リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Techno-Economic Assessment of Energy Transition toward High PV Penetration Grid: the case of Kyushu, Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Techno-Economic Assessment of Energy Transition toward High PV Penetration Grid: the case of Kyushu, Japan

DUMLAO, SAMUEL MATTHEW GIRAO 京都大学 DOI:10.14989/doctor.k23997

2022.03.23

概要

本論文は、今後日本で想定されている太陽光発電が大量導入された電力網へのエネルギー転換について、いち早く転換期を迎える九州地区を例に技術経済的評価を行い、克服するべき課題と解決について論じた結果をまとめたもので、8章からなっている。

第1章は序論で、エネルギー転換と太陽光大量導入に関して概観し、日本のエネルギー基本計画で目指すエネルギー転換と九州地区の現状について紹介したのち、本研究の目的を述べている。

第2章では研究背景として、各種公開されている日本のエネルギーデータを紹介するとともに、エネルギーモデル、特に本研究で使用した Python で書かれたオープンソースモデル PyPSA と最適化手法について紹介している。

第3章では電力需要が日、週、年でそれぞれ固有の周期性を有することを利用しフーリエ解析を行い、フーリエ級数により電力需要を再現する手法について述べている。また同様の手法を太陽光発電にも応用し、太陽光発電の出力抑制を簡単に見積もることができることを示すとともに、現状のシステムにおける太陽光発電導入の限界について論じている。

第4章では太陽光発電をさらに導入し、石炭火力発電廃止を目指した場合、天候の不規則性が電力需要と太陽光発電出力抑制にどう影響するかについて分析を行い、天候(気温)に基づく需要と供給を再現し、それらが発電コストと二酸化炭素排出に与える影響について論じている。

第 5 章では太陽光発電による電力需給バランス確保のための電力貯蔵システム導入に関して、モンテカルロ法による動的費用対効果分析を行い、太陽光発電導入に伴って蓄電池を代表とする電力貯蔵システムの最適な導入計画を示すとともに、発電に関わる二酸化炭素排出量削減への影響について論じている。

第 6 章では、第 5 章を発展させ、太陽光発電の出力抑制を減らすための手段の一つとして電気自動車の蓄電池としての可能性を探求している。ここでは、第 5 章と同様に、太陽光発電の余剰生産量が多い時期に、利用されていない電気自動車を蓄電池として活用することを考察し、電気自動車の台数増加を物流成長モデルでモデル化し、太陽光発電の増加に伴い、蓄電池の容量を徐々に増加させることを検討している。

第 7 章では、化石燃料による発電をなくすことを考察するために、太陽光発電の補完技術として、水素利用の可能性について検討している。ここでは、水素エネルギー利用に伴う追加インフラの構成を調査し、これらの構成の技術的な限界の理解を試みている。本研究ではパレート最適化遺伝的アルゴリズムに基づく分析により、構成の特定と評価を行い、電力網において化石燃料を排除するために必要な追加投資に関して考察している。

第 8 章では、第 3 章から第 7 章で得られた知見に基づき、成果をまとめ、さらに一般化し、今後将来の研究発展の方向性について述べている。

参考文献

[1] S. M. G. Dumlao and K. N. Ishihara, “Reproducing solar curtailment with fourier analysis using japan dataset,” Energy Reports, vol. 6, pp. 199–205, 2020. DOI: 10. 1016/j.egyr.2019.11.063.

[2] S. M. G. Dumlao and K. N. Ishihara, “Weather-driven scenario analysis for decom- missioning coal power plants in high PV penetration grids,” Energies, vol. 14, no. 9,p. 2389, 2021. DOI: 10.3390/en14092389.

[3] S. M. G. Dumlao and K. N. Ishihara, “Dynamic cost-optimal assessment of comple- mentary diurnal electricity storage capacity in high PV penetration grid,” vol. 14, no. 15, p. 4496, 2021. DOI: 10.3390/en14154496.

[4] S. M. G. Dumlao and K. N. Ishihara, “Impact assessment of electric vehicles as curtailment mitigating mobile storage in high PV penetration grid,” Energy Reports, vol. 8, pp. 736–744, 2022. DOI: 10.1016/j.egyr.2021.11.223.

[5] K. Knüpfer, S. M. G. Dumlao, M. Esteban, T. Shibayama, and K. N. Ishihara, “Analysis of PV subsidy schemes, installed capacity and their electricity generation in japan,” Energies, vol. 14, no. 8, p. 2128, 2021. DOI: 10.3390/en14082128.

[6] E. Martinot, “Grid Integration of Renewable Energy,” Annual Review of Environment and Resources, pp. 223–254, 2016. DOI: 10 .1146 /annurev - environ - 110615 - 085725.

[7] REN21, Renewables 2020 Global Status Report, Available: https://www.ren21.net/ wp-content/uploads/2019/05/gsr_2020_full_report_en.pdf, 2020.

[8] B. K. Sovacool, “How long will it take? conceptualizing the temporal dynamics of energy transitions,” Energy Research & Social Science, vol. 13, pp. 202–215, 2016. DOI: 10.1016/j.erss.2015.12.020.

[9] A. Grubler, “Energy transitions research: Insights and cautionary tales,” Energy Policy, vol. 50, pp. 8–16, 2012. DOI: 10.1016/j.enpol.2012.02.070.

[10] R. York and S. E. Bell, “Energy transitions or additions?” Energy Research & Social Science, vol. 51, pp. 40–43, 2019. DOI: 10.1016/j.erss.2019.01.008.

[11] M. Sarrica, S. Brondi, P. Cottone, and B. M. Mazzara, “One, no one, one hundred thousand energy transitions in europe: The quest for a cultural approach,” Energy Research & Social Science, vol. 13, pp. 1–14, 2016. DOI: 10.1016/j.erss.2015.12. 019.

[12] J. Stephenson, B. Barton, G. Carrington, D. Gnoth, R. Lawson, and P. Thorsnes, “Energy cultures: A framework for understanding energy behaviours,” Energy Policy, vol. 38, no. 10, pp. 6120–6129, 2010. DOI: 10.1016/j.enpol.2010.05.069.101

[13] REN21, Renewables 2021 Global Status Report, Available: https://www.ren21.net/ wp-content/uploads/2019/05/GSR2021_Full_Report.pdf, 2021.

[14] International Energy Agency, Status of power system transformation 2019, Available: https://www.iea.org/reports/status-of-power-system-transformation-2019 Accessed: 2021-03-06.

[15] M. Perez, R. Perez, K. R. Rábago, and M. Putnam, “Overbuilding & curtailment: The cost-effective enablers of firm PV generation,” Solar Energy, vol. 180, pp. 412–422, 2019. DOI: 10.1016/j.solener.2018.12.074.

[16] P. Denholm, R. Margolis, and J. Milford, “Production Cost Modeling for High Levels of Photovoltaics Penetration,” Renewable Energy Laboratory Technical Re- port, no. February, pp. 87–118, 2008, Available: https://www.nrel.gov/docs/ fy08osti/42305.pdf.

[17] California Independent System Operator, “Energy and environmental goals drive change,” Technical Report, p. 4, 2016, Available: https : / / www . caiso . com / Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf.

[18] P. Denholm and R. M. Margolis, “Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies,” Energy Policy, vol. 35, no. 9, pp. 4424–4433, 2007, ISSN: 3014215. DOI: 10.1016/j. enpol.2007.03.004.

[19] P. Denholm and R. M. Margolis, “Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems,” Energy Policy, vol. 35, no. 5, pp. 2852–2861, 2007. DOI: 10.1016/j.enpol.2006.10.014.

[20] E. K. Hart, E. D. Stoutenburg, and M. Z. Jacobson, “The Potential of Intermittent Renewables to Meet Electric Power Demand: Current Methods and Emerging An- alytical Techniques,” Proceedings of the IEEE, vol. 100, no. 2, pp. 322–334, 2012, ISSN: 0018-9219. DOI: 10.1109/JPROC.2011.2144951.

[21] D. B. Richardson and L. Harvey, “Strategies for correlating solar PV array production with electricity demand,” Renewable Energy, vol. 76, pp. 432–440, 2015, ISSN: 9601481. DOI: 10.1016/j.renene.2014.11.053.

[22] P. D. Lund, J. Lindgren, J. Mikkola, and J. Salpakari, “Review of energy system flexibility measures to enable high levels of variable renewable electricity,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 785–807, 2015, ISSN: 13640321. DOI: 10.1016/j.rser.2015.01.057.

[23] S. A. Janko, M. R. Arnold, and N. G. Johnson, “Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market,” Applied Energy, vol. 180, pp. 37–51, 2016, ISSN: 3062619. DOI: 10.1016/ j.apenergy.2016.07.041.

[24] S. Impram, S. V. Nese, and B. Oral, “Challenges of renewable energy penetration on power system flexibility: A survey,” Energy Strategy Reviews, vol. 31, p. 100 539, 2020. DOI: 10.1016/j.esr.2020.100539.

[25] N. Y. Mansouri, R. J. Crookes, and T. Korakianitis, “A projection of energy consump- tion and carbon dioxide emissions in the electricity sector for Saudi Arabia: The case for carbon capture and storage and solar photovoltaics,” Energy Policy, vol. 63,pp. 681–695, 2013, ISSN: 3014215. DOI: 10.1016/j.enpol.2013.06.087.

[26] P. Denholm and T. Mai, “Timescales of energy storage needed for reducing renewable energy curtailment,” Renewable Energy, vol. 130, pp. 388–399, 2019. DOI: 10.1016/ j.renene.2018.06.079.

[27] Lazard, Lazard’s Levelized Cost of Storage Analaysis - version 6.0, Available: https://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/ Accessed on 8 May 2021, 2020.

[28] E. O'Shaughnessy, J. R. Cruce, and K. Xu, “Too much of a good thing? global trends in the curtailment of solar PV,” Solar Energy, vol. 208, pp. 1068–1077, 2020. DOI: 10.1016/j.solener.2020.08.075.

[29] Kevin Eber and David Corbus, Hawaii solar integration study: Executive summary, Available: https://www.nrel.gov/docs/fy13osti/57215.pdf, 2013.

[30] Japan Ministry of Economy, Trade, and Industry, Japan’s Fifth Strategic Energy Plan (provisional translation), Available: https://www.enecho.meti.go.jp/en/ category/others/basic_plan/5th/pdf/strategic_energy_plan.pdf, 2018.

[31] Japanese Law Translation, Act on special measures concerning procurement of elec- tricity from renewable energy sources by electricity utilities (act no. 108 of august 30, 2011), Available:http://www.japaneselawtranslation.go.jp/law/detail/?id=2573&vm=&re=02 (accessed 2021-12-20).

[32] Ito, Yoko, “A Brief History of Measures to Support Renewable Energy: Implica- tions for Japan’s FIT review obtained from domestic and foreign cases of sup- port measures.,” Institute of Energy Economics of Japan, 2015, Available: https://eneken.ieej.or.jp/data/6330.pdf.

[33] Data of Japan, Japan administrative division, Available: https://github.com/ dataofjapan/land Accessed: 2021-10-28.

[34] Organization for Cross-regional Coordination of Transmission Operators, JAPAN, System information about the major electric power companies in japan, Available: https://www.occto.or.jp/keitoujouhou/index.html (accessed 2020-10-01).

[35] Kyushu Electric Company, Kyushu Electric Company Renewable Energy Application (Japanese), Available: https://www .kyuden .co.jp/td_ renewable - energy _ application_index.html Accessed: 2021-12-08, 2021.

[36] Kyushu Electric Company, Supply and Demand Information (Japanese), Available: https://www.kyuden.co.jp/td_service_wheeling_rule-document_disclosure Accessed: 2021-10-28, 2021.

[37] Kyushu Electric Company, Kyushu Electric Company Group Annual Report 2018, Available: http://www.kyuden.co.jp/var/rev0/0149/3830/c7ujptmy_all.pdf Accessed: 2021-04-28, 2018.

[38] Statistics Bureau, Ministry of Internal Affairs and Communications, Japan, Statistical Handbook of Japan 2021, Available: https://www.kyushu.meti.go.jp/keizai- db/db_top.html Accessed: 2021-12-20, 2021.

[39] Kyushu Bureau of Economy, Trade, and Industry, Kyushu Economic and Industrial Data (in Japanese), Available: https://www.stat.go.jp/english/data/handbook/ pdf/2021all.pdf, 2019.

[40] Kyushu Electric Company, Transmission Line Configuration in Kyushu (Japanese), Available:https://www.kyuden.co.jp/var/rev0/0240/3791/hgajn6ar.pdf Accessed: 2021-04-28, 2019.

[41] Federation of Electric Power Companies of Japan, Electricity Review Japan 2019, Available: https://www.fepc.or.jp/library/pamphlet/pdf/04_electricity. pdf Accessed: 2021-10-08, 2019.

[42] Agency for Natural Resources and Energy, Electric power survey statistical data, Available: https://www.enecho.meti.go.jp/statistics/electric_power/ ep002/results_archive.html Accessed: 2021-01-08.

[43] Ministry of Land, Infrastructure, Transport and Tourism, Japan power plant gis data, Available: https://nlftp.mlit.go.jp/ksj/jpgis/datalist/KsjTmplt- P03.html Accessed: 2020-06-08, 2007.

[44] Japan Beyond Coal, Japan coal plant database, Available: https://beyond-coal. jp/map-and-data/ Accessed: 2020-09-29, 2020.

[45] Kyushu Electric Power Company, Kyuden group environmental data book 2020, Available: http://www.kyuden.co.jp/var/rev0/0270/6338/env_data_2020.pdf Accessed: 2021-03-18, 2020.

[46] S. Pfenninger, A. Hawkes, and J. Keirstead, “Energy systems modeling for twenty- first century energy challenges,” Renewable and Sustainable Energy Reviews, vol. 33,pp. 74–86, 2014, ISSN: 13640321. DOI: 10.1016/j.rser.2014.02.003.

[47] H.-K. Ringkjøb, P. M. Haugan, and I. M. Solbrekke, “A review of modelling tools for energy and electricity systems with large shares of variable renewables,” Renewable and Sustainable Energy Reviews, vol. 96, pp. 440–459, 2018. DOI: 10.1016/j.rser. 2018.08.002.

[48] R. Morrison, “Energy system modeling: Public transparency, scientific reproducibility, and open development,” Energy Strategy Reviews, vol. 20, pp. 49–63, 2018. DOI: 10.1016/j.esr.2017.12.010.

[49] F. Wiese, R. Bramstoft, H. Koduvere, et al., “Balmorel open source energy system model,” Energy Strategy Reviews, vol. 20, pp. 26–34, 2018. DOI: 10.1016/j.esr. 2018.01.003.

[50] S. Pfenninger and B. Pickering, “Calliope: A multi-scale energy systems modelling framework,” Journal of Open Source Software, vol. 3, no. 29, p. 825, 2018. DOI: 10.21105/joss.00825.

[51] M. Howells, H. Rogner, N. Strachan, et al., “OSeMOSYS: The open source energy modeling system,” Energy Policy, vol. 39, no. 10, pp. 5850–5870, 2011. DOI: 10. 1016/j.enpol.2011.06.033.

[52] L. Thurner, A. Scheidler, F. Schafer, et al., “Pandapower—an open-source python tool for convenient modeling, analysis, and optimization of electric power systems,” IEEE Transactions on Power Systems, vol. 33, no. 6, pp. 6510–6521, 2018. DOI: 10.1109/tpwrs.2018.2829021.

[53] T. Brown, J. Hörsch, and D. Schlachtberger, “PyPSA: Python for power system analysis,” Journal of Open Research Software, vol. 6, 2018. DOI: 10.5334/jors.188.

[54] Open Energy Modelling Initiative, Open energy modelling initiative website and wiki, Available: https://openmod-initiative.org/ (accessed 2021-12-28).

[55] B. Heard, B. Brook, T. Wigley, and C. Bradshaw, “Burden of proof: A comprehensive review of the feasibility of 100% renewable-electricity systems,” Renewable and Sustainable Energy Reviews, vol. 76, pp. 1122–1133, 2017. DOI: 10.1016/j.rser. 2017.03.114.

[56] Tom Brown and Jonas Hörsch and David Schlachtberger and Fabian Hofmann and Fabian Neumann, Python for power system analysis (pypsa) v0.18.1 documentation, Available: https://github.com/PyPSA/PyPSA/tree/v0.18.1/doc Accessed: 2021-12-18.

[57] Andrew Makhorin, Glpk (gnu linear programming kit), Available: https://www.gnu. org/software/glpk/glpk.html Accessed: 2021-12-18.

[58] John Forrest, Ted Ralphs, and Haroldo Gambini Santos, Cbc (coin-or branch and cut), Available: https://github.com/coin-or/Cbc/tree/releases/2.10.5 Accessed: 2021-12-18.

[59] Gregory Glockner, Parallel and distributed optimization with gurobi, Available: https://www .gurobi .com /resource /parallel- and - distributed - optimization/Accessed: 2021-12-18.

[60] Gurobi Optimization, Academic program and licenses, Available: https://www . gurobi.com/academia/academic-program-and-licenses/ Accessed: 2021-12-18.

[61] Deutscher Bundestag, Bundestag passes the coal phase-out law, Available: https://www.bundestag.de/dokumente/textarchiv/2020/kw27-de-kohleausstieg- 701804 Accessed: 2021-03-14, 2020.

[62] Europe Beyond Coal, Overview: National coal phase-out announcements in Europe, Available: https://beyond-coal.eu/wp-content/uploads/2021/01/Overview- of-national-coal-phase-out-announcements-Europe-Beyond-Coal-January- 2021.pdf Accessed: 2021-03-14, 2021.

[63] Government of Canada, Coal phase-out: The powering past coal alliance, Available: https://www.canada.ca/en/services/environment/weather/climatechange/ canada-international-action/coal-phase-out.html Accessed: 2021-03-14,2018.

[64] S. Kumar, H.-T. Kwon, K.-H. Choi, J. H. Cho, W. Lim, and I. Moon, “Current status and future projections of LNG demand and supplies: A global prospective,” Energy Policy, vol. 39, no. 7, pp. 4097–4104, 2011. DOI: 10.1016/j.enpol.2011.03.067.

[65] Shell Corporation, Lng outlook 2020, Available: https://www.shell.com/energy- and-innovation/natural-gas/liquefied-natural-gas-lng/lng-outlook- 2020.html Accessed: 2021-03-16, 2020.

[66] Nikkei Asia, Severe winter forecast sparks recovery in asia’s lng prices, Available: https://asia.nikkei.com/Business/Markets/Commodities/Severe-winter- forecast- sparks- recovery- in- Asia- s- LNG- prices Accessed: 2021-03-16,2020.

[67] A. Bunodiere and H. S. Lee, “Renewable energy curtailment: Prediction using a logic-based forecasting method and mitigation measures in kyushu, japan,” Energies, vol. 13, no. 18, p. 4703, 2020. DOI: 10.3390/en13184703.

[68] M. Guittet, M. Capezzali, L. Gaudard, F. Romerio, F. Vuille, and F. Avellan, “Study of the drivers and asset management of pumped-storage power plants historical and geographical perspective,” Energy, vol. 111, pp. 560–579, 2016. DOI: 10.1016/j. energy.2016.04.052.

[69] Y. Li, W. Gao, Y. Ruan, and Y. Ushifusa, “The performance investigation of increasing share of photovoltaic generation in the public grid with pump hydro storage dispatch system, a case study in japan,” Energy, vol. 164, pp. 811–821, 2018. DOI: 10.1016/ j.energy.2018.09.029.

[70] N. E. Koltsaklis and A. S. Dagoumas, “State-of-the-art generation expansion planning: A review,” Applied Energy, vol. 230, pp. 563–589, 2018. DOI: 10.1016/j.apenergy. 2018.08.087.

[71] A. Ioannou, A. Angus, and F. Brennan, “Risk-based methods for sustainable energy system planning: A review,” Renewable and Sustainable Energy Reviews, vol. 74,pp. 602–615, 2017. DOI: 10.1016/j.rser.2017.02.082.

[72] M. J. Santos, P. Ferreira, and M. Araújo, “A methodology to incorporate risk and uncertainty in electricity power planning,” Energy, vol. 115, pp. 1400–1411, 2016. DOI: 10.1016/j.energy.2016.03.080.

[73] R. Schaeffer, A. S. Szklo, A. F. P. de Lucena, et al., “Energy sector vulnerability to climate change: A review,” Energy, vol. 38, no. 1, pp. 1–12, 2012. DOI: 10.1016/j. energy.2011.11.056.

[74] B. Bartók, “Changes in solar energy availability for south-eastern europe with respect to global warming,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 35, no. 1-2,pp. 63–69, 2010. DOI: 10.1016/j.pce.2010.03.008.

[75] H. Cutforth and D. Judiesch, “Long-term changes to incoming solar energy on the canadian prairie,” Agricultural and Forest Meteorology, vol. 145, no. 3-4, pp. 167–175, 2007. DOI: 10.1016/j.agrformet.2007.04.011.

[76] Japan Meteorological Agency, Past regional weather data, Available: http://www. data.jma.go.jp/risk/obsdl/index.php Accessed: 2021-01-08.

[77] W. F. Holmgren, C. W. Hansen, and M. A. Mikofski, “Pvlib python: A python package for modeling solar energy systems,” Journal of Open Source Software, vol. 3, no. 29,p. 884, 2018. DOI: 10.21105/joss.00884.

[78] W. Holmgren and R. Andrews, Pvlib: Tmy to power tutorial, Available: https ://nbviewer.jupyter.org/github/pvlib/pvlib-python/blob/master/docs/ tutorials/tmy_to_power.ipynb Accessed: 2021-01-08.

[79] D. Erbs, S. Klein, and J. Duffie, “Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation,” Solar Energy, vol. 28, no. 4,pp. 293–302, 1982. DOI: 10.1016/0038-092x(82)90302-4.

[80] Ministry of Economy, Trade and Industry of Japan, Recent situation of thermal power generation, Available: https://www.meti.go.jp/shingikai/enecho/shoene_ shinene/sho_energy/karyoku_hatsuden/pdf/h29_01_04_00.pdf Accessed: 2021-03-18, 2017.

[81] Ministry of Economy, Trade and Industry of Japan, Report on power generation costs, Available: https://www.enecho.meti.go.jp/committee/council/basic_ policy_subcommittee/mitoshi/cost_wg/006/pdf/006_05.pdf Accessed: 2021-03-10, 2015.

[82] Advisory Panel to the Foreign Minister on Climate Change, Promote new diplomacy on energy through leading global efforts against climate change, Available: https://www.mofa.go.jp/files/000337158.pdf Accessed: 2021-03-10, 2018.

[83] Ministry of Environment of Japan, Evaluation of co2 emissions of thermal power generation, Available: https://www.env.go.jp/council/06earth/y0613-16/ ref06-16.pdf Accessed: 2020-03-10, 2016.

[84] F. Díaz-González, A. Sumper, O. Gomis-Bellmunt, and R. Villafáfila-Robles, “A review of energy storage technologies for wind power applications,” Renewable and Sustainable Energy Reviews, vol. 16, no. 4, pp. 2154–2171, 2012. DOI: 10.1016/j. rser.2012.01.029.

[85] T. Kousksou, P. Bruel, A. Jamil, T. E. Rhafiki, and Y. Zeraouli, “Energy storage: Applications and challenges,” Solar Energy Materials and Solar Cells, vol. 120, pp. 59– 80, 2014. DOI: 10.1016/j.solmat.2013.08.015.

[86] C. K. Das, O. Bass, G. Kothapalli, T. S. Mahmoud, and D. Habibi, “Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 1205–1230, 2018. DOI: 10.1016/j.rser.2018.03.068.

[87] M. Mahmoud, M. Ramadan, A.-G. Olabi, K. Pullen, and S. Naher, “A review of mechanical energy storage systems combined with wind and solar applications,” Energy Conversion and Management, vol. 210, p. 112 670, 2020. DOI: 10.1016/j. enconman.2020.112670.

[88] M. Aneke and M. Wang, “Energy storage technologies and real life applications – a state of the art review,” Applied Energy, vol. 179, pp. 350–377, 2016. DOI: 10.1016/j.apenergy.2016.06.097.

[89] T. M. Gür, “Review of electrical energy storage technologies, materials and systems: Challenges and prospects for large-scale grid storage,” Energy & Environmental Science, vol. 11, no. 10, pp. 2696–2767, 2018. DOI: 10.1039/c8ee01419a.

[90] V. Dias, M. Pochet, F. Contino, and H. Jeanmart, “Energy and economic costs of chemical storage,” Frontiers in Mechanical Engineering, vol. 6, 2020. DOI: 10.3389/ fmech.2020.00021.

[91] S. Kuravi, J. Trahan, D. Y. Goswami, M. M. Rahman, and E. K. Stefanakos, “Thermal energy storage technologies and systems for concentrating solar power plants,” Progress in Energy and Combustion Science, vol. 39, no. 4, pp. 285–319, 2013. DOI: 10.1016/j.pecs.2013.02.001.

[92] E. Borri, A. Tafone, A. Romagnoli, and G. Comodi, “A review on liquid air energy stor- age: History, state of the art and recent developments,” Renewable and Sustainable Energy Reviews, vol. 137, p. 110 572, 2021. DOI: 10.1016/j.rser.2020.110572.

[93] H. Vikström, S. Davidsson, and M. Höök, “Lithium availability and future production outlooks,” Applied Energy, vol. 110, pp. 252–266, 2013. DOI: 10.1016/j.apenergy. 2013.04.005.

[94] C. Doetsch and J. Burfeind, “Vanadium redox flow batteries,” in Storing Energy, Elsevier, 2016, pp. 227–246. DOI: 10.1016/b978-0-12-803440-8.00012-9.

[95] B. Zakeri and S. Syri, “Electrical energy storage systems: A comparative life cycle cost analysis,” Renewable and Sustainable Energy Reviews, vol. 42, pp. 569–596, 2015. DOI: 10.1016/j.rser.2014.10.011.

[96] V. Jülch, “Comparison of electricity storage options using levelized cost of storage (LCOS) method,” Applied Energy, vol. 183, pp. 1594–1606, 2016. DOI: 10.1016/j. apenergy.2016.08.165.

[97] O. Schmidt, S. Melchior, A. Hawkes, and I. Staffell, “Projecting the future levelized cost of electricity storage technologies,” Joule, vol. 3, no. 1, pp. 81–100, 2019. DOI: 10.1016/j.joule.2018.12.008.

[98] O. Schmidt, A. Hawkes, A. Gambhir, and I. Staffell, “The future cost of electrical energy storage based on experience rates,” Nature Energy, vol. 2, no. 8, 2017. DOI: 10.1038/nenergy.2017.110.

[99] W. J. Cole and A. Frazier, “Cost projections for utility-scale battery storage,” Tech. Rep., 2019. DOI: 10.2172/1529218.

[100] C. S. Lai and M. D. McCulloch, “Levelized cost of electricity for solar photovoltaic and electrical energy storage,” Applied Energy, vol. 190, pp. 191–203, 2017. DOI: 10.1016/j.apenergy.2016.12.153.

[101] W. Short, D. Packey, and T. Holt, “A manual for the economic evaluation of energy efficiency and renewable energy technologies,” Tech. Rep., 1995. DOI: 10.2172/ 35391.

[102] C. S. Lai, G. Locatelli, A. Pimm, Y. Tao, X. Li, and L. L. Lai, “A financial model for lithium-ion storage in a photovoltaic and biogas energy system,” Applied Energy, vol. 251, p. 113 179, 2019. DOI: 10.1016/j.apenergy.2019.04.175.

[103] M. Das, M. A. K. Singh, and A. Biswas, “Techno-economic optimization of an off-grid hybrid renewable energy system using metaheuristic optimization approaches – case of a radio transmitter station in india,” Energy Conversion and Management, vol. 185,pp. 339–352, 2019. DOI: 10.1016/j.enconman.2019.01.107.

[104] R. Gupta, M. C. Soini, M. K. Patel, and D. Parra, “Levelized cost of solar photovoltaics and wind supported by storage technologies to supply firm electricity,” Journal of Energy Storage, vol. 27, p. 101 027, 2020. DOI: 10.1016/j.est.2019.101027.

[105] V. Jülch, T. Telsnig, M. Schulz, et al., “A holistic comparative analysis of different storage systems using levelized cost of storage and life cycle indicators,” Energy Procedia, vol. 73, pp. 18–28, 2015. DOI: 10.1016/j.egypro.2015.07.553.

[106] J. S. Anagnostopoulos and D. E. Papantonis, “Study of pumped storage schemes to support high RES penetration in the electric power system of Greece,” Energy, vol. 45, no. 1, pp. 416–423, 2012, ISSN: 3605442. DOI: 10.1016/j.energy.2012.02.031.

[107] J. Liu, C. Hu, A. Kimber, and Z. Wang, “Uses, Cost-Benefit Analysis, and Markets of Energy Storage Systems for Electric Grid Applications,” Journal of Energy Storage, vol. 32, 2020, ISSN: 2352152X. DOI: 10.1016/j.est.2020.101731.

[108] Ministry of Economy, Trade, and Indisty (Japan), Solar PV Domestic trends: Changes in capital costs and their composition by year of installation (translated; pg 29), Available: https://www.meti.go.jp/shingikai/santeii/pdf/063_01_00.pdf Accessed on 8 May 2021, 2020.

[109] J. Tomi´c and W. Kempton, “Using fleets of electric-drive vehicles for grid support,” Journal of Power Sources, vol. 168, no. 2, pp. 459–468, 2007, ISSN: 3787753. DOI: 10.1016/j.jpowsour.2007.03.010.

[110] P. Denholm, M. Kuss, and R. M. Margolis, “Co-benefits of large scale plug-in hy- brid electric vehicle and solar PV deployment,” Journal of Power Sources, vol. 236,pp. 350–356, 2013, ISSN: 3787753. DOI: 10.1016/j.jpowsour.2012.10.007.

[111] W. Kempton and T. Kubo, “Electric-drive vehicles for peak power in Japan,” Energy Policy, vol. 28, no. 1, pp. 9–18, 2000, ISSN: 3014215. DOI: 10.1016/S0301-4215(99)00078-6.

[112] W. Kempton and J. Tomi´c, “Vehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy,” Journal of Power Sources, vol. 144, no. 1, pp. 280–294, 2005, ISSN: 3787753. DOI: 10.1016/j.jpowsour.2004.12.022.

[113] Kyushu Transport Bureau, Passenger vehicles in kyushu, Available: http://wwwtb. mlit.go.jp/kyushu/toukei/syaryousuu.htm Accessed: 2020-04-12, 2020.

[114] Japan Automobile Dealears Association, Sales by fuel type (passenger cars), Available:http://www.jada.or.jp/data/month/m-fuel-hanbai/ Accessed: 2020-04-12,2020.

[115] Electric Vehicle Database, Electric vehicle specifications, Available: https://ev- database.org/ Accessed: 2020-04-12.

[116] Japan Next Generation Vehicle Promotion Center, Strategy for diffusing the next generation vehicles in japan, Available: http://www.cev-pc.or.jp/event/pdf/ xev_in_japan_eng.pdf Accessed: 2020-04-12, 2020.

[117] Next Generation Vehicle Promotion Center (NeV), Subsidy grants by prefecture, Available: http://www.cev-pc.or.jp/tokei/koufu.html Accessed: 2020-06-08, 2020.

[118] A. Sternberg and A. Bardow, “Power-to-what? – environmental assessment of energy storage systems,” Energy & Environmental Science, vol. 8, no. 2, pp. 389–400, 2015. DOI: 10.1039/c4ee03051f.

[119] R. Schlögl, “Chemical energy storage enables the transformation of fossil energy systems to sustainability,” Green Chemistry, vol. 23, no. 4, pp. 1584–1593, 2021. DOI: 10.1039/d0gc03171b.

[120] P. Nikolaidis and A. Poullikkas, “A comparative overview of hydrogen production processes,” vol. 67, pp. 597–611, 2017. DOI: 10.1016/j.rser.2016.09.044.

[121] Y. Shibata, “Is power to gas feasible in japan?,” 2016, Available: https://eneken. ieej.or.jp/data/6549.pdf (accessed 2021-06-02). [Online]. Available: https://eneken.ieej.or.jp/data/6549.pdf.

[122] L. Janke, S. McDonagh, S. Weinrich, et al., “Optimizing power-to-h2 participation in the nord pool electricity market: Effects of different bidding strategies on plant operation,” vol. 156, pp. 820–836, 2020. DOI: 10.1016/j.renene.2020.04.080.

[123] T. V. de Graaf, I. Overland, D. Scholten, and K. Westphal, “The new oil? the geopoli- tics and international governance of hydrogen,” Energy Research & Social Science, vol. 70, p. 101 667, 2020. DOI: 10.1016/j.erss.2020.101667.

[124] Monica Nagashima, Japan’s Hydrogen Strategy and Its Economic and Geopolitical Implications, Available: https://www.ifri.org/sites/default/files/atoms/ files/nagashima_japan_hydrogen_2018_.pdf, Oct. 2018.

[125] J. D. Fonseca, M. Camargo, J.-M. Commenge, L. Falk, and I. D. Gil, “Trends in design of distributed energy systems using hydrogen as energy vector: A system- atic literature review,” International Journal of Hydrogen Energy, vol. 44, no. 19,pp. 9486–9504, 2019. DOI: 10.1016/j.ijhydene.2018.09.177.

[126] S. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten, “Power to gas: Technological overview, systems analysis and economic assessment for a case study in germany,” International Journal of Hydrogen Energy, vol. 40, no. 12,pp. 4285–4294, 2015. DOI: 10.1016/j.ijhydene.2015.01.123.

[127] O. Al-Kuwari and M. Schönfisch, “The emerging hydrogen economy and its impact on LNG,” International Journal of Hydrogen Energy, 2021. DOI: 10.1016/j.ijhydene. 2021.10.206.

[128] L. H. Lee, E. P. Chew, S. Teng, and D. Goldsman, “Optimal computing budget allocation for multi-objective simulation models,” in Proceedings of the 2004 Winter Simulation Conference, 2004., IEEE. DOI: 10.1109/wsc.2004.1371365.

[129] Y. Cui, Z. Geng, Q. Zhu, and Y. Han, “Review: Multi-objective optimization methods and application in energy saving,” Energy, vol. 125, pp. 681–704, 2017. DOI: 10. 1016/j.energy.2017.02.174.

[130] R. H. Stewart, T. S. Palmer, and B. DuPont, “A survey of multi-objective optimization methods and their applications for nuclear scientists and engineers,” Progress in Nuclear Energy, vol. 138, p. 103 830, 2021. DOI: 10.1016/j.pnucene.2021.103830.

[131] V. Ojalehto, K. Miettinen, and T. Laukkanen, “Implementation aspects of interac- tive multiobjective optimization for modeling environments: The case of GAMS- NIMBUS,” Computational Optimization and Applications, vol. 58, no. 3, pp. 757–779, 2014. DOI: 10.1007/s10589-014-9639-y.

[132] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolutionary algo- rithms: Empirical results,” Evolutionary Computation, vol. 8, no. 2, pp. 173–195, 2000. DOI: 10.1162/106365600568202.

[133] Z. Michalewicz and M. Schoenauer, “Evolutionary algorithms for constrained pa- rameter optimization problems,” Evolutionary Computation, vol. 4, no. 1, pp. 1–32, 1996. DOI: 10.1162/evco.1996.4.1.1.

[134] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: Past, present, and future,” Multimedia Tools and Applications, vol. 80, no. 5, pp. 8091– 8126, 2020. DOI: 10.1007/s11042-020-10139-6.

[135] P. Poulos, G. Rigatos, S. Tzafestas, and A. Koukos, “A pareto-optimal genetic al- gorithm for warehouse multi-objective optimization,” Engineering Applications of Artificial Intelligence, vol. 14, no. 6, pp. 737–749, 2001. DOI: 10.1016/s0952-1976(01)00036-7.

[136] E. J. Chen and L. H. Lee, “A multi-objective selection procedure of determining a pareto set,” Computers & Operations Research, vol. 36, no. 6, pp. 1872–1879, 2009. DOI: 10.1016/j.cor.2008.06.003.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る