リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on the role of neuropeptide receptor VPAC2 overactivation in schizophrenia and its potential therapeutic target」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on the role of neuropeptide receptor VPAC2 overactivation in schizophrenia and its potential therapeutic target

陳, 露 大阪大学 DOI:10.18910/87991

2022.03.24

概要

Schizophrenia is a chronic disabling brain disorder affecting approximately 1% of the world's population, and nearly 10% of those with schizophrenia have an affected first-degree relative. Schizophrenia is mainly characterized by positive symptoms such as hallucinations and delusions, negative symptoms such as decreased motivation, and cognitive dysfunction. Approximately one-third of patients with this diagnosis will attempt suicide, and eventually, about only one in ten of these will be successfully treated. New treatments are needed to lessen the suffering of patients and their families and to decrease the economic cost. The advent of the genomic era has led to the discovery of linkages of several genes and pathways to schizophrenia that may serve as new biomarkers or therapeutic targets for this disease. Accumulating evidence indicates that a number of rare copy number variants (CNVs), including both deletions and duplications, have been strongly associated with schizophrenia. Among the most highly penetrant genetic risk factors for neuropsychiatric disorders, clinical studies have shown that microduplications at 7q36.3, containing VIPR2, confer significant risk for schizophrenia. VIPR2 encodes VPAC2, a seven transmembrane heterotrimeric G protein-coupled receptor (GPCR) that binds two homologous neuropeptides with high affinity, vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase- activating polypeptide (PACAP). PACAP and its receptors (PAC1, VPAC1, and VPAC2) are expressed in various organs, including the sensory, digestive, and reproductive organs, in addition to the central and peripheral nervous systems, and thus PACAP exhibits a variety of biological activities in a distinct manner. VIP binds to two of the three receptors, VPAC1 and VPAC2, with an affinity similar to that of PACAP. Lymphocytes from patients with 7q36.3 microduplications exhibited higher VIPR2 gene expression and VIP responsiveness (cAMP induction), demonstrating the functional significance of the microduplications. These suggest that overactivation of the VPAC2 receptor signaling is involved in the etiology of schizophrenia and provides large-scale genetic evidence for a specific receptor-mediated (and potentially drug targetable) signaling pathway linked to schizophrenia that is distinct from dopaminergic, glutamatergic, and serotonergic systems. However, the mechanism by which overactive VPAC2 signaling may lead to schizophrenia is unknown. In the present study, to investigate how increased VIPR2 dosage might predispose to psychiatric disorders, we have tried to develop a bacterial artificial chromosome (BAC) transgenic (Tg) mouse model of VIPR2 CNV that recapitulates the genetic architecture of the susceptibility allele. Furthermore, since the VPAC2 receptor is considered an attractive drug target for development to treat schizophrenia, we have tried in another study to develop a selective VPAC2 receptor antagonist peptide.

 BAC is a useful resource for long-range analysis of the genomic organization and gene function. On average, BAC inserts contain 130–200 kb of mouse genomic DNA. Ideally, during BAC transgenesis, BAC DNA introduced by pronuclear injection is integrated as intact BAC molecules into the mouse genome. Tg mice containing intact BAC molecules are likely to show physiologically-relevant gene expression patterns and copy number-dependent expression levels. We generated mice with additional integrated copies of the mouse VIPR2 gene. Potential F0 founder and future progeny were screened by PCR. Southern blot analysis revealed three copies of the transgene in hemizygous F1 generation mice. Lines with documented germlinetransgene transmission were maintained by breeding hemizygous transgenic animals to C57BL/6J wild-type animals. Then, expression of VPAC2 receptor mRNA significantly increased in the prefrontal cortex, cerebral cortex, and hippocampus of VIPR2 BAC Tg mice (F2 generation) compared with wild-type littermates. Interestingly, the expression of PAC1 and VPAC1, but not dopamine-D2, receptor mRNA in the prefrontal cortex of VIPR2 BAC Tg mice was significantly less than that of wild-type mice. VIPR2 BAC Tg mice showed enhanced locomotor activity, disruption in prepulse inibition of the acoustic startle, decrease in social preference, and cognitive impairment. These findings suggest that the VPAC2 receptor link to mental health disorders may be due in part to overactive VPAC2 signaling at a time when neural circuits involved in cognition and social behavior are being established. We have previously found that activation of the VPAC2 receptor impaired axon outgrowth and decreased dendritic arborization in mouse cortical neurons. Thus, alternatively or additionally, VPAC2 overactivity may disrupt ongoing synaptic plasticity during the processes of learning and memory.

 As mentioned above, the VPAC2 receptor might be an attractive drug target for the treatment of schizophrenia because both preclinical and clinical studies have demonstrated a strong link between high expression/overactivation of the VPAC2 receptor and schizophrenia. Despite these backgrounds, the proof- of-concept of VPAC2 inhibitors has not been examined clinically. A reason might be that the VPAC2 receptor belongs to class-B GPCRs, and the discovery of small-molecule drugs against class-B GPCRs is generally difficult. Another issue is the structural properties of the VPAC2 receptor. PACAP also binds tightly to its specific receptor PAC1 and high-affinity receptors for VIP, namely VPAC1 and VPAC2. VPAC1, VPAC2, and PAC1 have moderate amino acid sequence similarities (about 50%) with each other and highly three-dimensional structural homology. VIP selectively activates VPAC1 and VPAC2, and PACAP activates all three receptors. Therefore, these molecular features have made it difficult to discover VPAC2-selective small molecule drugs. Under these circumstances, an artificial 16-mer cyclic peptide VIpep-3, Ac-c(CPPYLPRRLC)TLLLRS-OH, which antagonizes human and rodent VPAC2 signaling pathways in vitro has been reported. In this study, we performed amino acid substitutions and structural optimization of VIpep-3 and obtained its derivative, named KS-133. It was highly stable in rat plasma for at least up to 24 h and showed a VPAC2-selective and potent antagonistic activity. KS-133 had IC50 value of 24.8 nM against VPAC2, which was stronger antagonistic activity than parental VIpep-3 (40.6 nM), even though the molecular weight was reduced from VIpep-3 (1941.1 g/mol) to KS-133 (1558.8 g/mol). KS-133 did not antagonize VIP-VPAC1 and PACAP-PAC1 signaling pathways up to 5 μM. Subcutaneous and intranasal administration of KS-133 suppressed phosphorylation of CREB, a biomarker downstream of the VPAC2 receptor, in the prefrontal cortex of neonatal and adult mice, respectively. We also found that repeated administration of Ro 25-1553, a selective VPAC2 receptor agonist, during postnatal days 1-14 in mice caused cognitive impairment in adulthood and simultaneous treatment with KS-133 prevented this effect. The same postnatally restricted Ro 25-1553 treatment reduced the total branch number and length of apical and basal dendrites of the prefrontal cortex neurons in mice. These morphological abnormalities were counteracted by concomitant administration of KS-133 with Ro 25-1553.

 In conclusion, we successfully generated a BAC Tg mouse model of VIPR2 CNV and developed a novel peptide KS-133 with a potent and selective VPAC2 receptor antagonist activity that counteracts cognitive decline in a mouse model of psychiatric disorders. Our studies would provide a useful mouse model for uncovering the causative pathogenic role of VIPR2 CNV on cognitive circuits and other behavioral manifestations in schizophrenia. KS-133 might contribute to both the development of a novel drug candidate for the treatment of psychiatric disorders such as schizophrenia and the acceleration of fundamental studies on the VPAC2 receptor.

参考文献

Ago, Y., Asano, S., Hashimoto, H., & Waschek, J. A. (2021). Probing the VIPR2 Microduplication Linkage to Schizophrenia in Animal and Cellular Models. Frontiers in Neuroscience, 15, 717490- 717490. doi:10.3389/fnins.2021.717490

Ago, Y., Condro, M. C., Tan, Y. V., Ghiani, C. A., Colwell, C. S., Cushman, J. D., . . . Waschek, J. A. (2015). Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacology (Berl), 232(12), 2181-2189. doi:10.1007/s00213-014-3848-z

Ago, Y., Hayata-Takano, A., Kawanai, T., Yamauchi, R., Takeuchi, S., Cushman, J. D., . . . Waschek, J. A. (2017). Impaired extinction of cued fear memory and abnormal dendritic morphology in the prelimbic and infralimbic cortices in VPAC2 receptor (VIPR2)-deficient mice. Neurobiology of learning and memory, 145, 222-231. doi:10.1016/j.nlm.2017.10.010

Alkan, E., Davies, G., & Evans, S. L. (2021). Cognitive impairment in schizophrenia: relationships with cortical thickness in fronto-temporal regions, and dissociability from symptom severity. NPJ schizophrenia, 7(1), 20-20. doi:10.1038/s41537-021-00149-0

Amann, L. C., Gandal, M. J., Halene, T. B., Ehrlichman, R. S., White, S. L., McCarren, H. S., Siegel, S. J. (2010). Mouse behavioral endophenotypes for schizophrenia. Brain Res Bull, 83(3-4), 147-161. doi: 10.1016/j.brainresbull.2010.04.008

An, S., Tsai, C., Ronecker, J., Bayly, A., & Herzog, E. D. (2012). Spatiotemporal distribution of vasoactive intestinal polypeptide receptor 2 in mouse suprachiasmatic nucleus. The Journal of Comparative Neurology, 520(12), 2730-2741. doi:10.1002/cne.23078

Black, J. E., Kodish, I. M., Grossman, A. W., Klintsova, A. Y., Orlovskaya, D., Vostrikov, V., . . . Greenough, W. T. (2004). Pathology of layer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. The American journal of psychiatry, 161(4), 742-744. doi:10.1176/appi.ajp.161.4.742

Bowie, C. R., & Harvey, P. D. (2006). Cognitive deficits and functional outcome in schizophrenia. Neuropsychiatric disease and treatment, 2(4), 531-536. doi:10.2147/nedt.2006.2.4.531 Broadbelt, K. (2002). Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophrenia Research, 58(1), 75-81. doi:10.1016/s0920- 9964(02)00201-3

Chu, A., Caldwell, J. S., & Chen, Y. A. (2010). Identification and characterization of a small molecule antagonist of human VPAC(2) receptor. Mol Pharmacol, 77(1), 95-101. doi:10.1124/mol.109.060137

Dong, X. (2018). Current Strategies for Brain Drug Delivery. Theranostics, 8(6), 1481-1493. doi:10.7150/thno.21254

Eglen, R. M. (2002). Enzyme fragment complementation: a flexible high throughput screening assay technology. Assay Drug Dev Technol 1, 97-104. doi: 10.1089/154065802761001356

Falluel-Morel, A., Chafai, M., Vaudry, D., Basille, M., Cazillis, M., Aubert, N., et al. (2007). The neuropeptide pituitary adenylate cyclase-activating polypeptide exerts anti-apoptotic and differentiating effects during neurogenesis: focus on cerebellar granule neurones and embryonic stem cells. J Neuroendocrinol, 19, 321-327. doi: 10.1111/j.1365-2826.2007.01537.x

Fett, A. K., Viechtbauer, W., Dominguez, M. D., Penn, D. L., van Os, J., Krabbendam, L. (2011). The relationship between neurocognition and social cognition with functional outcomes in schizophrenia: a meta-analysis. Neurosci Biobehav Rev, 35(3), 573-588. doi: 10.1016/j.neubiorev.2010.07.001

Feuk, L., Carson, A. R., & Scherer, S. W. (2006). Structural variation in the human genome. Nature Reviews Genetics, 7(2), 85-97. doi:10.1038/nrg1767

Foley, C., Corvin, A., Nakagome, S. (2017). Genetics of Schizophrenia: Ready to Translate? Curr Psychiatry Rep 19(9), 61. doi: 10.1007/s11920-017-0807-5

Glantz, L. A., & Lewis, D. A. (2000). Decreased Dendritic Spine Density on Prefrontal Cortical Pyramidal Neurons in Schizophrenia. Archives of General Psychiatry, 57(1), 65. doi:10.1001/archpsyc.57.1.65

Gottschling, D. E., Aparicio, O. M., Billington, B. L., Zakian, V. A. (1990). Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell, 63(4), 751-762. doi: 10.1016/0092-8674(90)90141-z

Gourlet, P., Vertongen, P., Vandermeers, A., Vandermeers-piret, M.-C., Rathe, J., De Neef, P., . . . Robberecht, P. (1997). The Long-Acting Vasoactive Intestinal Polypeptide Agonist RO 25-1553 Is Highly Selective of the VIP 2 Receptor Subclass. Peptides, 18(3), 403-408. doi:10.1016/s0196- 9781(96)00322-1

Green, M. F., Kern, R. S., Braff, D. L., & Mintz, J. (2000). Neurocognitive Deficits and Functional Outcome in Schizophrenia: Are We Measuring the "Right Stuff"? Schizophrenia Bulletin, 26(1), 119-136. doi:10.1093/oxfordjournals.schbul.a033430

Hanks, A. N., Dlugolenski, K., Hughes, Z. A., Seymour, P. A., Majchrzak, M. J. (2013). Pharmacological disruption of mouse social approach behavior: relevance to negative symptoms of schizophrenia. Behav Brain Res, 252, 405-414. doi: 10.1016/j.bbr.2013.06.017

Hara, Y., Ago, Y., Taruta, A., Katashiba, K., Hasebe, S., Takano, E., . . . Takuma, K. (2016). Improvement by methylphenidate and atomoxetine of social interaction deficits and recognition memory impairment in a mouse model of valproic acid‐induced autism. Autism Research, 9(9), 926-939.

Harmar, A. J., Fahrenkrug, J., Gozes, I., Laburthe, M., May, V., Pisegna, J. R., . . . Said, S. I. (2012). Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. British Journal of Pharmacology, 166(1), 4-17. doi:10.1111/j.1476-5381.2012.01871.x

Harmar, A. J., Marston, H. M., Shen, S., Spratt, C., West, K. M., Sheward, W. J., et al. (2002). The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell, 109, 497-508. doi: 10.1016/s0092-8674(02)00736-5

Harvey, P. D., Keefe, R. S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. The American Journal of Psychiatry, 158(2), 176-184. doi: 10.1176/appi.ajp.158.2.176

Hashimoto, R., Hashimoto, H., Shintani, N., Chiba, S., Hattori, S., Okada, T., . . . Baba, A. (2007). Pituitary adenylate cyclase-activating polypeptide is associated with schizophrenia. Molecular Psychiatry, 12(11), 1026-1032. doi: 10.1038/sj.mp.4001982

Hashimoto, R., Hashimoto, H., Shintani, N., Ohi, K., Hori, H., Saitoh, O., . . . Kunugi H. (2010). Possible association between the pituitary adenylate cyclase-activating polypeptide (PACAP) gene and major depressive disorder. Neuroscience Letters, 468(3): 300-302. doi: 10.1016/j.neulet.2009.11.019 Hill, J. M. (2007). Vasoactive intestinal peptide in neurodevelopmental disorders: therapeutic potential. Current Pharmaceutical Design, 13(11), 1079-1089. doi:10.2174/138161207780618975 Hollenstein, K., de Graaf, C., Bortolato, A., Wang, M.-W., Marshall, F. H., & Stevens, R. C. (2014). Insights into the structure of class B GPCRs. Trends in Pharmacological Sciences, 35(1), 12-22. doi:10.1016/j.tips.2013.11.001

Holt, D. J., Lebron-Milad, K., Milad, M. R., Rauch, S. L., Pitman, R. K., Orr, S. P., Cassidy, B. S., Walsh, J. P., Goff, D. C. (2009). Extinction memory is impaired in schizophrenia. Biological Psychiatry, 65(6), 455-463. doi: 10.1016/j.biopsych.2008.09.017

Inoue, N., Ogura, S., Kasai, A., Nakazawa, T., Ikeda, K., Higashi, S., Isotani, A., Baba, K., Mochizuki, H., Fujimura, H., Ago, Y., Hayata-Takano, A., Seiriki, K., Shintani, Y., Shintani, N., Hashimoto, H. (2018). Knockdown of the mitochondria-localized protein p13 protects against experimental parkinsonism. EMBO Reports 19(3), e44860. doi: 10.15252/embr.201744860

Ishihama, T., Ago, Y., Shintani, N., Hashimoto, H., Baba, A., Takuma, K., & Matsuda, T. (2010). Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice. Behavioural Brain Research, 209(2), 274-280. doi:10.1016/j.bbr.2010.02.009

Iwasaki, S., Yamamoto, S., Sano, N., Tohyama, K., Kosugi, Y., Furuta, A., . . . Amano, N. (2019). Direct Drug Delivery of Low-Permeable Compounds to the Central Nervous System Via Intranasal Administration in Rats and Monkeys. Pharmaceutical Research, 36(5). doi:10.1007/s11095-019-2613-8

Kalus, P., Muller, T. J., Zuschratter, W., & Senitz, D. (2000). The Dendritic Architecture of Prefrontal Pyramidal Neurons in Schizophrenic Patients.pdf. Neuroeport, 11(16), 3621-3625. doi:10.1097/00001756-200011090-00044

Kealy, J., Greene, C., & Campbell, M. (2020). Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters, 726, 133664. doi:10.1016/j.neulet.2018.06.033

Keefe, R. S., Bilder, R. M., Davis, S. M., Harvey, P. D., Palmer, B. W., Gold, J. M., Meltzer, H. Y., Green, M. F., Capuano, G., Stroup, T. S., McEvoy, J. P., Swartz, M. S., Rosenheck, R. A., Perkins, D. O., Davis, C. E., Hsiao, J. K., Lieberman, J. A.; CATIE Investigators; Neurocognitive Working Group. (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry, 64(6), 633-647. doi: 10.1001/archpsyc.64.6.633

Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. British Journal of Pharmacology, 160(7), 1577-1579.

Koda, K., Ago, Y., Kawasaki, T., Hashimoto, H., Baba, A., & Matsuda, T. (2008). Galantamine and donepezil differently affect isolation rearing-induced deficits of prepulse inhibition in mice. Psychopharmacology (Berl), 196(2), 293-301. doi:10.1007/s00213-007-0962-1

Koering, C. E., Pollice, A., Zibella, M. P., Bauwens, S., Puisieux, A., Brunori, M., . . . Gilson, E. (2002). Human telomeric position effect is determined by chromosomal context and telomeric chromatin integrity. EMBO Reports, 3(11), 1055-1061. doi: 10.1093/embo-reports/kvf215

Konopaske, G. T., Lange, N., Coyle, J. T., & Benes, F. M. (2014). Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry, 71(12), 1323-1331. doi:10.1001/jamapsychiatry.2014.1582

Kushima, I., Aleksic, B., Nakatochi, M., Shimamura, T., Okada, T., Uno, Y., . . . Ozaki, N. (2018). Comparative Analyses of Copy-Number Variation in Autism Spectrum Disorder and Schizophrenia Reveal Etiological Overlap and Biological Insights. Cell Reports, 24(11), 2838- 2856. doi:10.1016/j.celrep.2018.08.022

Laburthe, M., Couvineau, A., Tan, V. (2007). Class II G protein-coupled receptors for VIP and PACAP: structure, models of activation and pharmacology. Peptides, 28, 1631-1639. doi: 10.1016/j.peptides.2007.04.026

Levinson, D. F., Duan, J., Oh, S., Wang, K., Sanders, A. R., Shi, J., . . . Gejman, P. V. (2011). Copy number variants in schizophrenia: confirmation of five previous findings and new evidence for 3q29 microdeletions and VIPR2 duplications. The American Journal of Psychiatry, 168(3), 302-316. doi:10.1176/appi.ajp.2010.10060876

Li, Z., Chen, J., Xu, Y., Yi, Q., Ji, W., Wang, P., Shen, J., Song, Z., . . . Shi, Y. (2016). Genome-wide Analysis of the Role of Copy Number Variation in Schizophrenia Risk in Chinese. Biological Psychiatry, 80(4), 331-337. doi:10.1016/j.biopsych.2015.11.012

Lochhead, J. J., & Thorne, R. G. (2012). Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews, 64(7), 614-628. doi:10.1016/j.addr.2011.11.002

Malhotra, D., & Sebat, J. (2012). CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell, 148(6), 1223-1241. doi:10.1016/j.cell.2012.02.039

Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. S., . . . Schizophrenia Working Groups of the Psychiatric Genomics, C. (2017). Contribution of copy number variants to schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 49(1), 27-35. doi:10.1038/ng.3725

McGrath, J. C., & Lilley, E. (2015). Implementing guidelines on reporting research using animals (ARRIVE etc.): new requirements for publication in BJP. British Journal of Pharmacology, 172(13), 3189-3193. doi:10.1111/bph.12955

McMartin, C., Hutchinson, L. E. F., Hyde, R., & Peters, G. E. (1987). Analysis of Structural Requirements for the Absorption of Drugs and Macromolecules from the Nasal Cavity. Journal of Pharmaceutical Sciences, 76(7), 535-540. doi:10.1002/jps.2600760709

Mena, A., Ruiz-Salas, J. C., Puentes, A., Dorado, I., Ruiz-Veguilla, M., & De la Casa, L. G. (2016). Reduced Prepulse Inhibition as a Biomarker of Schizophrenia. Frontiers in Behavioral Neuroscience, 10, 202-202. doi:10.3389/fnbeh.2016.00202

Mercer, K. B., Dias, B., Shafer, D., Maddox, S. A., Mulle, J. G., Hu, P., Walton, J., Ressler, K. J. (2016). Functional evaluation of a PTSD-associated genetic variant: estradiol regulation and ADCYAP1R1. Translational Psychiatry, 6(12), e978. doi: 10.1038/tp.2016.241

Millan, M. J., Andrieux, A., Bartzokis, G., Cadenhead, K., Dazzan, P., Fusar-Poli, P., . . . Weinberger, D. (2016). Altering the course of schizophrenia: progress and perspectives. Nat Rev Drug Discov, 15(7), 485-515. doi:10.1038/nrd.2016.28

Najjar, S., Pahlajani, S., De Sanctis, V., Stern, J. N. H., Najjar, A., & Chong, D. (2017). Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Frontiers in Psychiatry, 8, 83-83. doi:10.3389/fpsyt.2017.00083

National Research Council (1996). Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press, doi: 10.17226/5140

Nestler, E. J., & Hyman, S. E. (2010). Animal models of neuropsychiatric disorders. Nature Neuroscience, 13(10), 1161-1169. doi:10.1038/nn.2647

Owen, M. J., Sawa, A., & Mortensen, P. B. (2016). Schizophrenia. Lancet (London, England), 388(10039), 86-97. doi:10.1016/S0140-6736(15)01121-6

Passemard, S., Sokolowska, P., Schwendimann, L., Gressens, P. (2011). VIP-induced neuroprotection of the developing brain. Curr Pharm Des, 17(10), 1036-1039. doi: 10.2174/138161211795589409

Patel, J. P., & Frey, B. N. (2015). Disruption in the Blood-Brain Barrier: The Missing Link between Brain and Body Inflammation in Bipolar Disorder? Neural plasticity, 2015, 708306-708306. doi:10.1155/2015/708306

Pomarol-Clotet, E., Canales-Rodríguez, E. J., Salvador, R., Sarró, S., Gomar, J. J., Vila, F., . . . McKenna, P. J. (2010). Medial prefrontal cortex pathology in schizophrenia as revealed by convergent findings from multimodal imaging. Molecular Psychiatry, 15(8), 823-830. doi:10.1038/mp.2009.146

Ressler, K. J., Mercer, K. B., Bradley, B., Jovanovic, T., Mahan, A., Kerley, K., . . . May V. (2011). Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature, 470(7335), 492-497. doi: 10.1038/nature09856

Ross, R. A., Hoeppner, S. S., Hellberg, S. N., O'Day, E. B., Rosencrans, P. L., Ressler, K. J., May, V., Simon, N. M. (2020). Circulating PACAP peptide and PAC1R genotype as possible transdiagnostic biomarkers for anxiety disorders in women: a preliminary study. Neuropsychopharmacology, 45(7), 1125-1133. doi: 10.1038/s41386-020-0604-4

Rosti, R. O., Sadek, A. A., Vaux, K. K., & Gleeson, J. G. (2013). The genetic landscape of autism spectrum disorders. Developmental Medicine & Child Neurology, 56(1), 12-18. doi:10.1111/dmcn.12278

Rund, B. R. (1998). A Review of Longitudinal Studies of Cognitive Functions in Schizophrenia Patients. Schizophrenia Bulletin, 24(3), 425-435. doi:10.1093/oxfordjournals.schbul.a033337

Sakamoto, K., Koyama, R., Kamada, Y., Miwa, M., & Tani, A. (2018). Discovery of artificial VIPR2- antagonist peptides possessing receptor- and ligand-selectivity. Biochemical and Biophysical Research Communications, 503(3), 1973-1979. doi:10.1016/j.bbrc.2018.07.144

Sharma, T., Antonova, L. (2003). Cognitive function in schizophrenia. Deficits, functional consequences, and future treatment. Psychiatr Clin North Am, 26(1), 25-40. doi: 10.1016/s0193- 953x(02)00084-9

Shen, S., Spratt, C., Sheward, W. J., Kallo, I., West, K., Morrison, C. F., et al. (2000). Overexpression of the human VPAC2 receptor in the suprachiasmatic nucleus alters the circadian phenotype of mice. Proc Natl Acad Sci U S A, 97(21), 11575-11580. doi: 10.1073/pnas.97.21.11575

Sheward, W. J., Lutz, E. M., Harmar, A. J. (1995). The distribution of vasoactive intestinal peptide2 receptor messenger RNA in the rat brain and pituitary gland as assessed by in situ hybridization. Neuroscience, 67(2), 409-418. doi: 10.1016/0306-4522(95)00048-n

Silverman, J. L., Yang, M., Lord, C., Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci, 11(7), 490-502. doi: 10.1038/nrn2851

Takeuchi, S., Kawanai, T., Yamauchi, R., Chen, L., Miyaoka, T., Yamada, M., . . . Ago, Y. (2020). Activation of the VPAC2 Receptor Impairs Axon Outgrowth and Decreases Dendritic Arborization in Mouse Cortical Neurons by a PKA-Dependent Mechanism. Frontiers in Neuroscience, 14, 521-521. doi:10.3389/fnins.2020.00521

Takuma, K., Hara, Y., Kataoka, S., Kawanai, T., Maeda, Y., Watanabe, R., . . . Matsuda, T. (2014). Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacology Biochemistry and Behavior, 126, 43-49. doi:10.1016/j.pbb.2014.08.013

Thorne, R. G., Pronk, G. J., Padmanabhan, V., & Frey, W. H. (2004). Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 127(2), 481-496. doi:10.1016/j.neuroscience.2004.05.029

Tian, X., Richard, A., El-Saadi, M. W., Bhandari, A., Latimer, B., Van Savage, I., Lu, X. H. (2019). Dosage sensitivity intolerance of VIPR2 microduplication is disease causative to manifest schizophrenia-like phenotypes in a novel BAC transgenic mouse model. Mol Psychiatry, 24(12), 1884-1901. doi:10.1038/s41380-019-0492-3

Tsutsumi, M., Claus, T. H., Liang, Y., Li, Y., Yang, L., Zhu, J., Pan, C. Q. (2002). A Potent and Highly Selective VPAC2 Agonist Enhances Glucose-Induced Insulin Release and Glucose Disposal: A Potential Therapy for Type 2 Diabetes. Diabetes, 51(5), 1453-1460. doi:10.2337/diabetes.51.5.1453

Vacic, V., McCarthy, S., Malhotra, D., Murray, F., Chou, H.-H., Peoples, A., . . . Sebat, J. (2011). Duplications of the neuropeptide receptor gene VIPR2 confer significant risk for schizophrenia. Nature, 471(7339), 499-503. doi:10.1038/nature09884

Vaudry, D., Falluel-Morel, A., Bourgault, S., Basille, M., Burel, D., Wurtz, O., Vaudry, H. (2009). Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery. Pharmacological Reviews, 61(3), 283-357. doi:10.1124/pr.109.001370

Walsh, T., McClellan, J. M., McCarthy, S. E., Addington, A. M., Pierce, S. B., Cooper, G. M., Sebat, J. (2008). Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia. Science (New York, N.Y.), 320(5875), 539-543. doi:10.1126/science.1155174

Waschek, J. A., Ellison, J., Bravo, D. T., & Handley, V. (1996). Embryonic expression of vasoactive intestinal peptide (VIP) and VIP receptor genes. Journal of Neurochemistry, 66(4), 1762-1765.

Yano, K., Koda, K., Ago, Y., Kobayashi, H., Kawasaki, T., Takuma, K., & Matsuda, T. (2009). Galantamine improves apomorphine-induced deficits in prepulse inhibition via muscarinic ACh receptors in mice. British Journal of Pharmacology, 156(1), 173-180.

Young, J. W., Powell, S. B., Risbrough, V., Marston, H. M., Geyer, M. A. (2009). Using the MATRICS to guide development of a preclinical cognitive test battery for research in schizophrenia. Pharmacol Ther, 122(2), 150-202. doi: 10.1016/j.pharmthera.2009.02.004

Yuan, J., Jin, C., Sha, W., Zhou, Z., Zhang, F., Wang, M., Wang, J. (2014). A competitive PCR assay confirms the association of a copy number variation in the VIPR2 gene with schizophrenia in Han Chinese. Schizophrenia Research, 156(1), 66-70. doi:10.1016/j.schres.2014.04.004

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る