (2015) 20140667- 20140667.

[37] C.B. Nauer, A. Rieke, C. Zubler, C. Candreia, A. Arnold, P. Senn, Low-dose temporal bone CT in infants and young children: effective dose and image quality, AJNR Am J Neuroradiol 32(8) (2011) 1375-80.

[38] F. Cademartiri, N.R. Mollet, P.A. Lemos, F. Saia, M. Midiri, P.J. de Feyter, G.P. Krestin, Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography, AJR Am J Roentgenol 187(4) (2006) W430-3.

[39] C.R. Becker, C. Hong, A. Knez, A. Leber, R. Bruening, U.J. Schoepf, M.F. Reiser, Optimal contrast application for cardiac 4-detector-row computed tomography, Invest Radiol 38(11) (2003) 690-4.

[40] K. Okochi, A. Tanaka, T. Akasaka, Visualization of atherosclerotic plaque in carotid artery and coronary artery., NICHIDOKU-IHO 53(2) (2008) 95-103.

[41] S. Schroeder, A.F. Kopp, A. Baumbach, C. Meisner, A. Kuettner, C. Georg, B. Ohnesorge, C. Herdeg, C.D. Claussen, K.R. Karsch, Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography11This study was performed without additional financial support, Journal of the American College of Cardiology 37(5) (2001) 1430-1435.

[42] S. Motoyama, T. Kondo, H. Anno, A. Sugiura, Y. Ito, K. Mori, J. Ishii, T. Sato, K. Inoue, M. Sarai, H. Hishida, J. Narula, Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging, Circ J 71(3) (2007) 363-6.

[43] H. Yabushita, B.E. Bouma, S.L. Houser, H.T. Aretz, I.K. Jang, K.H. Schlendorf, C.R. Kauffman, M. Shishkov, D.H. Kang, E.F. Halpern, G.J. Tearney, Characterization of human atherosclerosis by optical coherence tomography, Circulation 106(13) (2002) 1640-5.

[44] M. Kidoh, D. Utsunomiya, S. Oda, Y. Funama, T. Nakaura, H. Yuki, K. Hirata, T. Namimoto, Y. Yamashita, Evaluation of the Effect of Intracoronary Attenuation on Coronary Plaque Measurements Using a Dual-phase Coronary CT Angiography Technique on a 320-row CT Scanner--In Vivo Validation Study, Acad Radiol 23(3) (2016) 315-20.

[45] S. Motoyama, T. Kondo, M. Sarai, A. Sugiura, H. Harigaya, T. Sato, K. Inoue, M. Okumura, J. Ishii, H. Anno, R. Virmani, Y. Ozaki, H. Hishida, J. Narula, Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes, J Am Coll Cardiol 50(4) (2007) 319-26.

[46] H. Takaoka, K. Sano, I. Ishibashi, Y. Kobayashi, Current status and future prospects of cardiac computed tomography for diagnosis of coronary artery disease, Journal of the Japanese Coronary Association 23(1) (2017) 55-61.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る