リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Mechanisms and impacts of salinity anomalies associated with the positive Indian Ocean Dipole」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Mechanisms and impacts of salinity anomalies associated with the positive Indian Ocean Dipole

木戸, 晶一郎 東京大学 DOI:10.15083/0002004729

2022.06.22

概要

Accompanied by the anomalous atmospheric circulation and precipitation pattern, surface and subsurface salinity in the tropical Indian Ocean is known to undergo significant variations associated with the Indian Ocean Dipole (IOD), which is a dominant climate mode in the tropical Indian Ocean. Though recent advances in salinity observation have revealed many interesting features of salinity variations in the tropical oceans, comprehensive descriptions of underlying physical processes and their impacts on the upper ocean fields, such as sea surface temperature (SST) and currents are yet to be established. Thus, this thesis is devoted to quantitatively elucidate the mechanisms and impacts of salinity variations in the tropical Indian Ocean, with a particular emphasis on their link with the IOD.

Through analyses of observational datasets, it is found that negative (positive) sea surface salinity (SSS) anomalies appear in the central-eastern equatorial Indian Ocean (southeastern tropical Indian Ocean) during the mature phase of the positive IOD (pIOD) events. In addition to these SSS anomalies, significant subsurface salinity anomalies, with positive (negative) anomalies in the eastern equatorial Indian Ocean (southern tropical Indian Ocean), are also detected. The main driver of these surface and subsurface salinity variation is the IOD, rather than the remote influences from the El Niño-Southern Oscillation (ENSO).

Mechanisms of salinity anomalies associated with the pIOD are then investigated through a series of sensitivity experiments and an online budget analysis using a regional ocean model. The results from sensitivity experiments show that positive SSS anomalies in the southeastern tropical Indian Ocean are primarily caused by reduction in precipitation and partly by enhanced evaporation due to increased wind speed, while negative SSS anomalies in the central-eastern equatorial Indian Ocean are generated by zonal advection anomalies induced by anomalous wind stress, consistent with previous studies. Completely new results are that the modulation of nonlinear salinity advection associated with mesoscale eddies also plays an important role in determining the spatial pattern of SSS anomalies, especially in the southeastern tropical Indian Ocean. On the other hand, subsurface salinity anomalies are almost entirely caused by wind stress effects mediated by ocean dynamical processes. Further decomposition of advective anomalies suggests that they are mainly explained by the pIOD-related current anomalies governed by equatorial wave dynamics. However, a vertical shift of nonlinear freshening due to high-frequency variability also substantially contributes to the generation of positive subsurface salinity anomalies in the eastern equatorial Indian Ocean. The significance of low-frequency modulation of the rectified effects due to high-frequency variability is further justified by an additional set of sensitivity experiments using a linear continuously stratified ocean model (LCSM), which isolates the essential physics under a simple framework. It is shown that large-scale oceanic changes in response to the pIOD-related atmospheric anomalies are the key drivers of the observed salinity anomalies, while some nonlinear effects also seem to be at work.

Impacts of salinity anomalies associated with the pIOD-related salinity anomalies are assessed through observational data analysis. It turns out that density stratification in the eastern equatorial Indian Ocean is enhanced due to anomalous surface freshening and subsurface saltening during the pIOD. On the other hand, surface saltening and subsurface freshening in the southeastern tropical Indian Ocean leads to weakening of density stratification there. By decomposing observed densities into contribution from temperature and salinity anomalies, it is shown that the contribution from anomalous salinity stratification mentioned above is comparable to that from anomalous thermal stratification. Furthermore, a regression analysis of SST evolution against salinity anomalies, as well as an SVD analysis between them, implies that enhanced stratification in the eastern equatorial Indian Ocean may lead to SST warming there.

To quantify the impacts of these pIOD-related salinity anomalies, we have carried out novel sensitivity experiments using a ROMS and detailed diagnostics of heat and momentum budget. During the pIOD, the enhanced stratification in the eastern equatorial Indian Ocean causes momentum inputs from the wind forcing to be more strongly trapped in the surface layer, and zonal and vertical current anomalies to be more confined to the upper layer. As a result, upward transports of cold water from below the thermocline to the surface layer are significantly suppressed, and the cooling in the eastern-equatorial Indian Ocean is suppressed by as much as 1.0°C. The above arguments are further corroborated by a set of sensitivity experiments using a linear continuously stratified ocean model, which can isolate the effect of stratification change caused by salinity anomalies associated with the pIOD in the ROMS simulation. Our results suggest that salinity does play an active role in the evolution of the pIOD, rather than being passively affected by large-scale anomalous atmospheric and oceanic conditions

参考文献

Alexander, M. A., Scott, J. D., & Deser, C. (2000). Processes that influence sea surface temperature and ocean mixed layer depth variability in a coupled model. Journal of Geophysical Research: Oceans, 105(C7), 16823–16842. https://doi.org/10.1029/2000jc900074

Ando, K., & McPhaden, M. J. (1997). Variability of surface layer hydrography in the tropical Pacific Ocean. Journal of Geophysical Research: Oceans, 102(C10), 23063–23078. https://doi.org/10.1029/97JC01443

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S.-P., Liu, P., & Wang, B. (2003). Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12–13), 2305–2330. https://doi.org/10.1016/S0967-0645(03)00058-4

Awo, F. M., Alory, G., Da-Allada, C. Y., Delcroix, T., Jouanno, J., Kestenare, E., & Baloïtcha, E. (2018). Sea surface salinity signature of the tropical Atlantic interannual climatic modes. Journal of Geophysical Research: Oceans, 123(10), 7420–7437. https://doi.org/10.1029/2018JC013837

Ballabrera-Poy, J., Murtugudde, R., & Busalacchi, A. J. (2002). On the potential impact of sea surface salinity observations on ENSO predictions. Journal of Geophysical Research: Oceans, 107(C12), 8007. https://doi.org/10.1029/2001JC000834

Balmaseda, M. A., Vidard, A., & Anderson, D. L. T. (2008). The ECMWF ocean analysis system: ORA-S3. Monthly Weather Review, 136(8), 3018–3034. https://doi.org/10.1175/2008MWR2433.1

Balmaseda, M. A., Mogensen, K., & Weaver, A. T. (2013). Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society, 139(674), 1132–1161. https://doi.org/10.1002/qj.2063

Battisti, D. S., & Hirst, A. C. (1989). Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric Sciences, 46(12), 1687–1712. https://doi.org/10.1175/1520-0469(1989)046<1687:IVIATA>2.0.CO;2

Bingham, F. M., Foltz, G. R., & McPhaden, M. J. (2012). Characteristics of the seasonal cycle of surface layer salinity in the global ocean. Ocean Science, 8(5), 915–929. https://doi.org/10.5194/os-8-915-2012

Bjerknes, J. (1969). Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97(3), 163–172. https://doi.org/10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2

Boyer, T. P., Levitus, S., Antonov, J. I., Locarnini, R. A., & Garcia, H. E. (2005). Linear trends in salinity for the World Ocean, 1955–1998. Geophysical Research Letters, 32(1), L01604. https://doi.org/10.1029/2004GL021791

Branstator, G. (1995). Organization of storm track anomalies by recurring low-frequency circulation anomalies. Journal of the Atmospheric Sciences, 52(2), 207–226. https://doi.org/10.1175/1520-0469(1995)052<0207:OOSTAB>2.0.CO;2

Bretherton, C. S., Smith, C., & Wallace, J. M. (1992). An intercomparison of methods for finding coupled patterns in climate data. Journal of Climate, 5(6), 541–560. https://doi.org/10.1175/1520-0442(1992)005<0541:aiomff>2.0.co;2

Cai, W., & Cowan, T. (2013). Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophysical Research Letters, 40(6), 1200–1205. https://doi.org/10.1002/grl.50208

Cai, W., & Qiu, Y. (2013). An observation-based assessment of nonlinear feedback processes associated with the Indian Ocean Dipole. Journal of Climate, 26(9), 2880–2890. https://doi.org/10.1175/JCLI-D-12-00483.1

Cai, W., Van Rensch, P., Cowan, T., & Hendon, H. H. (2012). An asymmetry in the IOD and ENSO teleconnection pathway and its impact on australian climate. Journal of Climate, 25(18), 6318–6329. https://doi.org/10.1175/JCLI-D-11-00501.1

Cai, W., Zheng, X.-T., Weller, E., Collins, M., Cowan, T., Lengaigne, M., et al. (2013). Projected response of the Indian Ocean Dipole to greenhouse warming. Nature Geoscience, 6(12), 999– 1007. https://doi.org/10.1038/ngeo2009

Cai, W., Santoso, A., Wang, G., Weller, E., Wu, L., Ashok, K., et al. (2014). Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 510(7504), 254–258.https://doi.org/10.1038/nature13327

Cai, W., Wang, G., Gan, B., Wu, L., Santoso, A., Lin, X., et al. (2018). Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 °C warming. Nature Communications, 9(1), 1419. https://doi.org/10.1038/s41467-018-03789-6

Carton, J. A. (1991). Effect of seasonal surface freshwater flux on sea surface temperature in the tropical Atlantic Ocean. Journal of Geophysical Research, 96(C7), 12593–12598. https://doi.org/10.1029/91JC01256

Carton, J. A., & Giese, B. S. (2008). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8), 2999–3017. https://doi.org/10.1175/2007MWR1978.1

Chang, P., Ji, L., & Li, H. (1997). A decadal climate variation in the tropical Atlantic Ocean from thermodynamic air-sea interactions. Nature, 385(6616), 516–518. https://doi.org/10.1038/385516a0

Chen, G., Han, W., Li, Y., Wang, D., & McPhaden, M. J. (2015). Seasonal-to-interannual time scale dynamics of the Equatorial Undercurrent in the Indian Ocean. Journal of Physical Oceanography, 45(6), 1532–1553. https://doi.org/10.1175/JPO-D-14-0225.1

Chen, G., Han, W., Li, Y., & Wang, D. (2016). Interannual variability of equatorial eastern Indian Ocean upwelling: local versus remote forcing. Journal of Physical Oceanography, 46(3), 789–807. https://doi.org/10.1175/JPO-D-15-0117.1

Chen, G., Han, W., Shu, Y., Li, Y., Wang, D., & Xie, Q. (2016). The role of Equatorial Undercurrent in sustaining the eastern Indian Ocean upwelling. Geophysical Research Letters, 43(12), 6444–6451. https://doi.org/10.1002/2016GL069433

Chowdary, J. S., Gnanaseelan, C., & Xie, S.-P. (2009). Westward propagation of barrier layer formation in the 2006–07 Rossby wave event over the tropical southwest Indian Ocean. Geophysical Research Letters, 36(4), L04607. https://doi.org/10.1029/2008GL036642

Cooper, N. S. (1988). The effect of salinity on tropical ocean models. Journal of Physical Oceanography, 18, 697–707. https://doi.org/10.1175/1520-0485(1988)018<0697:TEOSOT>2.0.CO;2

Cravatte, S., Delcroix, T., Zhang, D., McPhaden, M. J., & Leloup, J. (2009). Observed freshening and warming of the western Pacific Warm Pool. Climate Dynamics, 33(4), 565–589. https://doi.org/10.1007/s00382-009-0526-7

Cronin, M. F., & McPhaden, M. J. (2002). Barrier layer formation during westerly wind bursts. Journal of Geophysical Research: Oceans, 107(C12), 8020. https://doi.org/10.1029/2001JC001171

Currie, J. C., Lengaigne, M., Vialard, J., Kaplan, D. M., Aumont, O., Naqvi, S. W. A., & Maury, O. (2013). Indian Ocean Dipole and El Niño/Southern Oscillation impacts on regional chlorophyll anomalies in the Indian Ocean. Biogeosciences, 10(10), 6677–6698. https://doi.org/10.5194/bg-10-6677-2013

Czaja, A., & Frankignoul, C. (2002). Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. Journal of Climate, 15(6), 606–623. https://doi.org/10.1175/1520-0442(2002)015<0606:OIOASA>2.0.CO;2

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553–597. https://doi.org/10.1002/qj.828

Delcroix, T., & Hénin, C. (1991). Seasonal and interannual variations of sea surface salinity in the tropical Pacific Ocean. Journal of Geophysical Research, 96(C12), 22135. https://doi.org/10.1029/91JC02124

Delcroix, T., Chaigneau, A., Soviadan, D., Boutin, J., & Pegliasco, C. (2019). Eddy‐induced salinity changes in the tropical Pacific. Journal of Geophysical Research: Oceans, 124(1), 374–389. https://doi.org/10.1029/2018JC014394

Delman, A. S., McClean, J. L., Sprintall, J., Talley, L. D., & Bryan, F. O. (2018). Process-specific contributions to anomalous Java mixed layer cooling during positive IOD events. Journal of Geophysical Research: Oceans, 123(6), 4153–4176. https://doi.org/https://doi.org/10.1029/2017JC013749

Deser, C., Alexander, M. A., Xie, S., & Phillips, A. S. (2010). Sea surface temperature variability: patterns and mechanisms. Annual Review of Marine Science, 2(1), 115–143. https://doi.org/10.1146/annurev-marine-120408-151453

Drushka, K., Gille, S. T., & Sprintall, J. (2014). The diurnal salinity cycle in the tropics. Journal of Geophysical Research: Oceans, 119(9), 5874–5890. https://doi.org/10.1002/2014JC009924

Du, Y., & Zhang, Y. (2015). Satellite and Argo observed surface salinity variations in the tropical Indian Ocean and their association with the Indian Ocean Dipole mode. Journal of Climate, 28(2), 695–713. https://doi.org/10.1175/JCLI-D-14-00435.1

Du, Y., Cai, W., & Wu, Y. (2013). A new type of the Indian Ocean Dipole since the mid-1970s. Journal of Climate, 26(3), 959–972. https://doi.org/10.1175/JCLI-D-12-00047.1

Du, Y., Zhang, Y., Feng, M., Wang, T., Zhang, N., & Wijffels, S. E. (2015). Decadal trends of the upper ocean salinity in the tropical Indo-Pacific since mid-1990s. Scientific Reports, 5, 16050. https://doi.org/10.1038/srep16050

Duchon, C. E. (1979). Lanczos filtering in one and two dimensions. Journal of Applied Meteorology, 18(8), 1016–1022. https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2

Duncan, B., & Han, W. (2012). Influence of atmospheric intraseasonal oscillations on seasonal and interannual variability in the upper Indian Ocean. Journal of Geophysical Research: Oceans, 117(C11). https://doi.org/10.1029/2012JC008190

Durack, P. J., & Wijffels, S. E. (2010). Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate, 23(16), 4342–4362. https://doi.org/10.1175/2010JCLI3377.1

Durack, P. J., Wijffels, S. E., & Matear, R. J. (2012). Ocean salinities reveal strong global water cycle intensification during 1950 to 2000. Science, 336(6080), 455–458. https://doi.org/10.1126/science.1212222

Durack, P. J., Wijffels, S. E., & Boyer, T. P. (2013). Long-term salinity changes and implications for the global water cycle. In International Geophysics (2nd ed., Vol. 103, pp. 727–757). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-391851-2.00028-3

Durand, F., Alory, G., Dussin, R., & Reul, N. (2013). SMOS reveals the signature of Indian Ocean

Dipole events. Ocean Dynamics, 63(11–12), 1203–1212. https://doi.org/10.1007/s10236-013-0660-y

Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., & Edson, J. B. (2003). Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16(4), 571–591. https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2

Feng, M., & Wijffels, S. E. (2002). Intraseasonal variability in the South Equatorial Current of the east Indian Ocean. Journal of Physical Oceanography, 32(1), 265–277. https://doi.org/10.1175/1520-0485(2002)032<0265:IVITSE>2.0.CO;2

Feng, M., McPhaden, M. J., Xie, S.-P., & Hafner, J. (2013). La Niña forces unprecedented Leeuwin Current warming in 2011. Scientific Reports, 3(1), 1277. https://doi.org/10.1038/srep01277

Feng, M., Benthuysen, J., Zhang, N., & Slawinski, D. (2015). Freshening anomalies in the Indonesian throughflow and impacts on the Leeuwin Current during 2010-2011. Geophysical Research Letters, 42(20), 8555–8562. https://doi.org/10.1002/2015GL065848

Fukumori, I., Raghunath, R., & Fu, L.-L. (1998). Nature of global large-scale sea level variability in relation to atmospheric forcing: A modeling study. Journal of Geophysical Research: Oceans, 103(C3), 5493–5512. https://doi.org/10.1029/97jc02907

Furuichi, N., Hibiya, T., & Niwa, Y. (2012). Assessment of turbulence closure models for resonant inertial response in the oceanic mixed layer using a large eddy simulation model. Journal of Oceanography, 68(2), 285–294. https://doi.org/10.1007/s10872-011-0095-3 Gadgil, S., Joseph, P. V., & Joshi, N. V. (1984). Ocean–atmosphere coupling over monsoon regions. Nature, 312(5990), 141–143. https://doi.org/10.1038/312141a0

Godfrey, S., & Lindstrom, E. (1989). The heat budget of the equatorial western Pacific surface mixed layer. Journal of Geophysical Research, 94(C6), 8007. https://doi.org/10.1029/JC094iC06p08007

Graham, N. E., & Barnett, T. P. (1987). Sea surface temperature, surface wind divergence, and convection over tropical oceans. Science, 238(4827), 657–659. https://doi.org/10.1126/science.238.4827.657

Grunseich, G., Subrahmanyam, B., Murty, V. S. N., & Giese, B. S. (2011). Sea surface salinity variability during the Indian Ocean Dipole and ENSO events in the tropical Indian Ocean. Journal of Geophysical Research, 116(C11), C11013. https://doi.org/10.1029/2011JC007456

Hackert, E., Ballabrera-Poy, J., Busalacchi, A. J., Zhang, R.-H., & Murtugudde, R. (2011). Impact of sea surface salinity assimilation on coupled forecasts in the tropical Pacific. Journal of Geophysical Research: Oceans, 116(5), 1–18. https://doi.org/10.1029/2010JC006708

Hackert, E., Busalacchi, A. J., & Ballabrera-Poy, J. (2014). Impact of Aquarius sea surface salinity observations on coupled forecasts for the tropical Indo-Pacific Ocean. Journal of Geophysical Research: Oceans, 119(7), 4045–4067. https://doi.org/10.1002/2013JC009697

Hackert, E., Kovach, R. M., Busalacchi, A. J., & Ballabrera-Poy, J. (2019). Impact of Aquarius and SMAP satellite sea surface salinity observations on coupled El Niño/Southern Oscillation forecasts. Journal of Geophysical Research: Oceans, 124(7), 2019JC015130. https://doi.org/10.1029/2019JC015130

Halkides, D. J., & Lee, T. (2009). Mechanisms controlling seasonal-to-interannual mixed layer temperature variability in the southeastern tropical Indian Ocean. Journal of Geophysical Research, 114(C2), C02012. https://doi.org/10.1029/2008JC004949

Han, W., & McCreary, J. P. (2001). Modeling salinity distributions in the Indian Ocean. Journal of Geophysical Research: Oceans, 106(C1), 859–877. https://doi.org/10.1029/2000JC000316

Han, W., McCreary, J. P., & Kohler, K. E. (2001). Influence of precipitation minus evaporation and Bay of Bengal rivers on dynamics, thermodynamics, and mixed layer physics in the upper Indian Ocean. Journal of Geophysical Research: Oceans, 106(C4), 6895–6916. https://doi.org/10.1029/2000JC000403

Han, W., Webster, P. J., Lukas, R., Hacker, P., & Hu, A. (2004). Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. Journal of Physical Oceanography, 34(6), 1350–1372. https://doi.org/10.1175/1520-0485(2004)034<1350:IOAIVI>2.0.CO;2

Hartmann, D. L. (2016). Global Physical Climatology. Global Physical Climatology: Second Edition. Elsevier. https://doi.org/10.1016/C2009-0-00030-0

Hasson, A. E. A., Delcroix, T., & Dussin, R. (2013). An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990-2009). Ocean Dynamics, 63(2–3), 179–194. https://doi.org/10.1007/s10236-013-0596-2

Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of Climate, 19(21), 5686–5699. https://doi.org/10.1175/JCLI3990.1

Held, I. M., Lyons, S. W., & Nigam, S. (1989). Transients and the extratropical response to El Niño. Journal of the Atmospheric Sciences, 46(1), 163–174. https://doi.org/10.1175/1520-0469(1989)046<0163:TATERT>2.0.CO;2

Hermes, J. C., Masumoto, Y., Beal, L. M., Roxy, M. K., Vialard, J., Andres, M., et al. (2019). A sustained ocean observing system in the Indian Ocean for climate related scientific knowledge and societal needs. Frontiers in Marine Science, 6. https://doi.org/10.3389/fmars.2019.00355

Hirst, A. C. (1986). Unstable and damped equatorial modes in simple coupled ocean- atmosphere models. Journal of the Atmospheric Sciences, 43(6), 606–630. https://doi.org/10.1175/1520-0469(1986)043<0606:uademi>2.0.co;2

Hong, C.-C., & Li, T. (2010). Independence of SST skewness from thermocline feedback in the eastern equatorial Indian Ocean. Geophysical Research Letters, 37, L11702. https://doi.org/10.1029/2010GL043380

Hong, C.-C., Li, T., LinHo, & Kug, J.-S. (2008). Asymmetry of the Indian Ocean Dipole. Part I: Observational analysis. Journal of Climate, 21(18), 4834–4848. https://doi.org/10.1175/2008JCLI2222.1

Horel, J. D., & Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Monthly Weather Review, 109(4), 813–829. https://doi.org/10.1175/1520-0493(1981)109<0813:PSAPAW>2.0.CO;2

Hosoda, S., Ohira, T., & Nakamura, T. (2008). A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Report of Research and Development, 8(November), 47–59. https://doi.org/10.5918/jamstecr.8.47

Hosoda, S., Suga, T., Shikama, N., & Mizuno, K. (2009). Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. Journal of Oceanography, 65(4), 579–586. https://doi.org/10.1007/s10872-009-0049-1

Howden, S. D., & Murtugudde, R. (2001). Effects of river inputs into the Bay of Bengal. Journal of Geophysical Research: Oceans, 106(C9), 19825–19843. https://doi.org/10.1029/2000jc000656

Jin, F.-F. (1997). An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. Journal of the Atmospheric Sciences, 54(7), 811–829. https://doi.org/10.1175/1520-0469(1997)054<0811:AEORPF>2.0.CO;2

Kataoka, T., Tozuka, T., Behera, S. K., & Yamagata, T. (2014). On the Ningaloo Nino/Nina. Climate Dynamics, 43, 1463–1482. https://doi.org/10.1007/s00382-013-1961-z

Kataoka, T., Kimoto, M., Watanabe, M., & Tatebe, H. (2019). Wind–Mixed Layer–SST feedbacks in a tropical air–sea coupled system: Application to the Atlantic. Journal of Climate, 32(13), 3865–3881. https://doi.org/10.1175/JCLI-D-18-0728.1

Katsura, S., Oka, E., Qiu, B., & Schneider, N. (2013). Formation and subduction of North Pacific Tropical Water and their interannual variability. Journal of Physical Oceanography, 43(11), 2400–2415. https://doi.org/10.1175/JPO-D-13-031.1

Keenlyside, N. (2002). Annual cycle of equatorial zonal currents in the Pacific. Journal of Geophysical Research, 107(C8), 3093. https://doi.org/10.1029/2000JC000711

Keenlyside, N., Latif, M., Jungclaus, J., Kornblueh, L., & Roeckner, E. (2008). Advancing decadal-scale climate prediction in the North Atlantic sector. Nature, 453(7191), 84–88. https://doi.org/10.1038/nature06921

Keerthi, M. G., Lengaigne, M., Vialard, J., de Boyer Montégut, C., & Muraleedharan, P. M. (2013). Interannual variability of the tropical Indian Ocean mixed layer depth. Climate Dynamics, 40(3–4), 743–759. https://doi.org/10.1007/s00382-012-1295-2

Kido, S., & Tozuka, T. (2017). Salinity variability associated with the positive Indian Ocean Dipole and its impact on the upper ocean temperature. Journal of Climate, 30(19), 7885–7907. https://doi.org/10.1175/JCLI-D-17-0133.1

Klein, S. A., & Hartmann, D. L. (1993). The seasonal cycle of low stratiform clouds. Journal of Climate, 6(8), 1587–1606. https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2

Köhler, J., Serra, N., Bryan, F. O., Johnson, B. K., & Stammer, D. (2018). Mechanisms of mixed-layer salinity seasonal variability in the Indian Ocean. Journal of Geophysical Research: Oceans, 123(1), 466–496. https://doi.org/10.1002/2017JC013640

Krishnamohan, K. S., Vialard, J., Lengaigne, M., Masson, S., Samson, G., Pous, S., et al. (2019). Is there an effect of Bay of Bengal salinity on the northern Indian Ocean climatological rainfall? Deep Sea Research Part II: Topical Studies in Oceanography, 166, 19–33. https://doi.org/10.1016/j.dsr2.2019.04.003

Kummerow, C., Barnes, W., Kozu, T., Shiue, J., & Simpson, J. (1998). The Tropical Rainfall Measuring Mission (TRMM) sensor package. Journal of Atmospheric and Oceanic Technology, 15(3), 809–817. https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2

Kushnir, Y., Robinson, W. A., Bladé, I., Hall, N. M. J., Peng, S., & Sutton, R. (2002). Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. Journal of Climate, 15(16), 2233–2256. https://doi.org/10.1175/1520-0442(2002)015<2233:AGRTES>2.0.CO;2

Lee, C., Minobe, S., & Sasaki, Y. N. (2018). Origin of intraseasonal variability in the eastern equatorial Indian Ocean: intrinsic variability and local and remote wind stress forcings. Journal of Oceanography. https://doi.org/10.1007/s10872-018-0489-6

Lee, T., Lagerloef, G., Gierach, M. M., Kao, H. Y., Yueh, S., & Dohan, K. (2012). Aquarius reveals salinity structure of tropical instability waves. Geophysical Research Letters, 39(12), 1–6. https://doi.org/10.1029/2012GL052232

Li, G., Xie, S.-P., & Du, Y. (2015). Monsoon-induced biases of climate models over the tropical Indian Ocean. Journal of Climate, 28(8), 3058–3072. https://doi.org/10.1175/JCLI-D-14-00740.1

Li, G., Xie, S.-P., & Du, Y. (2016). A robust but spurious pattern of climate change in model projections over the tropical Indian Ocean. Journal of Climate, 29(15), 5589–5608. https://doi.org/10.1175/JCLI-D-15-0565.1

Li, J., Liang, C., Tang, Y., Dong, C., Chen, D., Liu, X., & Jin, W. (2016). A new dipole index of the salinity anomalies of the tropical Indian Ocean. Scientific Reports, 6(1), 24260. https://doi.org/10.1038/srep24260

Li, J., Liang, C., Tang, Y., Liu, X., Lian, T., Shen, Z., & Li, X. (2018). Impacts of the IOD-associated temperature and salinity anomalies on the intermittent equatorial undercurrent anomalies. Climate Dynamics, 51(4), 1391–1409. https://doi.org/10.1007/s00382-017-3961-x

Li, T., & Philander, S. G. H. (1996). On the annual cycle of the eastern equatorial Pacific. Journal of Climate. https://doi.org/10.1175/1520-0442(1996)009<2986:OTACOT>2.0.CO;2

Li, T., Hogan, T. F., & Chang, C.-P. (2000). Dynamic and thermodynamic regulation of ocean warming. Journal of the Atmospheric Sciences, 57(20), 3353–3365. https://doi.org/10.1175/1520-0469(2000)057<3353:DATROO>2.0.CO;2

Li, T., Zhang, Y., Lu, E., & Wang, D. (2002). Relative role of dynamic and thermodynamic processes in the development of the Indian Ocean Dipole: An OGCM diagnosis. Geophysical Research Letters, 29(23), 25-1-25–4. https://doi.org/10.1029/2002GL015789

Li, T., Wang, B., Chang, C.-P., & Zhang, Y. (2003). A theory for the Indian Ocean dipole–zonal mode. Journal of the Atmospheric Sciences, 60(17), 2119–2135. https://doi.org/10.1175/1520-0469(2003)060<2119:ATFTIO>2.0.CO;2

Li, Y., Han, W., Shinoda, T., Wang, C., Lien, R. C., Moum, J. N., & Wang, J.-W. (2013). Effects of the diurnal cycle in solar radiation on the tropical Indian Ocean mixed layer variability during wintertime Madden-Julian Oscillations. Journal of Geophysical Research: Oceans, 118(10), 4945–4964. https://doi.org/10.1002/jgrc.20395

Li, Y., Han, W., & Lee, T. (2015). Intraseasonal sea surface salinity variability in the equatorial Indo-Pacific Ocean induced by Madden-Julian Oscillations. Journal of Geophysical Research:Oceans, 120(3), 2233–2258. https://doi.org/10.1002/2014JC010647

Liu, H., Tang, Y., Chen, D., & Lian, T. (2017). Predictability of the Indian Ocean Dipole in the coupled models. Climate Dynamics, 48(5–6), 2005–2024. https://doi.org/10.1007/s00382-016-3187-3

Liu, L., Yu, W., & Li, T. (2011). Dynamic and thermodynamic air–sea coupling associated with the Indian Ocean Dipole diagnosed from 23 WCRP CMIP3 Models. Journal of Climate, 24(18), 4941–4958. https://doi.org/10.1175/2011JCLI4041.1

Liu, L., Xie, S.-P., Zheng, X.-T., Li, T., Du, Y., Huang, G., & Yu, W. (2014). Indian Ocean variability in the CMIP5 multi-model ensemble: the zonal dipole mode. Climate Dynamics, 43(5–6), 1715–1730. https://doi.org/10.1007/s00382-013-2000-9

Lukas, R., & Lindstrom, E. (1991). The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research, 96(S01), 3343–3357. https://doi.org/10.1029/90JC01951

Luo, J., Masson, S., Behera, S. K., & Yamagata, T. (2007). Experimental forecasts of the Indian Ocean Dipole using a coupled OAGCM. Journal of Climate, 20(10), 2178–2190. https://doi.org/10.1175/JCLI4132.1

Maes, C. (2002). Salinity barrier layer and onset of El Niño in a Pacific coupled model. Geophysical Research Letters, 29(24), 2206. https://doi.org/10.1029/2002GL016029

Maes, C., Picaut, J., & Belamari, S. (2005). Importance of the salinity barrier layer for the buildup of El Niño. Journal of Climate, 18(1), 104–118. https://doi.org/10.1175/JCLI-3214.1

Marchesiello, P., McWilliams, J. C., & Shchepetkin, A. (2001). Open boundary conditions for long-term integration of regional oceanic models. Ocean Modelling, 3(1–2), 1–20. https://doi.org/10.1016/S1463-5003(00)00013-5

Masson, S., Menkes, C., Delecluse, P., & Boulanger, J.-P. (2003). Impacts of salinity on the eastern Indian Ocean during the termination of the fall Wyrtki Jet. Journal of Geophysical Research, 108(C3), 1–22. https://doi.org/10.1029/2001JC000833

Masson, S., Boulanger, J.-P., Menkes, C., Delecluse, P., & Yamagata, T. (2004). Impact of salinity on the 1997 Indian Ocean dipole event in a numerical experiment. Journal of Geophysical Research, 109(C2), C02002. https://doi.org/10.1029/2003JC001807

Masson, S., Luo, J., Madec, G., Vialard, J., Durand, F., Gualdi, S., et al. (2005). Impact of barrier layer on winter-spring variability of the southeastern Arabian Sea. Geophysical Research Letters, 32(7), 1–4. https://doi.org/10.1029/2004GL021980

Masumoto, Y., & Meyers, G. (1998). Forced Rossby waves in the southern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 103(C12), 27589–27602. https://doi.org/10.1029/98JC02546

McCreary, J. P. (1980). Modeling wind-driven ocean circulation.

McCreary, J. P. (1981). A Linear Stratified Ocean Model of the Coastal Undercurrent. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 302(1469), 385–413. https://doi.org/10.1098/rsta.1981.0176

McPhaden, M. J., Zebiak, S. E., & Glantz, M. H. (2006). ENSO as an Integrating Concept in Earth Science. Science, 314(5806), 1740–1745. https://doi.org/10.1126/science.1132588

McPhaden, M. J., Meyers, G., Ando, K., Masumoto, Y., Murty, V. S. N., Ravichandran, M., et al. (2009). Supplement to RAMA: The Research Moored Array for African—Asian—Australian monsoon analysis and prediction. Bulletin of the American Meteorological Society, 90(4), ES5– ES8. https://doi.org/10.1175/2008BAMS2608.2

Melnichenko, O., Amores, A., Maximenko, N., Hacker, P., & Potemra, J. (2017). Signature of mesoscale eddies in satellite sea surface salinity data. Journal of Geophysical Research: Oceans, 122(2), 1416–1424. https://doi.org/10.1002/2016JC012420

Miller, J. R. (1976). The salinity effect in a mixed layer ocean model. Journal of Physical Oceanography, 6(1), 29–35. https://doi.org/10.1175/1520-0485(1976)006<0029:TSEIAM>2.0.CO;2

Miyama, T., McCreary, J. P., Jensen, T. G., Loschnigg, J., Godfrey, S., & Ishida, A. (2003). Structure and dynamics of the Indian-Ocean cross-equatorial cell. Deep Sea Research Part II: Topical Studies in Oceanography, 50(12–13), 2023–2047. https://doi.org/10.1016/S0967-0645(03)00044-4

Miyama, T., McCreary, J. P., Sengupta, D., & Senan, R. (2006). Dynamics of biweekly oscillations in the equatorial Indian Ocean. Journal of Physical Oceanography, 36(5), 827–846. https://doi.org/10.1175/JPO2897.1

Morioka, Y., Tozuka, T., & Yamagata, T. (2010). Climate variability in the southern Indian Ocean as revealed by self-organizing maps. Climate Dynamics, 35(6), 1075–1088. https://doi.org/10.1007/s00382-010-0843-x

Murtugudde, R. R., & Busalacchi, A. J. (1998). Salinity effects in a tropical ocean model. Journal of Geophysical Research: Oceans, 103(C2), 3283–3300. https://doi.org/10.1029/97JC02438

Murtugudde, Raghu, McCreary, J. P., & Busalacchi, A. J. (2000). Oceanic processes associated with anomalous events in the Indian Ocean with relevance to 1997-1998. Journal of Geophysical Research: Oceans, 105(C2), 3295–3306. https://doi.org/10.1029/1999JC900294

Murtugudde, Ragu, & Busalacchi, A. J. (1999). Interannual variability of the dynamics and thermodynamics of the tropical Indian Ocean. Journal of Climate, 12(8), 2300–2326. https://doi.org/10.1175/1520-0442(1999)012<2300:IVOTDA>2.0.CO;2

Nagura, M., & McPhaden, M. J. (2010). Dynamics of zonal current variations associated with the Indian Ocean Dipole. Journal of Geophysical Research, 115(C11), C11026. https://doi.org/10.1029/2010JC006423

Nagura, M., Masumoto, Y., & Horii, T. (2014). Meridional heat advection due to mixed Rossby gravity waves in the e quatorial Indian Ocean. Journal of Physical Oceanography, 44(1), 343–358. https://doi.org/10.1175/JPO-D-13-0141.1

Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., & Zebiak, S. E. (1998). ENSO theory. Journal of Geophysical Research: Oceans, 103(C7), 14261–14290. https://doi.org/10.1029/97JC03424

Nyadjro, E. S., & McPhaden, M. J. (2014). Variability of zonal currents in the eastern equatorial Indian Ocean on seasonal to interannual time scales. Journal of Geophysical Research: Oceans, 119(11), 7969–7986. https://doi.org/10.1002/2014JC010380

Ogata, T., & Masumoto, Y. (2010). Interactions between mesoscale eddy variability and Indian Ocean Dipole events in the southeastern tropical Indian Ocean - Case studies for 1994 and 1997/1998. Ocean Dynamics, 60(3), 717–730. https://doi.org/10.1007/s10236-010-0304-4

Ogata, T., Xie, S.-P., Lan, J., & Zheng, X.-T. (2013). Importance of ocean dynamics for the skewness of the Indian Ocean Dipole mode. Journal of Climate, 26(7), 2145–2159. https://doi.org/10.1175/JCLI-D-11-00615.1

Ogata, T., Nagura, M., & Masumoto, Y. (2017). Mean subsurface upwelling induced by intraseasonal variability over the equatorial Indian Ocean. Journal of Physical Oceanography, 47(6), 1347–1365. https://doi.org/10.1175/JPO-D-16-0257.1

Parekh, A., Chowdary, J. S., Sayantani, O., Fousiya, T. S., & Gnanaseelan, C. (2016). Tropical Indian Ocean surface salinity bias in climate forecasting system coupled models and the role of upper ocean processes. Climate Dynamics, 46(7–8), 2403–2422. https://doi.org/10.1007/s00382-015-2709-8

Paulson, C. A., & Simpson, J. J. (1977). Irradiance measurements in the upper ocean. Journal of Physical Oceanography, 7(6), 952–956. https://doi.org/10.1175/1520-0485(1977)007<0952:IMITUO>2.0.CO;2

Peng, S., & Whitaker, J. S. (1999). Mechanisms determining the atmospheric response to midlatitude SST anomalies. Journal of Climate, 12(5), 1393–1408. https://doi.org/10.1175/1520-0442(1999)012<1393:MDTART>2.0.CO;2

Philander, S. G. H. (1990). El Nino, La Nina, and the Southern Oscillation. International Geophysics Vol 46. Academic Press.

Philander, S. G. H., Yamagata, T., & Pacanowski, R. C. (1984). Unstable air-sea interactions in the tropics. Journal of the Atmospheric Sciences, 41(4), 604–613. https://doi.org/10.1175/1520-0469(1984)041<0604:UASIIT>2.0.CO;2

Picaut, J., Ioualalen, M., Menkes, C., Delcroix, T., & McPhaden, M. J. (1996). Mechanism of the zonal displacements of the Pacific warm pool: Implications for ENSO. Science, 274(5292), 1486–1489. https://doi.org/10.1126/science.274.5292.1486

Qiu, Y., Cai, W., Li, L., & Guo, X. (2012). Argo profiles variability of barrier layer in the tropical Indian Ocean and its relationship with the Indian Ocean Dipole. Geophysical Research Letters, 39, L08605. https://doi.org/10.1029/2012GL051441

Qu, T., & Meyers, G. (2005). Seasonal variation of barrier layer in the southeastern tropical Indian Ocean. Journal of Geophysical Research, 110(C11), C11003. https://doi.org/10.1029/2004JC002816

Rahaman, H., Srinivasu, U., Panickal, S., Durgadoo, J. V., Griffies, S. M., Ravichandran, M., et al. (2020). An assessment of the Indian Ocean mean state and seasonal cycle in a suite of interannual CORE-II simulations. Ocean Modelling, 145, 101503. https://doi.org/10.1016/j.ocemod.2019.101503

Ramanathan, V., & Collins, W. (1991). Thermodynamic regulation of ocean warming by cirrus clouds deduced from observations of the 1987 El Niño. Nature, 351(6321), 27–32. https://doi.org/10.1038/351027a0

Rao, R. R., & Sivakumar, R. (2003). Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. Journal of Geophysical Research, 108(C1), 3009. https://doi.org/10.1029/2001JC000907

Rao, S. A., & Behera, S. K. (2005). Subsurface influence on SST in the tropical Indian Ocean: Structure and interannual variability. Dynamics of Atmospheres and Oceans, 39, 103–135. https://doi.org/10.1016/j.dynatmoce.2004.10.014

Rao, S. A., & Yamagata, T. (2004). Abrupt termination of Indian Ocean dipole events in response to intraseasonal disturbances. Geophysical Research Letters, 31(19), L19306. https://doi.org/10.1029/2004GL020842

Rao, S. A., Behera, S. K., Masumoto, Y., & Yamagata, T. (2002). Interannual subsurface variability in the tropical Indian Ocean with a special emphasis on the Indian Ocean Dipole. Deep Sea

Research Part II: Topical Studies in Oceanography, 49(7–8), 1549–1572. https://doi.org/10.1016/S0967-0645(01)00158-8

Ren, L., & Riser, S. C. (2009). Seasonal salt budget in the northeast Pacific Ocean. Journal of Geophysical Research, 114(C12), C12004. https://doi.org/10.1029/2009JC005307

Richter, I., Behera, S. K., Masumoto, Y., Taguchi, B., Komori, N., & Yamagata, T. (2010). On the triggering of Benguela Niños: Remote equatorial versus local influences. Geophysical Research Letters, 37, L20604. https://doi.org/10.1029/2010GL044461

Roemmich, D., & Gilson, J. (2009). The 2004-2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program. Progress in Oceanography, 82(2), 81–100. https://doi.org/10.1016/j.pocean.2009.03.004

Saji, N. H., & Yamagata, T. (2003). Possible impacts of Indian Ocean Dipole mode events on global climate. Climate Research, 25(2), 151–169. https://doi.org/10.3354/cr025151

Saji, N. H., Goswami, B. N., Vinayachandran, P. N., & Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401(6751), 360–363. https://doi.org/10.1038/43854

Schopf, P. S., & Suarez, M. J. (1988). Vacillations in a coupled ocean–atmosphere model. Journal of the Atmospheric Sciences, 45(3), 549–566. https://doi.org/10.1175/1520-0469(1988)045<0549:VIACOM>2.0.CO;2

Schott, F. A., Xie, S.-P., & McCreary, J. P. (2009). Indian Ocean circulation and climate variability. Reviews of Geophysics, 47(1), RG1002. https://doi.org/10.1029/2007RG000245

Sengupta, D., Senan, R., Murty, V. S. N., & Fernando, V. (2004). A biweekly mode in the equatorial Indian Ocean. Journal of Geophysical Research, 109(C10), C10003. https://doi.org/10.1029/2004JC002329

Shannon, L. V., Boyd, A. J., Brundrit, G. B., & Taunton-Clark, J. (1986). On the existence of an El Niño-type phenomenon in the Benguela System. Journal of Marine Research, 44(3), 495–520. https://doi.org/10.1357/002224086788403105

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4), 347–404. https://doi.org/10.1016/j.ocemod.2004.08.002

Shi, L., Hendon, H. H., Alves, O., Luo, J.-J., Balmaseda, M. A., & Anderson, D. (2012). How

Predictable is the Indian Ocean Dipole? Monthly Weather Review, 140(12), 3867–3884. https://doi.org/10.1175/MWR-D-12-00001.1

Shinoda, T., & Han, W. (2005). Influence of the Indian Ocean Dipole on atmospheric subseasonal variability. Journal of Climate, 18(18), 3891–3909. https://doi.org/10.1175/JCLI3510.1

Shinoda, T., Hendon, H. H., & Alexander, M. A. (2004). Surface and subsurface dipole variability in the Indian Ocean and its relation with ENSO. Deep Sea Research Part I: Oceanographic Research Papers, 51(5), 619–635. https://doi.org/10.1016/j.dsr.2004.01.005 Smith, D. M., Cusack, S., Colman, A. W., Folland, C. K., Harris, G. R., & Murphy, J. M. (2007). Improved surface temperature prediction for the coming decade from a global climate model.

Science, 317(5839), 796–799. https://doi.org/10.1126/science.1139540

Smyth, W. D., Durland, T. S., & Moum, J. N. (2015). Energy and heat fluxes due to vertically propagating Yanai waves observed in the equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 120(1), 1–15. https://doi.org/10.1002/2014JC010152

Sprintall, J., & Tomczak, M. (1992). Evidence of the barrier layer in the surface layer of the tropics. Journal of Geophysical Research, 97(C5), 7305–7316. https://doi.org/10.1029/92JC00407

Stenseth, N. C. (2002). Ecological Effects of Climate Fluctuations. Science, 297(5585), 1292–1296. https://doi.org/10.1126/science.1071281

Stuecker, M. F., Timmermann, A., Jin, F.-F., McGregor, S., & Ren, H.-L. (2013). A combination mode of the annual cycle and the El Niño/Southern Oscillation. Nature Geoscience, 6(7), 540–544. https://doi.org/10.1038/ngeo1826

Sun, Q., Du, Y., Zhang, Y., Feng, M., Chowdary, J. S., Chi, J., et al. (2019). Evolution of sea surface salinity anomalies in the southwestern tropical Indian Ocean during 2010–2011 influenced by a negative IOD event. Journal of Geophysical Research: Oceans, 124(5), 3428–3445. https://doi.org/10.1029/2018JC014580

Suzuki, T., Yamazaki, D., Tsujino, H., Komuro, Y., Nakano, H., & Urakawa, S. (2018). A dataset of continental river discharge based on JRA-55 for use in a global ocean circulation model. Journal of Oceanography, 74(4), 421–429. https://doi.org/10.1007/s10872-017-0458-5

Swapna, P., & Krishnan, R. (2008). Equatorial undercurrents associated with Indian Ocean Dipole events during contrasting summer monsoons. Geophysical Research Letters, 35(14), 1–5. https://doi.org/10.1029/2008GL033430

Thompson, B., Gnanaseelan, C., & Salvekar, P. S. (2006). Variability in the Indian Ocean circulation and salinity and its impact on SST anomalies during dipole events. Journal of Marine Research, 64(6), 853–880. https://doi.org/10.1357/002224006779698350

Tozuka, T., & Cronin, M. F. (2014). Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front. Geophysical Research Letters, 41(7), 2447–2453. https://doi.org/10.1002/2014GL059624

Tozuka, T., Luo, J.-J., Masson, S., & Yamagata, T. (2007). Decadal modulations of the Indian Ocean Dipole in the SINTEX-F1 coupled GCM. Journal of Climate, 20(13), 2881–2894. https://doi.org/10.1175/JCLI4168.1

Trenberth, K. E., Branstator, G. W., Karoly, D., Kumar, A., Lau, N.-C., & Ropelewski, C. (1998). Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. Journal of Geophysical Research: Oceans, 103(C7), 14291– 14324. https://doi.org/10.1029/97JC01444

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., et al. (2018). JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 130, 79–139. https://doi.org/10.1016/j.ocemod.2018.07.002

Ummenhofer, C. C., Biastoch, A., & Böning, C. W. (2017). Multidecadal Indian Ocean variability linked to the Pacific and implications for preconditioning Indian Ocean Dipole events. Journal of Climate, 30(5), 1739–1751. https://doi.org/10.1175/JCLI-D-16-0200.1

Uppala, S. M., KÅllberg, P. W., Simmons, A. J., Andrae, U., Bechtold, V. D. C., Fiorino, M., et al. (2005). The ERA-40 re-analysis. Quarterly Journal of the Royal Meteorological Society, 131(612), 2961–3012. https://doi.org/10.1256/qj.04.176

Vialard, J., & Delecluse, P. (1998). An OGCM Study for the TOGA decade. Part I: Role of salinity in the physics of the Western Pacific fresh pool. Journal of Physical Oceanography, 28(6), 1071–1088. https://doi.org/10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2

Vimont, D. J., Wallace, J. M., & Battisti, D. S. (2003). The seasonal footprinting mechanism in the pacific: Implications for ENSO. Journal of Climate, 16(16), 2668–2675. https://doi.org/10.1175/1520-0442(2003)016<2668:TSFMIT>2.0.CO;2

Vinayachandran, P. N., & Nanjundiah, R. S. (2009). Indian Ocean sea surface salinity variations in a coupled model. Climate Dynamics, 33(2–3), 245–263. https://doi.org/10.1007/s00382-008-0511-6

Vinayachandran, P. N., Iizuka, S., & Yamagata, T. (2002). Indian Ocean Dipole mode events in an ocean general circulation model. Deep Sea Research Part II: Topical Studies in Oceanography, 49(7–8), 1573–1596. https://doi.org/10.1016/S0967-0645(01)00157-6

Wajsowicz, R. C. (2005). Potential predictability of tropical Indian Ocean SST anomalies. Geophysical Research Letters, 32(24), L24702. https://doi.org/10.1029/2005GL024169

Webster, P. J., & Lukas, R. (1992). TOGA COARE: The Coupled Ocean—Atmosphere Response Experiment. Bulletin of the American Meteorological Society, 73(9), 1377–1416. https://doi.org/10.1175/1520-0477(1992)073<1377:TCTCOR>2.0.CO;2

Webster, P. J., Moore, A. M., Loschnigg, J. P., & Leben, R. R. (1999). Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98. Nature, 401(6751), 356–360. https://doi.org/10.1038/43848

Wu, Y., & Tang, Y. (2019). Seasonal predictability of the tropical Indian Ocean SST in the North American multimodel ensemble. Climate Dynamics, 53(5–6), 3361–3372. https://doi.org/10.1007/s00382-019-04709-0

Wyrtki, K. (1973). An equatorial jet in the Indian Ocean. Science, 181(4096), 262–264. https://doi.org/10.1126/science.181.4096.262

Xie, S.-P., & Philander, S. G. H. (1994). A coupled ocean‐atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus A. https://doi.org/10.1034/j.1600-0870.1994.t01-1-00001.x

Xie, S.-P., Annamalai, H., Schott, F. A., & McCreary, J. P. (2002). Structure and mechanisms of south Indian Ocean climate variability. Journal of Climate, 15(8), 864–878. https://doi.org/10.1175/1520-0442(2002)015<0864:SAMOSI>2.0.CO;2

Yamagata, T., Behera, S. K., Luo, J., Masson, S., Jury, M. R., & Rao, S. A. (2004). Coupled ocean-atmosphere variability in the tropical Indian Ocean. Geophysical Monograph Series, 147, 189–211. https://doi.org/10.1029/147GM12

Yang, S.-C., Rienecker, M., & Keppenne, C. (2010). The impact of ocean data assimilation on seasonal-to-interannual forecasts: A case study of the 2006 El Niño event. Journal of Climate, 23(15), 4080–4095. https://doi.org/10.1175/2010JCLI3319.1

Yu, L., & Rienecker, M. M. (1999). Mechanisms for the Indian Ocean warming during the 1997-98 El Niño. Geophysical Research Letters, 26(6), 735–738. https://doi.org/10.1029/1999GL900072

Yu, L., & Weller, R. A. (2007). Objectively analyzed air-sea heat fluxes for the global ice- free oceans (1981-2005). Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-88-4-527

Yu, W., Xiang, B., Liu, L., & Liu, N. (2005). Understanding the origins of interannual thermocline variations in the tropical Indian Ocean. Geophysical Research Letters, 32(24), L24706. https://doi.org/10.1029/2005GL024327

Yu, Z., & Potemra, J. (2006). Generation mechanism for the intraseasonal variability in the Indo-Australian basin. Journal of Geophysical Research, 111(C1), C01013. https://doi.org/10.1029/2005JC003023

Zebiak, S. E. (1993). Air-sea interaction in the equatorial Atlantic region. Journal of Climate, 6(8), 1567–1586. https://doi.org/10.1175/1520-0442(1993)006<1567:AIITEA>2.0.CO;2

Zhang, D., McPhaden, M. J., & Lee, T. (2014). Observed interannual variability of zonal currents in the equatorial Indian Ocean thermocline and their relation to Indian Ocean Dipole. Geophysical Research Letters, 41(22), 7933–7941. https://doi.org/10.1002/2014GL061449

Zhang, L., Du, Y., & Cai, W. (2018). Low-frequency variability and the unusual Indian Ocean Dipole events in 2015 and 2016. Geophysical Research Letters, 45(2), 1040–1048. https://doi.org/10.1002/2017GL076003

Zhang, Y., Du, Y., Zheng, S., Yang, Y., & Cheng, X. (2013). Impact of Indian Ocean Dipole on the salinity budget in the equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 118(10), 4911–4923. https://doi.org/10.1002/jgrc.20392

Zhang, Y., Du, Y., & Qu, T. (2016). A sea surface salinity dipole mode in the tropical Indian Ocean. Climate Dynamics, 47(7–8), 2573–2585. https://doi.org/10.1007/s00382-016-2984-z

Zhang, Y., Du, Y., & Feng, M. (2018). Multiple time scale variability of the sea surface salinity dipole mode in the tropical Indian Ocean. Journal of Climate, 31(1), 283–296. https://doi.org/10.1175/JCLI-D-17-0271.1

Zhao, M., & Hendon, H. H. (2009). Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Quarterly Journal of the Royal Meteorological Society, 135(639), 337–352. https://doi.org/10.1002/qj.370

Zhao, M., Hendon, H. H., Alves, O., & Yin, Y. (2014). Impact of improved assimilation of temperature and salinity for coupled model seasonal forecasts. Climate Dynamics, 42(9–10), 2565–2583. https://doi.org/10.1007/s00382-014-2081-0

Zheng, F., & Zhang, R.-H. (2012). Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data. Dynamics of Atmospheres and Oceans, 57, 45–57. https://doi.org/10.1016/j.dynatmoce.2012.06.002

Zheng, F., & Zhang, R.-H. (2015). Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo. Ocean Dynamics, 65(5), 691–705. https://doi.org/10.1007/s10236-015-0829-7

Zheng, F., Zhang, R.-H., & Zhu, J. (2014). Effects of interannual salinity variability on the barrier layer in the western-central equatorial Pacific: A diagnostic analysis from Argo. Advances in Atmospheric Sciences, 31(3), 532–542. https://doi.org/10.1007/s00376-013-3061-8

Zheng, X.-T., Xie, S.-P., Vecchi, G. A., Liu, Q., & Hafner, J. (2010). Indian Ocean Dipole response to global warming: Analysis of ocean–atmospheric feedbacks in a coupled model. Journal of Climate, 23(5), 1240–1253. https://doi.org/10.1175/2009JCLI3326.1

Zhu, J., & Kumar, A. (2019). Role of sea surface salinity feedback in MJO predictability: A Study with CFSv2. Journal of Climate, 32(18), 5745–5759. https://doi.org/10.1175/JCLI-D-18-0755.1

Zhu, J., Huang, B., Zhang, R.-H., Hu, Z.-Z., Kumar, A., Balmaseda, M. A., et al. (2015). Salinity anomaly as a trigger for ENSO events. Scientific Reports, 4, 6821. https://doi.org/10.1038/srep06821

Zweng, M. M., Reagan, J. R., Antonov, J. I., Mishonov, A. V., Boyer, T. P., Garcia, H. E., et al. (2013). World Ocean Atlas 2013, Volume 2: Salinity. NOAA Atlas NESDIS. https://doi.org/10.1182/blood-2011-06-357442

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る