リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study on performance improvement of portable direct methanol fuel cells systems」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study on performance improvement of portable direct methanol fuel cells systems

安藤 慎輔 横浜国立大学 DOI:info:doi/10.18880/00014606

2022.05.26

概要

直接メタノール形燃料電池(DMFC)は、可搬型電源としては二次電池システムよりエネルギー密度が高い応用分野に適した高効率システムである。本研究では、システムの性能向上のために、燃料であるメタノールの濃度を管理し燃料の供給量を制御するためのメタノール濃度センサの開発とその耐久性の実証、同センサを搭載した燃料電池システムの試作、システム制御や開発ツールとしての熱・物質収支解析法を開発した。

DMFC の主要課題は、(a)アノードでのメタノール酸化反応速度が遅く、活性損失が大きい、(b)メタノールクロスオーバ(MCO)に起因する燃料利用率の低下と混成電位によるカソード電位の低下である。MCO はメタノール濃度が高いほど顕著になるため、メタノール濃度管理が DMFC システムの発電効率・燃費を支配する重要な技術項目である。

本研究では、MCO を抑制するためのキーデバイスであるメタノール濃度センサを開発した。Pt 触媒量を制御することで 10 wt%までのメタノール濃度に対して高い線形性を有するセンサと、センサの計測データからメタノール濃度を出力する独自のアルゴリズムを提案した。25 ℃から 60 ℃の温度条件下で約 6500 時間の耐久性を評価し、劣化率は先行研究の報告例(約 1.16 mA cm–2 h–1)よりも二桁小さい、約 0.02 mA cm–2 h–1 であることを実証した。

さらに、燃料を容易に供給できるカートリッジ方式を適用した小型軽量な 100 W 級可搬型 DMFC システムを試作した。試作したシステムは、スタック出力 129 W、体積出力密度11.2 W L–1、質量出力密度 16.7 W kg–1、システム最大効率 27 % HHV を達成した。

この DMFC システムの制御に組み込める熱・物質収支解析法として、DMFC システムの実験データと熱・物質収支を連携した DMFC システムの熱・物質収支解析モデルを開発した。130 W 級 DMFC システムの実測データを用いてスタック温度 55 ℃と 65 ℃の時のシステム効率を解析した結果、システム効率はそれぞれ 22.7 % HHV(実測値:25.2 % HHV)と 21.5 % HHV(実測値:23.9 % HHV)であり、約 2.5%の精度で予測できることを検証した。

この論文で使われている画像

参考文献

1. IPCC, Sixth Assessment Report Working group I, Summary for policymakers (2021).

2. IEA, World Energy Outlook 2021, (2021).

3. 経済産業省資源エネルギー庁,「令和 2 年度エネルギーに関する年次報告」(エネルギー白書 2021) (2021).

4. IEA, Net Zero by 2050, A roadmap for the global energy sector, (2021).

5. 経済産業省資源エネルギー庁,第 6 次エネルギー基本計画 (2021).

6. 資源エネルギー庁燃料電池推進室,水素の製造,輸送・貯蔵について (2014). https://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/suiso_nenryodenchi_wg/pdf/005_02_00.pdf

7. 早坂義隆,石倉雅裕,水素エネルギーシステム 28(1), 23, (2003).

8. 加納達也,価値総合研究所「Best Value」, 20, (2008).

9. 中島良,山田正彦,電気評論,99(11), 38, (2014).

10. 岡部昌規,中沢孝治,水素エネルギーシステム,35(3), 22, (2010).

11. 松村幸彦,水素エネルギーシステム,29(1), 7, (2004).

12. 山地憲治,笹倉正晴,エネルギー・資源,35(1), 19, (2014)

13. NEDO, 水素エネルギー白書,(2014).

14. 國分裕一,水素エネルギーシステム,34(4), 24, (2009).

15. 中村恒明,岩渕宏之,村田謙二,坂田興,水素エネルギーシステム,33(1), 27,(2009).

16. 岡田佳巳,安井誠,化学工学,77(1), 46, (2013).

17. COCN, 2012 年度最終報告書「太陽エネルギーの化学エネルギーへの変換と利用」,(2013).

18. 西尾元治,自動車研究「総合効率と GHG 排出の分析」, 33(7), (2011).

19. 資源エネルギー庁燃料電池推進室,家庭用燃料電池について (2014). https://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/suiso_nenryodenchi_wg/pdf/002_01_00.pdf

20. 資源エネルギー庁燃料電池推進室,業務・産業用燃料電池について (2014). https://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/suiso_nenryodenchi_wg/pdf/002_02_00.pdf

21. 資源エネルギー庁燃料電池推進室,燃料電池の新たな用途について (2014). https://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/suiso_nenryodenchi_wg/pdf/004_01_00.pdf

22. 資源エネルギー庁燃料電池推進室,水素発電について (2014). https://www.meti.go.jp/committee/kenkyukai/energy/suiso_nenryodenchi/suiso_nenryodenchi_wg/pdf/004_02_00.pdf

23. M. Nomura, H. Tamaki, T. Morishita, H. Ikeda, and K. Hatori, Int. Journal of Hydrogen Energy, 6(4), 397, (1981).

24. 高石龍夫,赤川裕和,水素エネルギーシステム,31(1), 8, (2006).

25. 中谷浩己,石井弘実,福井和司,西村幸治,武野計二,松本慎治,三菱重工技報 Vol.42 No.3 (2005-10).

26. I.L. Wiesberg, J.L. de Medeiros, R.M.B. Alves, P.L.A. Coutinho, and O.Q.F. Araújo, Energy Conversion and Management, 125, 320 (2016).

27. M. Minutillo and A. Perna, Int. J. Hydrogen Energy, 35(13), 7012, (2010).

28. 二酸化炭素原料化基幹化学品製造プロセス技術開発,NEDO,平成 28 年度中間年報,20170000000843 号 (2017).

29. S.R. Samms, S. Wasmus, and R.F. Savinell, J. Electrochem. Soc., 143(5), 1498 (1996).

30. A. Hamnett, Catalysis Today, 38 (4), 445 (1997).

31. C. Y. Chen, D. H. Liu, C. L. Huang, and C. L. Chang, J. Power Sources, 167, 442 (2007).

32. A. Heinzel and V. M. Barragan, J. Power Sources, 84, 70 (1999).

33. M. S. Lee, J. Sohn, J. Shim, and W. M. Lee, Sensor and Actuators B, 124, 323 (2007).

34. C. H. Wan and C. H. Lin, J. Power Sources, 186, 229 (2009).

35. J. Kondoh, S. Tabushi, Y. Matsui, and S. Shiokawa, Sensors and Actuators B, 129, 575 (2008).

36. D. Sparks, K. Kawaguchi, M. Yasuda, D. Riley, V. Cruz, N. Tran, A. Chimbayo, and N. Najafi,Sensors and Actuators A, 145–146, 9 (2008).

37. Q. Mao and U. Krewer, Electrochimica Acta, 68, 60 (2012).

38. C. C. Sung, Y. L. Tseng, Y. F. Chiang, and C. Y. Chen, Sensors and Actuators A, 161, 101 (2010).

39. S. Doerner, T. Schultz, T. Schneider, K. Sundmacher, and P. Hauptmann, SENSORS, 2004 IEEE, 2, 639 (2004).

40. H. Zhao, J. Shen, J. Zhang, H. Wang, D. P. Wilkinson, and C. E. Gu, J. Power Sources, 159, 626 (2006).

41. E. Akbari, Z. Buntat, A. Nikoukar, A. Kheirandish, M. Khaledian, and A. Afroozeh,Renewable Sustainable Energy Rev., 60, 1125 (2016).

42. T. Kumagai, T. Horiba, T. Kamo, S. Takeuchi, K. Iwamoto, K. Kitami, and K. Tamura, US Patent 4,810,597 (1989).

43. Kulikovsky A., J. Electrochem. Soc., 152(6), A1121 (2005).

44. W. Sun, G. Sun, W. Yang, S. Yang, and Q. Xin, J. Power Sources, 162, 1115 (2006).

45. S. R. Narayanan, T. I. Valdez, and W. Chun, Electrochem. Solid-State Lett., 3, 117 (2000).

46. Z. Qi, C. He, M. Hollett, A. Attia, and A. Kaufman, Electrochem. Solid-State Lett., 6, A88 (2003).

47. L. Yan, J. Liao, L. Feng, X. Zhao, L. Liang, W. Xing, and C. Liu, J. Electroanalytical Chem.,688, 49 (2013).

48. S. A. C. Barton, B. L. Murach, T. F. Fuller, and A. C. West, J. Electrochem. Soc., 145, 3783 (1998).

49. J. Geng, X. Li, G. Sun, and B. Yi., Sensors and Actuators B, 147, 612 (2010).

50. Q. Ye and T. S. Zhao, Electrochem. Solid-State Lett., 8, A211 (2005).

51. 安藤慎輔,高橋研,久保田修,特許 4949616 号.

52. 高橋研,中原貢,田中明,久保田修,安藤慎輔,特許 4949615 号.

53. J. Kawaji, S. Suzuki, Y. Takamori, and M. Morishima, Electrochimica Acta, 55(27), 8018– 8022 (2010).

54. S. Suzuki, T. Onodera, J. Kawaji, T. Mizukami, Y. Takamori, H. Daimon, and M. Morishima,Electrochemistry, 79(8), 602–608 (2011).

55. S. Suzuki, Y. Ohbu, T. Mizukami, Y. Takamori, M. Morishima, H. Daimon, and M. Hiratani, J. Electrochem. Soc., 156(1), B27–B31 (2009).

56. X.G. Li and M. Sabir, International Journal of Hydrogen Energy, 30(4), 359–371 (2005).

57. de Souza A and Gonzalez ER, Journal of Solid State Electrochemistry, 7(9), 651–657 (2003).

58. Y.G. Yoon, W.Y. Lee, G.G. Park, T.H. Yang, and CS Kim, International Journal of Hydrogen Energy, 30(12), 1363–1366 (2005).

59. Zhang HF, Pei PC, Li PC, and Yuan X, International Journal of Hydrogen Energy, 35(17), 9124–9133 (2010).

60. L.Wang and H.Liu, Journal of Power Sources, 134(2), 185–196 (2004).

61. 固体高分子形燃料電池実用化戦略的技術開発 実用化技術開発 高強度な波板形状セパレータの研究開発, NEDO, 平成 19 年度-平成 21 年度成果報告書, 20100000002327 号(2011).

62. M. Matsunaga, T. Fukushima, and K. Ojima, World Elec Vehicle J, Vol. 3, 1–10 (2009).

63. 小島康一, 渡部麻美子, トヨタ自動車における燃料電池自動車開発の現状と展望,NEDO FORUM (2015).

64. 安藤慎輔,中原貢,西村勝憲,特許 5235581 号.

65. 安藤慎輔,中原貢,高橋宏,特許 5255849 号.

66. W.C. Choi, J.D. Kim, and S.I. Woo, J Power Sources, 96, 411 (2001).

67. X. Ren, T.E. Springer, T.A. Zawodzinski, and S. Gottesfeld, J. Electrochem. Soc., 147 466 (2000).

68. F. Zenith and U. Krewer, Energy Environ. Sci., 4, 519 (2011).

69. V.B. Oliveira, D.S. Falcão, C.M. Rangel, and A.M.F.R. Pinto, Int J Hydrogen Energy, 32, 415 (2007).

70. K. Scott and P. Argyropoulos, J Power Sources, 137, 228 (2004).

71. K. Scott and P. Argyropoulos, J Electroanalyt Chem, 567, 103 (2004).

72. H. Guo and C.-F. Ma, Electrochemistry Communications, 6, 306 (2004).

73. B.L. García, V.A. Sethuraman, J.W. Weidner, R.E. White, and R. Dougal, J. Fuel Cell Sci. Tech., 1, 43 (2004).

74. K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel, and E.D. Gilles, Chem Eng Sci, 56, 333 (2001).

75. A. Simoglou, P. Argyropoulos, E. B. Martin, K. Scott, A. J. Morris, and W. M. Taama, Chem Eng Sci, 56, 6761 (2001).

76. A. Simoglou, P. Argyropoulos, E. B. Martin, K. Scott, A. J. Morris, and W. M. Taama, Chem Eng Sci, 56, 6773 (2001).

77. P. Argyropoulos, K. Scott, A.K. Shukla, and C. Jackson, J Power Sources, 123, 190 (2003).

78. K. Scott, C. Jackson, and P. Argyropoulos, J. Power Sources, 161, 885 (2006).

79. H. Dohle and K. Wippermann, J. Power Sources, 135, 152 (2004).

80. Y.-J. Chiu, T. L. Yu, and Y.-C. Chung, J. Power Sources, 196, 5053 (2011).

81. Q. Yang, A. Kianimanesh, T. Freigeit, S.S. Park, and D. Xue, J. Power Sources, 196, 10640 (2011).

82. H. Dohle, J. Mergel, and D. Stolten, J Power Sources, 111, 268 (2002).

83. F. Zenith, C. Weinzierl, and U. Krewer, Chem Eng Sci, 65, 4411 (2010).

84. J. Lee, S. Lee, D. Han, G. Gwak, and H. Ju, Int J Hydrogen Energy, 42, 1736 (2017).

85. A.C. Ince, M.U. Karaoglan, A. Glüsen, C.O. Colpan, M. Müller, and D. Stolten, Int J Energy Res., 43, 3601 (2019).

86. C. Lim and C.Y. Wang, J Power Sources, 113 145 (2003).

87. X. Ren, P. Zelenay, S. Thomas, J. Davey, and S. Gottesfeld, J Power Sources, 86, 111 (2000).

88. K.A. Kobe, Thermochemistry for the Petrochemical Industry Petroleum Refiner (1949–1954).

89. F.D. Rossoni, Selected Values of Chemical Thermodynamic Properties (1952).

90. Handbook of Chemistry: Pure Chemistry, 3rd ed. (1984).

91. FCDIC: Fuel Cell Technology Data Book, (2001). [in Japanese]

92. JSME Data Book: Thermophysical Properties of Fluids (1983).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る