リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「患者由来iPS 細胞を用いたFTDP-17タウR406W変異の病態モデル構築と病態解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

患者由来iPS 細胞を用いたFTDP-17タウR406W変異の病態モデル構築と病態解析

中村, 真理 東京大学 DOI:10.15083/0002005146

2022.06.22

概要

Introduction
Mutations in the microtubule-associated protein tau (MAPT) gene, which encodes the tau protein, are known to cause frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). Among the MAPT mutations, the R406W mutation located on exon 13 is a unique missense mutation whose patients have been reported to exhibit Alzheimer’s disease (AD)-like phenotypes independent of amyloid-beta (Aβ) accumulation, rather than the more typical FTDP-17 symptoms. To date, the molecular mechanisms underlying the onset and progression of FTDP-17 remains largely unknown and there is currently no treatment effective for the disease. Therefore, the present study aimed to establish a suitable model for studying the abnormalities induced by the R406W mutant tau using patient-derived induced pluripotent stem cells (iPSCs), which are capable of providing a limitless amount of cells of any type that have the same genetic background as the actual patient. In the case of this study, the iPSCs were differentiated into neurons in order to elucidate the pathological role of tau that is critical to FTDP-17, as a basis for therapeutic development.

Results
1) Generation of MAPT R406W iPSC lines and isogenic lines
iPSC lines were established from 2 Japanese FTDP-17 patients heterozygous for the MAPT R406W mutation (MAPT R406W/+) using the integration-free episomal vector system. These lines were further geneedited using CRISPR/Cas-9 to establish isogenic lines with the mutation corrected (MAPT+/+ ), or homozygous for the mutation (MAPT R406W/R406W) to assess genotype-phenotype relationship.

2) Induction of iPSCs into cortical neurons via cerebral organoid dissociation
The iPSCs were then induced into cerebral organoids, which are three-dimensional (3D) spheres that mimic human brain development and consist of a heterogenous population of neuronal cells. In order to obtain a pure population of cortical neurons, day 30 organoids were dissociated into single cells and plated onto typical 2D cultures. After 30 more days of culture, immunochemical analysis was performed, which confirmed that more than 85% of the plated cells were mature cortical neurons.

3) Biochemical characterization of R406W mutant tau
Changes in phosphorylation levels as well as fragmentation patterns of the mutant tau were investigated by western blot analysis. Results revealed that the R406W mutant tau exhibited hypophosphorylation at specific epitopes, including S409, T181, and S404, in the iPSC-derived neuronal culture. Western blot with a pan-tau antibody also revealed that the R406W mutant tau consisted of increased amounts of 48kD hypophosphorylated tau. Furthermore, the reduced tau phosphorylation levels were confirmed to be a result of less phosphorylation by multiple kinases, particularly GSK3β, as supported by in vitro phosphorylation assays. In terms of fragmentation, the R406W mutant tau was found to be fragmented by calpain to generate increased amounts of 35kD N-terminus tau. This increased amount of fragmentation is likely associated with the reduced phosphorylated state of the mutant tau.

4) Cellular phenotypes resulting from R406W mutant tau-induced microtubule (MT) destabilization
At the cellular level, an increased percentage of R406W tau was found to be mislocalized to MAP2- positive dendrites of the neurons. In addition, the R406W mutant neurons exhibited dystrophic axons with increased numbers of puncta and mitochondrial transport defect, as confirmed by live imaging trafficking analysis and immunochemical analysis, both of which suggest that axonal degeneration was occurring in these neurons. These axonal phenotypes were rescued with treatment of a microtubule stabilizer, Epothilone D (EpoD), which implies that the R406W mutant tau destabilizes microtubules to trigger these phenotypes.

5) Analysis of temporal progression of phenotypes
The analyses above were performed at a single timepoint of 30 days post dissociation of the organoids. In order to assess the temporal progression of the phenotypes, the iPSC-derived neurons were also analyzed at an earlier timepoint of 10 days post dissociation. Already at this timepoint, the R406W mutant neurons exhibited reduced tau phosphorylation levels. However, the cellular phenotypes, including tau mislocalization and axonal dystrophy, were not observed yet, suggesting that changes in tau phosphorylation occurs before the emergence of the cellular abnormalities.

Discussion
The present study investigates the disease pathology caused by tau carrying the R406W mutation using iPSC-derived neurons derived from FTDP-17 patients. Several novel features that could represent some of the early hallmarks of the disease have been identified, including the hypophosphoylation of the mutant tau, increased tau fragmentation by calpain, and mitochondrial transport defect caused by microtubule destabilization. Additionally, the iPSC-derived neurons provide a physiologically relevant, human-based platform for testing drugs, such as EpoD in this case, which could ultimately translate into clinical application. In summary, the findings of this study deepen our understanding of the molecular mechanisms of FTDP-17 as well as other tauopathies, and thus, would provide a basis for novel therapeutic development.

この論文で使われている画像

参考文献

1. Plassman, B. L., Langa, K. M., Fisher, G. G., Heeringa, S. G., Weir, D. R., Ofstedal, M. B., Burke, J. R., Hurd, M. D., Potter, G. G., Rodgers, W. L., Steffens, D. C, Willis, R. J., and Wallace, R. B. Prevalence of dementia in the United States: the aging, demographics, and memory study. Neuroepidemiology, 29(1-2), 125-132 (2007).

2. Hebert, L. E., Weuve, J., Scherr, P. A., and Evans, D. A. Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778-1783 (2013).

3. Gaugler, J., James, B., Johnson, T., Marin, A., and Weuve, J. 2019 Alzheimer's disease facts and figures. Alzheimers & Dementia, 15(3), 321-387 (2019).

4. Prince, M. J. World Alzheimer Report 2015: the global impact of dementia: an analysis of prevalence, incidence, cost and trends. Alzheimer's Disease International (2015).

5. Alzheimer, A. Uber einen eigenartigen schweren Er Krankungsprozeb der Hirnrinde. Neurologisches Centralblatt, 23, 1129-1136 (1906).

6. Glenner, G. G., and Wong, C. W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemical and Biophysical Research Communications, 120(3), 885-890 (1984).

7. Nukina, N., and Ihara, Y. One of the antigenic determinants of paired helical filaments is related to tau protein. The Journal of Biochemistry, 99(5), 1541-1544 (1986).

8. Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., and Wisniewski, H. M. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. Journal of Biological Chemistry, 261(13), 6084-6089 (1986).

9. Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., and Binder, L. I. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proceedings of the National Academy of Sciences, 83(13), 4913- 4917 (1986).

10. Jack Jr, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Peterson, R. C., and Trojanowski, J. Q. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. The Lancet Neurology, 9(1), 119-128 (2010).

11. Goate, A., Chartier-Harlin, M. C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., Mant, R., Newton, P., Rooke, K., Roques, P., Talbot, C., Pericak-Vance, M., Roses, A., Williamson, R., Rossor, M., Owen, M., and Hardy, J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 349(6311), 704 (1991).

12. Sherrington, R., Rogaev, E. I., Liang, Y., Rogaeva, E. A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., Tsuda, T., Mar, L., Foncin, J.-F., Bruni, A. C., Montesi, M. P., Sorbi, S., Rainero, I., Pinessi, L., Nee, L., Chumakov, I., Pollen, D., Brookes, A., Sanseau, P., Polinsky, R. J., Wasco, W., Da Silva, H. A. R., Haines, J. L., Pericak-Vance, M. A., Tanzi, R. E., Roses, A. D., Fraser, P. E., Rommens, J. M., and St. George-Hyslop, P. H.. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375(6534), 754 (1995).

13. Levy-Lahad, E., Wijsman, E. M., Nemens, E., Anderson, L., Goddard, K. A., Weber, J. L., Bird, T. D., and Schellenberg, G. D. A familial Alzheimer's disease locus on chromosome 1. Science, 269(5226), 970-973 (1995).

14. Hardy, J. A., and Higgins, G. A. Alzheimer's disease: the amyloid cascade hypothesis. Science, 256(5054), 184-186 (1992).

15. Giacobini, E., and Gold, G. Alzheimer disease therapy—moving from amyloid-β to tau. Nature Reviews Neurology, 9(12), 677 (2013).

16. Mullane, K., and Williams, M. Alzheimer's therapeutics: continued clinical failures question the validity of the amyloid hypothesis—but what lies beyond?. Biochemical Pharmacology, 85(3), 289-305 (2013).

17. Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., and Hyman, B. T. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease. Neurology, 42(3), 631-631 (1992).

18. Giannakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kövari, E., Perl, D. P., Morrison, J. H., Gold, G., and Hof, P. R. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 60(9), 1495-1500 (2003).

19. Weingarten, M. D., Lockwood, A. H., Hwo, S. Y., and Kirschner, M. W. A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences, 72(5), 1858-1862 (1975).

20. Binder, L. I., Frankfurter, A., and Rebhun, L. I. The distribution of tau in the mammalian central nervous system. The Journal of Cell Biology, 101(4), 1371-1378 (1985).

21. Lee, V. M., Goedert, M., and Trojanowski, J. Q. Neurodegenerative tauopathies. Annual Review of Neuroscience, 24(1), 1121-1159 (2001).

22. De Calignon, A., Polydoro, M., Suárez-Calvet, M., William, C., Adamowicz, D. H., Kopeikina, K. J., Pitstick, R., Sahara, N., Ashe, K. H., Carlson, G. A., Spires-Jones, T. L., and Hyman, B. T. Propagation of tau pathology in a model of early Alzheimer's disease. Neuron, 73(4), 685-697 (2012).

23. Poorkaj, P., Bird, T. D., Wijsman, E., Nemens, E., Garruto, R. M., Anderson, L., and Schellenberg, G. D. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Annals of Neurology, 43(6), 815-825 (1998).

24. Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., and Hackett, J. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686), 702-705 (1998).

25. Spillantini, M. G., Murrell, J. R., Goedert, M., Farlow, M. R., Klug, A., and Ghetti, B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences, 95(13), 7737-7741 (1998).

26. Ghetti, B., Oblak, A. L., Boeve, B. F., Johnson, K. A., Dickerson, B. C., and Goedert, M. Invited review: Frontotemporal dementia caused by microtubule‐associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging. Neuropathology and Applied Neurobiology, 41(1), 24-46 (2015).

27. Ghetti, B., Wszolek, Z. K., and Boeve, B. F. Neurodegeneration: The Molecular Pathology of Dementia and Movement Disorders. 2nd ed. 14 Frontotemporal Dementia and Parkinsonism Linked to Chromosome 17. Dickson, Dennis, and Roy O. Weller, eds. United Kingdom: Wiley-Blackwell (an imprint of John Wiley & Sons Ltd) (2011). Print.

28. Rizzu, P., Van Swieten, J. C., Joosse, M., Hasegawa, M., Stevens, M., Tibben, A. and Goedert, M. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. The American Journal of Human Genetics, 64(2), 414-421 (1999).

29. Van Swieten, J. C., Stevens, M., Rosso, S. M., Rizzu, P., Joosse, M., De Koning, I. and Heutink, P. Phenotypic variation in hereditary frontotemporal dementia with tau mutations. Annals of Neurology, 46(4), 617-626 (1999).

30. Reed, L. A., Schelper, R. L., Solodkin, A., Van Hoesen, G. W., Morris, J. C., Trojanowski, J. Q., and Wragg, M. A. Autosomal dominant dementia with widespread neurofibrillary tangles. Annals of Neurology, 42(4), 564-572 (1997).

31. Saito, Y., Geyer, A., Sasaki, R., Kuzuhara, S., Nanba, E., Miyasaka, T., and Murayama, S. Early-onset, rapidly progressive familial tauopathy with R406W mutation. Neurology, 58(5), 811-813 (2002).

32. Foster, N. L., Wilhelmsen, K., Sima, A. A., Jones, M. Z., D'Amato, C. J., and Gilman, S. Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Annals of Neurology, 41(6), 706-715 (1997).

33. Ikeuchi, T., Imamura, T., Kawase, Y., Kitade, Y., Tsuchiya, M., Tokutake, T. and Sugishita, M. Evidence for a common founder and clinical characteristics of Japanese families with the MAPT R406W mutation. Dementia and Geriatric Cognitive Disorders Extra, 1(1), 267- 275 (2011).

34. Götz, J., Probst, A., Spillantini, M. G., Schäfer, T., Jakes, R., Bürki, K., and Goedert, M. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. The EMBO Journal, 14(7), 1304-1313 (1995).

35. Lewis, J., McGowan, E., Rockwood, J., Melrose, H., Nacharaju, P., Van Slegtenhorst, M., Gwinn-Hardy, K., Murphy, M. P., Baker, M., Yu, X., Duff, K., Hardy, J., Corral, A., Lin, W.-L., Yen, S.-H., Dickson, D. W., Davies, P., and Hutton, M. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics, 25(4), 402 (2000).

36. Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S. M., Iwata, N., Saido, T. C., Maeda, J., Suhara, T., Trojanowski, J. Q., and Lee, V. M. Y. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron, 53(3), 337-351 (2007).

37. Takahashi, K. and Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126(4), 663-676 (2006).

38. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131(5), 861-872 (2007).

39. Evans, M. J., and Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154 (1981).

40. Kriks, S., Shim, J. W., Piao, J., Ganat, Y. M., Wakeman, D. R., Xie, Z., Carrillo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M. F., Surmeier, D. J., Kordower, J. H., Tabar, V., and Studer, L. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480(7378), 547 (2011).

41. Hallett, P. J., Deleidi, M., Astradsson, A., Smith, G. A., Cooper, O., Osborn, T. M., Sundberg, M., Moore, M. A., Perez-Torres, E., Brownell, A.-L., Schumacher, J. M., Spealman, R. D., and Isacson, O. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell, 16(3), 269-274 (2015).

42. Nori, S., Okada, Y., Yasuda, A., Tsuji, O., Takahashi, Y., Kobayashi, Y., Fujiyoshi, K., Koike, M., Uchiyama, Y., Ikeda, E., Toyama, Y., Yamanaka, S., Nakamura, M., and Okano, H. Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice. Proceedings of the National Academy of Sciences, 108(40), 16825-16830 (2011).

43. Mandai, M., Watanabe, A., Kurimoto, Y., Hirami, Y., Morinaga, C., Daimon, T., Fujihara, M., Akimaru, H., Sakai, N., Shibata, Y., Terada, M., Nomiya, Y., Tanishima, S., Nakamura, M., Kamao, H., Sugita, S., Onishi, A., Ito, T., Fujita, K., Kawamata, S., Go, M. J., Shinohara, C., Hata, K., Sawada, M., Yamamoto, M., Ohta, S., Ohara, Y., Yoshida, K., Kuwahara, J., Kitano, Y., Amano, N., Umekage, M., Kitakoka, F., Tanaka, A., Okada, C., Takasu, N., Ogawa, S., Yamanaka, S., and Takahashi, M. Autologous induced stem-cell–derived retinal cells for macular degeneration. New England Journal of Medicine, 376(11), 1038-1046 (2017).

44. Okita, K., Yamakawa, T., Matsumura, Y., Sato, Y., Amano, N., Watanabe, A., and Yamanaka, S. An efficient nonviral method to generate integration‐free human‐induced pluripotent stem cells from cord blood and peripheral blood cells. Stem Cells, 31(3), 458-466 (2013).

45. Ichiyanagi, N., Fujimori, K., Yano, M., Ishihara-Fujisaki, C., Sone, T., Akiyama, T., Okada, Y., Akamatsu, W., Matsumoto, T., Ishikawa, M., Nishimoto, Y., Ishihara, Y., Sakuma, T., Yamamoto, T., Tsuiji, H., Suzuki, N., Warita, H., Aoki, M., and Okano, H. Establishment of in vitro FUS-associated familial amyotrophic lateral sclerosis model using human induced pluripotent stem cells. Stem Cell Reports, 6(4), 496-510 (2016).

46. Nakamoto, F. K., Okamoto, S., Mitsui, J., Sone, T., Ishikawa, M., Yamamoto, Y., Kanegae, Y., Nakatake, Y., Imaizumi, K., Ishiura, H., Tsuji, S., and Okano, H. The pathogenesis linked to coenzyme Q10 insufficiency in iPSC-derived neurons from patients with multiple-system atrophy. Scientific Reports, 8(1), 14215 (2018).

47. Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., and Knoblich, J. A. Cerebral organoids model human brain development and microcephaly. Nature, 501(7467), 373-379 (2013).

48. Kadoshima, T., Sakaguchi, H., Nakano, T., Soen, M., Ando, S., Eiraku, M., and Sasai, Y. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell–derived neocortex. Proceedings of the National Academy of Sciences, 110(50), 20284-20289 (2013).

49. Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., and Sasai, Y. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nature Biotechnology, 25(6), 681-686 (2007).

50. Amano, M., Kaneko, T., Maeda, A., Nakayama, M., Ito, M., Yamauchi, T., Goto, H., Fukata, Y., Oshiro, N., Shinohara, A., Iwamatsu, A., and Kaibuchi, K. Identification of Tau and MAP2 as novel substrates of Rho-kinase and myosin phosphatase. Journal of Neurochemistry, 87(3), 780-790 (2003).

51. Amano, M., Chihara, K., Nakamura, N., Kaneko, T., Matsuura, Y., and Kaibuchi, K. The COOH terminus of Rho-kinase negatively regulates rho-kinase activity. Journal of Biological Chemistry, 274(45), 32418-32424 (1999).

52. Jiang, S., Wen, N., Li, Z., Dube, U., Del Aguila, J., Budde, J., Martinez, R., Hsu, S., Fernandez, M. V., Cairns, N. J., Dominantly Inherited Alzheimer Network (DIAN), International FTD-Genomics Consortium (IFGC), Harari, O., Cruchaga, C., and Karch, C. M. Integrative system biology analyses of CRISPR-edited iPSC-derived neurons and human brains reveal deficiencies of presynaptic signaling in FTLD and PSP. Translational Psychiatry, 8(1), 265 (2018).

53. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., and Zhang, F. Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819-823 (2013).

54. Choi, S. H., Kim, Y. H., Hebisch, M., Sliwinski, C., Lee, S., D’Avanzo, C., and Klee, J. B. A three-dimensional human neural cell culture model of Alzheimer/'s disease. Nature, 515(7526), 274-278 (2014).

55. Quadrato, G., Nguyen, T., Macosko, E. Z., Sherwood, J. L., Yang, S. M., Berger, D. R., Maria, N., Scholvin, J., Goldman, M., Kinney, J. P., Boyden, E. S., Lichtman, J. W., Williams, Z. M., McCarroll, S. A., and Arlotta, P. Cell diversity and network dynamics in photosensitive human brain organoids. Nature, 545(7652), 48 (2017).

56. Sakaue, F., Saito, T., Sato, Y., Asada, A., Ishiguro, K., Hasegawa, M., and Hisanaga, S. I. Phosphorylation of FTDP-17 mutant tau by cyclin-dependent kinase 5 complexed with p35, p25, or p39. Journal of Biological Chemistry, 280(36), 31522-31529 (2005).

57. Chesser, A., Pritchard, S., and Johnson, G. V. Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Frontiers in Neurology, 4, 122 (2013).

58. Kowall, N. W., and Kosik, K. S. Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Annals of Neurology, 22(5), 639-643 (1987).

59. Hoover, B. R., Reed, M. N., Su, J., Penrod, R. D., Kotilinek, L. A., Grant, M. K., and Ashe, K. H. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron, 68(6), 1067-1081 (2010).

60. Schwarz, T. L. Mitochondrial trafficking in neurons. Cold Spring Harbor Perspectives in Biology, 5(6), a011304 (2013).

61. Lin, M. T., and Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 443(7113), 787 (2006).

62. Denk, F. and Wade-Martins, R. Knock-out and transgenic mouse models of tauopathies. Neurobiology of Aging, 30(1), 1-13 (2009).

63. Lim, S., Haque, M. M., Kim, D., Kim, D. J., and Kim, Y. K. Cell-based models to investigate Tau aggregation. Computational and Structural Biotechnology Journal, 12(20-21), 7-13 (2014).

64. Tatebayashi, Y., Planel, E., Chui, D. H., Sato, S., Miyasaka, T., Sahara, N. and Takashima, A. c-jun N-terminal kinase hyperphosphorylates R406W tau at the PHF-1 site during mitosis. The FASEB Journal, 20(6), 762-764 (2006).

65. Ikeda, M., Kawarai, T., Kawarabayashi, T., Matsubara, E., Murakami, T., Sasaki, A., and Hasegawa, M. Accumulation of filamentous tau in the cerebral cortex of human tau R406W transgenic mice. The American Journal of Pathology, 166(2), 521-531 (2005).

66. Zhang, B., Higuchi, M., Yoshiyama, Y., Ishihara, T., Forman, M. S., Martinez, D., Joyce, S., Trojanowski, J.Q., and Lee, V. M. Y. Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. Journal of Neuroscience, 24(19), 4657-4667 (2004).

67. Tatebayashi, Y., Miyasaka, T., Chui, D. H., Akagi, T., Mishima, K. I., Iwasaki, K., and Planel, E. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proceedings of the National Academy of Sciences, 99(21), 13896-13901 (2002).

68. Matsumura, N., Yamazaki, T., and Ihara, Y. Stable expression in Chinese hamster ovary cells of mutated tau genes causing frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17). The American Journal of Pathology, 154(6), 1649-1656 (1999).

69. Dayanandan, R., Van Slegtenhorst, M., Mack, T. G. A., Ko, L., Yen, S. H., Leroy, K., and Lovestone, S. Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Letters, 446(2-3), 228-232 (1999).

70. Perez, M., Lim, F., Arrasate, M., and Avila, J. The FTDP‐17‐linked mutation R406W abolishes the interaction of phosphorylated tau with microtubules. Journal of Neurochemistry, 74(6), 2583-2589 (2000).

71. Krishnamurthy, P. K. and Johnson, G. V. Mutant (R406W) human tau is hyperphosphorylated and does not efficiently bind microtubules in a neuronal cortical cell model. Journal of Biological Chemistry, 279(9), 7893-7900 (2004).

72. Imamura, K., Sahara, N., Kanaan, N. M., Tsukita, K., Kondo, T., Kutoku, Y., Ohsawa, Y., Sunada, Y., Kawakami, K., Hotta, A., Yawata, S., Watanabe, D., Hasegawa, M., Trojanowski, J. Q., Lee, V. M.-Y., Suhara, T., Higuchi, M., and Inoue, H. Calcium dysregulation contributes to neurodegeneration in FTLD patient iPSC-derived neurons. Scientific Reports, 6, 34904 (2016).

73. Zhang, Y., Pak, C., Han, Y., Ahlenius, H., Zhang, Z., Chanda, S., Marro, S., Patzke, C., Acuna, C., Covy, J., Xu, W., Yang, N., Danko, T., Chen, L., Wernig, M., and Südhof, T. C. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron, 78(5), 785-798 (2013).

74. Wang, Y., and Mandelkow, E. Tau in physiology and pathology. Nature Reviews Neuroscience, 17(1), 22 (2016).

75. Miyasaka, T., Morishima-Kawashima, M., Ravid, R., Heutink, P., van Swieten, J. C., Nagashima, K., and Ihara, Y. Molecular analysis of mutant and wild-type tau deposited in the brain affected by the FTDP-17 R406W mutation. The American Journal of Pathology, 158(2), 373-379 (2001).

76. Reynolds, C. H., Betts, J. C., Blackstock, W. P., Nebreda, A. R., and Anderton, B. H. Phosphorylation sites on tau identified by nanoelectrospray mass spectrometry. Journal of Neurochemistry, 74(4), 1587-1595 (2000).

77. Greer, S., Honeywell, R., Geletu, M., Arulanandam, R., and Raptis, L. Housekeeping gene products; levels may change with confluence of cultured cells. Journal of Immunological Methods, 355, 76-79 (2010).

78. DeTure, M., Ko, L. W., Yen, S., Nacharaju, P., Easson, C., Lewis, J., van Slegtenhorst, M., Hutton, M., and Yen, S. H. Missense tau mutations identified in FTDP-17 have a small effect on tau–microtubule interactions. Brain Research, 853(1), 5-14 (2000).

79. Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B. I., Geschwind, D.H., Bird, T.D., McKeel, D., Goate, A., Morris, J. C., Wilhelmsen, K. C., Schellenberg, G. D., Trojanowski, J. Q., and Lee, V. M.-Y. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science, 282(5395), 1914-1917 (1998).

80. Hasegawa, M., Smith, M. J., & Goedert, M. Tau proteins with FTDP‐17 mutations have a reduced ability to promote microtubule assembly. FEBS Letters, 437(3), 207-210 (1998).

81. Kopeikina, K. J., Carlson, G. A., Pitstick, R., Ludvigson, A. E., Peters, A., Luebke, J. I., Koffie, R.M., Frosch, M.P., Hyman, B. T., and Spires-Jones, T. L. Tau accumulation causes mitochondrial distribution deficits in neurons in a mouse model of tauopathy and in human Alzheimer's disease brain. The American Journal of Pathology, 179(4), 2071-2082 (2011).

82. Rodríguez-Martín, T., Pooler, A. M., Lau, D. H., Mórotz, G. M., De Vos, K. J., Gilley, J., Coleman, M.P., and Hanger, D. P. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons. Neurobiology of Disease, 85, 1-10 (2016).

83. Iovino, M., Agathou, S., González-Rueda, A., Del Castillo Velasco-Herrera, M., Borroni, B., Alberici, A., Lynch, T., O`Dowd, S., Geti, I., Gaffney, D., Vallier, L., Paulsen, O., Káradóttir, R. T., and Spillantini, M. G. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations. Brain, 138(11), 3345-3359 (2015).

84. Dixit, R., Ross, J. L., Goldman, Y. E., and Holzbaur, E. L. Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866), 1086-1089 (2008).

85. Garg, S., Timm, T., Mandelkow, E. M., Mandelkow, E., and Wang, Y. Cleavage of Tau by calpain in Alzheimer's disease: the quest for the toxic 17 kD fragment. Neurobiology of Aging, 32(1), 1-14 (2011).

86. Chen, H. H., Liu, P., Auger, P., Lee, S. H., Adolfsson, O., Rey-Bellet, L., Lafrance-Vanasse, J., Friedman, B. A., Pihlgren, M., Muhs, A., Pfeifer, A., Ernst, J., Ayalon, G., Wildsmith, K. R., Beach, T. G., van der Brug, M. P. Calpain-mediated tau fragmentation is altered in Alzheimer’s disease progression. Scientific Reports, 8(1), 16725 (2018).

参考文献をもっと見る