リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Sodium difluorophosphate: facile synthesis, structure, and electrochemical behavior as an additive for sodium-ion batteries」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Sodium difluorophosphate: facile synthesis, structure, and electrochemical behavior as an additive for sodium-ion batteries

Yang, Huan Hwang, Jinkwang Tonouchi, Yuto Matsumoto, Kazuhiko Hagiwara, Rika 京都大学 DOI:10.1039/d0ta11689k

2021

概要

Despite the success of difluorophosphate (PO₂F₂⁻, DFP) electrolyte additives in lithium and potassium-ion batteries, their utilization in sodium-ion batteries remains unexplored due to difficulties in the synthesis of sodium difluorophosphates (NaDFP). Thus, in this study, NaDFP salt prepared via ion exchange of KDFP and NaPF₆ is characterized using single-crystal X-ray diffraction, Raman and infrared (IR) spectroscopy, energy dispersive X-ray analysis (EDX), and thermogravimetry-differential thermal analysis (TG-DTA). Electrochemical tests demonstrate enhanced cycle performance of a hard carbon electrode (capacity retention; 76.3% after 500 cycles with NaDFP vs. 59.2% after 200 cycles in the neat electrolyte), achieving a high coulombic efficiency (average of 99.9% over 500 cycles) when NaDFP is used as an electrolyte additive. Further, electrochemical impedance spectroscopy (EIS) using a HC/HC symmetric cell demonstrates significant reduction of the interfacial resistance upon addition of NaDFP. X-ray photoelectron spectroscopy (XPS) indicates presence of stable, Na⁺-conducting solid-electrolyte interphase (SEI) components formed in the presence of NaDFP. This work not only presents a feasible NaDFP synthesis method, but also demonstrates the use of NaDFP as a strategy for optimizing sodium-ion battery performance.

この論文で使われている画像

参考文献

10

11

12

13

14

15

16

17

18

19

Conflicts of interest

There are no conflicts to declare.

20

21

J. Fondard, E. Irisarri, C. Courrèges, M. R. Palacín, A. Ponrouch

and R. Dedryvère, J. Electrochem. Soc., 2020, 167, 070526.

S. Mai, M. Xu, X. Liao, J. Hu, H. Lin, L. Xing, Y. Liao, X. Li and W.

Li, Electrochim. Acta, 2014, 147, 565-571.

J. Self, D. S. Hall, L. Madec and J. Dahn, J. Power Sources, 2015,

298, 369-378.

X. Zuo, M. Zhao, X. Ma, X. Xiao, J. Liu and J. Nan, Electrochim.

Acta, 2017, 245, 705-714.

H. Zhang, W. Feng, J. Nie and Z. Zhou, J. Fluorine Chem., 2015,

174, 49-61.

A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson and

M. R. Palacín, J. Mater. Chem. A, 2015, 3, 22-42.

R. Mogensen, D. Brandell and R. Younesi, ACS Energy Lett.,

2016, 1, 1173-1178.

K. Matsumoto, J. Hwang, S. Kaushik, C.-Y. Chen and R.

Hagiwara, Energy Environ. Sci., 2019, 12, 3247-3287.

G. Åvall, J. Mindemark, D. Brandell and P. Johansson, Adv.

Energy Mater., 2018, 8, 1703036.

K. Kuratani, N. Uemura, H. Senoh, H. T. Takeshita and T.

Kiyobayashi, J. Power Sources, 2013, 223, 175-182.

K. Mishra, N. Yadav and S. A. Hashmi, J. Mater. Chem. A, 2020,

8, 22507-22543.

S. Komaba, T. Ishikawa, N. Yabuuchi, W. Murata, A. Ito and Y.

Ohsawa, ACS Appl. Mater. Interfaces, 2011, 3, 4165-4168.

S. A. Webb, C. A. Bridges and G. M. Veith, J. Power Sources,

2014, 248, 1105-1117.

H. Lu, L. Wu, L. Xiao, X. Ai, H. Yang and Y. Cao, Electrochim.

Acta, 2016, 190, 402-408.

B. Zhang, R. Dugas, G. Rousse, P. Rozier, A. M. Abakumov and

J.-M. Tarascon, Nat. Commun., 2016, 7, 1-9.

A. Ponrouch, A. Goñi and M. R. Palacín, Electrochem.

Commun., 2013, 27, 85-88.

A. Beda, F. Rabuel, M. Morcrette, S. Knopf, P.-L. Taberna, P.

Simon and C. Matei Ghimbeu, J. Mater. Chem. A, 2021, DOI:

10.1039/D0TA07687B.

G. G. Eshetu, T. Diemant, M. Hekmatfar, S. Grugeon, R. J.

Behm, S. Laruelle, M. Armand and S. Passerini, Nano Energy,

2019, 55, 327-340.

J. Patra, H.-T. Huang, W. Xue, C. Wang, A. S. Helal, J. Li and J.K. Chang, Energy Storage Mater., 2019, 16, 146-154.

J. Zheng, S. Chen, W. Zhao, J. Song, M. H. Engelhard and J.-G.

Zhang, ACS Energy Lett., 2018, 3, 315-321.

J. Lee, Y. Lee, J. Lee, S.-M. Lee, J.-H. Choi, H. Kim, M.-S. Kwon,

K. Kang, K. T. Lee and N.-S. Choi, ACS Appl. Mater. Interfaces,

2017, 9, 3723-3732.

6 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

Journal Name

ARTICLE

22 J. Hwang, A. N. Sivasengaran, H. Yang, H. Yamamoto, T.

Takeuchi, K. Matsumoto and R. Hagiwara, ACS Appl. Mater.

Interfaces, 2021, DOI: 10.1021/acsami.0c17807.

23 G. Clark and A. Tai, Science, 1948, 107, 505-505.

24 Y. Fang, J. Zhang, L. Xiao, X. Ai, Y. Cao and H. Yang, Adv. Sci.,

2017, 4, 1600392.

25 J. Qiao, L. Ning, M. S. Molokeev, Y.-C. Chuang, Q. Liu and Z. Xia,

J. Am. Chem. Soc., 2018, 140, 9730-9736.

26 Y.-X. Ma, Y.-P. Gong, C.-l. Hu, J.-G. Mao and F. Kong, J. Solid

State Chem., 2018, 262, 320-326.

27 D. Schildhammer, G. Fuhrmann, L. L. Petschnig, K. Wurst, D.

Vitzthum, M. Seibald, H. Schottenberger and H. Huppertz,

Inorg. Chem., 2017, 56, 2736-2741.

28 H. Yu, W. Zhang, J. Young, J. M. Rondinelli and P. S.

Halasyamani, Adv. Mater., 2015, 27, 7380-7385.

29 A. Choudhury, S. Natarajan and C. N. R. Rao, Chem. Commun.,

1999, 1305-1306.

30 P. H. Abelson, Science, 1999, 283, 2015-2016.

31 S. G. Jantz, L. van Wüllen, A. Fischer, E. Libowitzky, E. J. Baran,

M. Weil and H. A. Höppe, Eur. J. Inorg. Chem., 2016, 2016,

1121-1128.

32 K. Tasaki, K. Kanda, S. Nakamura and M. Ue, J. Electrochem.

Soc., 2003, 150, A1628-A1636.

33 K. Matsumoto and R. Hagiwara, Inorg. Chem., 2009, 48, 73507358.

34 A. V. Plakhotnyk, L. Ernst and R. Schmutzler, J. Fluorine Chem.,

2005, 126, 27-31.

35 R. Fernández-Galán, B. R. Manzano and A. Otero, J.

Organomet. Chem., 1999, 577, 271-282.

36 C. Wang, L. Yu, W. Fan, J. Liu, L. Ouyang, L. Yang and M. Zhu,

ACS Appl. Energy Mater., 2018, 1, 2647-2656.

37 C. Wang, L. Yu, W. Fan, R. Liu, J. Liu, L. Ouyang, L. Yang and M.

Zhu, J. Alloys Compd., 2018, 755, 1-9.

38 K.-E. Kim, J. Y. Jang, I. Park, M.-H. Woo, M.-H. Jeong, W. C. Shin,

M. Ue and N.-S. Choi, Electrochem. Commun., 2015, 61, 121124.

39 Y.-M. Song, C.-K. Kim, K.-E. Kim, S. Y. Hong and N.-S. Choi, J.

Power Sources, 2016, 302, 22-30.

40 B. Yang, H. Zhang, L. Yu, W. Fan and D. Huang, Electrochim.

Acta, 2016, 221, 107-114.

41 G. Yang, J. Shi, C. Shen, S. Wang, L. Xia, H. Hu, H. Luo, Y. Xia

and Z. Liu, RSC Adv., 2017, 7, 26052-26059.

42 H. Yang, C.-Y. Chen, J. Hwang, K. Kubota, K. Matsumoto and R.

Hagiwara, ACS Appl. Mater. Interfaces, 2020, 12,

36168−36176.

43 T. Yang, H. Zeng, W. Wang, X. Zhao, W. Fan, C. Wang, X. Zuo,

R. Zeng and J. Nan, J. Mater. Chem. A, 2019, 7, 8292-8301.

44 D. D. DesMarteau, P. A. Bernstein, F. A. Hohorst and M.

Eisenberg, Inorg. Chem., 1971, 10, 1549-1551.

45 R. C. Thompson and W. Reed, Inorg. Nucl. Chem. Lett., 1969,

5, 581-585.

46 G. Han, Y. Wang, H. Li, Z. Yang and S. Pan, Chem. Commun.,

2019, 55, 1817-1820.

47 R. W. Harrison, R. C. Thompson and J. Trotter, J. Chem. Soc.,

1966, 1775-1780.

48 W. Granier, J. Durand, L. Cot and J. Galigne, Acta. Cryst. B,

1975, 31, 2506-2507.

49 J. Trotter and S. Whitlow, J. Chem. Soc. A, 1967, 1383-1386.

50 R. Harrison and J. Trotter, J. Chem. Soc. A, 1969, 1783-1787.

51 P. J. Malinowski, D. Kurzydłowski and W. J. D. T. Grochala,

Dalton Trans., 2015, 44, 19478-19486.

52 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J.

Appl. Crystallogr., 1993, 26, 343-350.

53 G. Sheldrick, Acta Cryst. A, 2015, 71, 3-8.

54 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837-838.

55 K. Bühler and W. Bues, Z. Anorg. Allg. Chem., 1961, 308, 6271.

56 R. J. Gillespie and P. L. A. Popelier, Chemical Bonding and

Molecular Geometry, Oxford University Press, New York, 2001.

57 I. H. R. J. Gillespie, The VSEPR Model of Molecular Geometry,

Allyn and Bacon, Boston, 1991.

58 M. Weil, M. Puchberger, E. Füglein, E. J. Baran, J. Vannahme,

H. J. Jakobsen and J. Skibsted, Inorg. Chem., 2007, 46, 801-808.

59 D. Iermakova, R. Dugas, M. Palacín and A. Ponrouch, J.

Electrochem. Soc., 2015, 162, A7060-A7066.

60 M. Forsyth, H. Yoon, F. Chen, H. Zhu, D. R. MacFarlane, M.

Armand and P. C. Howlett, J. Phys. Chem. C, 2016, 120, 42764286.

61 J. Hwang, K. Matsumoto and R. Hagiwara, J. Phys. Chem. C,

2018, 122, 26857−26864.

62 K.-H. Chen, K. N. Wood, E. Kazyak, W. S. LePage, A. L. Davis, A.

J. Sanchez and N. P. Dasgupta, J Mater Chem A, 2017, 5,

11671-11681.

63 S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T.

Nakayama, A. Ogata, K. Gotoh and K. Fujiwara, Adv. Funct.

Mater., 2011, 21, 3859-3867.

64 M. Dahbi, T. Nakano, N. Yabuuchi, T. Ishikawa, K. Kubota, M.

Fukunishi, S. Shibahara, J.-Y. Son, Y.-T. Cui and H. Oji,

Electrochem. Commun., 2014, 44, 66-69.

65 R. Petibon, C. P. Aiken, N. N. Sinha, J. C. Burns, H. Ye, C. M.

VanElzen, G. Jain, S. Trussler and J. R. Dahn, J. Electrochem.

Soc., 2012, 160, A117-A124.

66 N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi and Y.

Ukyo, J. Electrochem. Soc., 2012, 159, A1034-A1039.

67 D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth

and D. Sauer, J. Power Sources, 2011, 196, 5334-5341.

68 F. Wohde, M. Balabajew and B. Roling, J. Electrochem. Soc.,

2016, 163, A714.

69 R. Alcantara, M. Jaraba, P. Lavela and J. Tirado, J. Electroanal.

Chem., 2004, 566, 187-192.

70 F. Croce, F. Nobili, A. Deptula, W. Lada, R. Tossici, A. D’epifanio,

B. Scrosati and R. Marassi, Electrochem. Commun., 1999, 1,

605-608.

71 C. Fleischer, W. Waag, H.-M. Heyn and D. U. Sauer, J. Power

Sources, 2014, 260, 276-291.

72 J. Gomez, R. Nelson, E. E. Kalu, M. H. Weatherspoon and J. P.

Zheng, J. Power Sources, 2011, 196, 4826-4831.

73 W. Cao, J. Zheng, D. Adams, T. Doung and J. P. Zheng, J.

Electrochem. Soc., 2014, 161, A2087.

74 Y. Pan, Y. Zhang, B. S. Parimalam, C. C. Nguyen, G. Wang and

B. L. Lucht, J. Electroanal. Chem., 2017, 799, 181-186.

75 D.-H. Kim, B. Kang and H. Lee, J. Power Sources, 2019, 423,

137-143.

76 K. Pan, H. Lu, F. Zhong, X. Ai, H. Yang and Y. Cao, ACS Appl.

Mater. Interfaces, 2018, 10, 39651-39660.

77 J. Song, B. Xiao, Y. Lin, K. Xu and X. Li, Adv. Energy Mater., 2018,

8, 1703082.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 7

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

ARTICLE

Journal Name

(c)

(b)

(a)

(d)

Intensity

Transmittance

(e)

500

1000

1500

1600

–1

Raman shift / cm

1200

800

Wavenumber / cm

400

–1

Fig. 1 (a) Molecular structure of DFP− in NaDFP determined at 113 K. Coordination environments of (b) Na1 and (c) Na2 in NaDFP [symmetry code:

(i) x+1, y−1, z; (ii) −x+2, −y, −z+2; (iii) −x+2, −y, −z+2; (iv) x+1, y, z; (v) x, y−1, z+1; (vi) −x+1, −y, −z+2; (vii) −x+2, −y+1, −z+1]. Thermal ellipsoids are

shown at the 50 % probability level. (d) Raman and (e) IR spectra of NaDFP.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

Journal Name

ARTICLE

500

1.5

(a) neat

(b) neat

short circuit

0.5

0.0

-0.5

300

200

100

-1.0

-1.5

50

100

150

200

250

100

Time

Time/ /hh

400

500

(d) 0.5 wt% NaDFP

short circuit

400

–ImZ / ohm

Voltage / V

1.0

0.5

0.0

-0.5

0 cycle

3 cycles

cycle

50 cycles

cycle

100 cycles

cycle

400 cycles

cycle

300

200

100

-1.0

50

100

150

200

250

100

200

300

400

500

ReZ / ohm

Time // hh

Time

1.5

500

(e) 1 wt% NaDFP

1.0

(f) 1 wt% NaDFP

00 cycle

cycle

33 cycles

cycle

50

50 cycles

cycle

100

100 cycles

cycle

400

400 cycles

cycle

400

–ImZ / ohm

0.5

0.0

-0.5

300

200

100

-1.0

-1.5

300

500

(c) 0.5 wt% NaDFP

-1.5

200

ReZ / ohm

1.5

Voltage / V

0 cycle

3 cycles

50 cycles

100 cycles

400

–ImZ / ohm

Voltage / V

1.0

50

100

150

200

250

100

Time

Time

/ h/ h

200

300

400

500

ReZ / ohm

Fig. 2 Voltage profiles and Nyquist plots of the Na/Na symmetrical cells during galvanostatic Na metal deposition/dissolution cycles using 1 M NaPF6-EC/DMC (1:1, v:v)

electrolute with (a, b) 0 wt% NaDFP (neat), (c, d) 0.5 wt% NaDFP and (e, f) 1 wt% NaDFP. Current density: 1 mA cm‒2. (See Fig. S6 in ESI† for voltage profiles and Nyquist

plots with 0.5 wt% FEC and 3 wt% FEC)

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 9

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

ARTICLE

2.0

1.5

1.0

0.5

2nd

1.5

1.0

0.5

0.0

1st

50 100 150 200 250 300 350

2nd

Capacity / mAh g–1

(f) neat

(d)

1st

2nd

0.52 V

-2

0.0

0.5

1.00 V

1.0

Voltage / V

(c) 1 wt% NaDFP

1.5

1.0

0.5

0.0

1st

50 100 150 200 250 300 350

2nd

Capacity / mAh g–1

1.5

dQ/dV/ Ah

Ahgg–1–1VV–1–1

dQ/dV

dQ/dV/ Ah

dQ/dV

Ahgg–1–1VV–1–1

2.0

(g) 0.5 wt% NaDFP

(e)

1st

2nd

0.51 V

-2

0.0

0.5

0.89 V

1.0

1st

50 100 150 200 250 300 350

Capacity / mAh g–1

1.5

Voltage / V

Ah gg–1–1VV–1–1

dQ/dV

dQ/dV/ Ah

0.0

(b) 0.5 wt% NaDFP

Voltage / V

(a) neat

Voltage / V

Voltage / V

2.0

Journal Name

(f)

(h) 1 wt% NaDFP

1st

2nd

0.50 V 0.83 V

-2

0.0

0.5

1.0

1.5

Voltage / V

Fig. 3 Charge-discharge curves and the corresponding differential capacity-voltage (dQ/dV) plots of the Na/HC cells using 1 M NaPF6-EC/DMC (1:1, v:v) electrolyte with (a, d) 0 wt%

NaDFP (neat), (b, e) 0.5 wt% NaDFP and (c,f) 1 wt% NaDFP. Current density: 25 mA g−1. Cut-off voltage: 0.0051.5 V. (See Fig. S7 in ESI† for the data with 0.5 wt% FEC and 3 wt% FEC .

10 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

ARTICLE

120

(a)

400

100

300

25

50

80

25

100

60

250

200

40

500

100

Neat

0.5 wt% NaDFP

1 wt% NaDFP

10

20

Coulombic efficiency / %

Capacity / mAh g–1

Journal Name

20

15

120

(b)

400

100

300

80

25

25

50

60

200

100

100

Neat

0.5 wt% FEC

3 wt% FEC

40

250

500

10

15

20

Coulombic efficiency / %

Capacity / mAh g–1

Cycle number

20

Cycle number

Fig. 4 Rate capability of the Na/HC cells using 1 M NaPF6-EC/DMC (1:1, v:v) electrolyte with (a) 0 wt% NaDFP (neat), 0.5 wt% NaDFP and 1 wt% NaDFP and (b) 0 wt%

FEC (neat), 0.5 wt% FEC and 3 wt% FEC. Cut-off voltage: 0.0051.5 V. Electrolytes: Current densities are shown in mA g −1.

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 11

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

98

150

96

100

94

50

92

90

500

200

300

400

98

150

96

100

94

50

92

90

500

100

Capacity / mAh g–1

Cycle number

200

102

250

100

200

98

150

96

100

94

50

92

400

300 (c) 1 wt% NaDFP

102

250

100

200

98

150

96

100

94

50

92

50

100

150

200

Cycle number

250

90

300

100

200

300 (e) 3 wt% FEC

102

250

100

200

98

150

96

100

94

50

92

300

400

90

500

Cycle number

Cycle number

300 (d) 0.5 wt% FEC

300

Capacity / mAh g–1

100

100

200

Coulombic efficiency / %

102

250

Coulombic efficiency / %

200

300 (b) 0.5 wt% NaDFP

50

100

150

200

250

90

300

Coulombic efficiency / %

100

Capacity / mAh g–1

102

250

Capacity / mAh g–1

300 (a) neat

Coulombic efficiency / %

Journal Name

Coulombic efficiency / %

Capacity / mAh g–1

ARTICLE

Cycle number

Fig. 5 Cycle performance of the Na/HC cells using 1 M NaPF6-EC/DMC (1:1, v:v) electrolyte with (a) 0 wt% NaDFP (neat), (b) 0.5 wt% NaDFP, (c) 1 wt% NaDFP, (d) 0.5

wt% FEC, and (e) 3 wt% FEC. Current density: 100 mA g −1. Cut-off voltage: 0.0051.5 V. (See Fig. S8 in ESI† for the corresponding Charge-discharge curves and dQ/dV

plots)

12 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

Journal Name

1 cycle

3 cycles

10 cycles

20 cycles

100

80

10

120

100

10

15

60

1 cycle

3 cycles

10 cycles

20 cycles

10

120

100

80

10

15

60

40

20

20

20

20

40

60

80

100 120 140

40

60

80

100 120 140

10

15

20

40

60

80

100 120 140

ReZ / ohm

(f) schematic drawing

(e) 3 wt% FEC

300

10

80

350

(f) 0.5 wt% FEC (large view)

300

200

15

10

150

15

1 cycle

3 cycles

10 cycles 10

20 cycles

250

10

15

100

–ImZ / ohm

1 cycle

3 cycles

10 cycles

20 cycles

250

50

20

ReZ / ohm

ReZ / ohm

350

1 cycle

3 cycles

10 cycles

20 cycles

60

40

(c) 1 wt% NaDFP 15

80

40

–ImZ / ohm

140

200

60

150

100

10

15

–ImZ / ohm

–ImZ / ohm

120

140 (b) 0.5 wt% NaDFP15

15

–ImZ / ohm

(a) neat

–ImZ / ohm

140

ARTICLE

40

Rct

20

50

50

100 150 200 250 300 350

ReZ / ohm

Rh

50

100 150 200 250 300 350

ReZ / ohm

20

40

60

80

ReZ / ohm

Fig. 6 Nyquist plots of the HC/HC symmetric cells using 1 M NaPF6-EC/DMC (1:1, v:v) electrolyte with (a) 0 wt% NaDFP (neat), (b) 0.5 wt% NaDFP, (c) 1 wt% NaDFP, (d)

0.5 wt% FEC, and (e) 3 wt% FEC, and (h) the schematic drawing of the fitting parameters for the arc. Frequency range of 100 kHz−10 mHz. AC amplitude: 10 mV. See

Table S7 in ESI† EIS parameters)

Rbu

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 13

Please do not adjust margins

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Please do not adjust margins

ARTICLE

Journal Name

NaDFP

(a) F 1s

NaDFP

(b) O 1s

NaDFP

(c) P 2p

2p1/2

P–O

NaxPFy

NaF

/ NaxPFyOz

2p1/2

C–O C=O

P–F

2p1/2 2p3/2

C–O C=O

688

684

Binding energy / eV

100 F 1s

P–O

neat

NaF

680 540

NaxPFy /

NaxPFyOz

NaF

80

2p1/2 2p3/2

P–F

525 142

535

530

Binding energy / eV

C–O

C=O

P–O

O 1s

P–O

138

134

Binding energy / eV

P 2p

130

P–F

P–O

60

neat

NaDFP

neat

FEC

NaDFP

neat

FEC

68%

32%

71%

29%

4%

96%

20%

48%

58%

39%

64%

36%

88%

FEC

32%

12%

20

99%

40

1%

Ratio / %

2p3/2 2p

1/2 2p3/2

neat

23%

(d)

FEC

NaF

77%

692

P–O

FEC

neat

NaxPFy

/ NaxPFyOz

2p1/2

P–F

C–O C=O

FEC

NaxPFy

/ NaxPFyOz

2p3/2

2p3/2

NaDFP

Fig. 7 X-ray photoelectron spectra of the SEI layers formed on the HC electrodes after 20 cycles in 1 M NaPF6-EC/DMC (1:1, v:v) electrolyte with 0 wt% NaDFP (neat), 1

wt% NaDFP and 3 wt% FEC additives in the (a) F 1s, (b) O 1s, and (c) P 2p regions, and (d) SEI component ratios (see Table S8 in ESI† for the binding energy of the peaks).

14 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る