リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「液液界面の相間移動触媒反応と熱輸送の分子論」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

液液界面の相間移動触媒反応と熱輸送の分子論

小泉 愛 東北大学

2022.03.25

概要

液液界面では、2種類の異なる溶媒の差からイオン輸送や熱輸送の特性がバルクとは異なることが予想されるが、界面を選択的に観測することは実験的に難しく未解明な現象が多く残されている。これまでの先行研究では混ざり合わない2種類の溶媒からなる液液界面、主に水と疎水性溶媒間の界面について、実験と分子動力学シミュレーション(MD)の両方からイオン輸送機構が調べられてきた。MDでは、界面を通過する時に親水性イオンの水和クラスターと水相側が水素結合することによってwater finger構造が形成されることが発見され[1,2,3,4]、その構造形成が界面をまたぐイオン輸送自由エネルギープロファイルを変えることが明らかにされてきた。[5,6].本研究では液体界面に関する以下の4つの研究をMDによる解析のもと進めてきた。

1.油水界面におけるイオン輸送促進機構の微視的解明(3章)
2.相間移動触媒(PTC)反応の微視的反応機構解析(4章)
3.油水共存系のためのジクロロメタン(DCM)分子モデルの改良(5章)
4.気泡崩壊過程における水/酸素界面の熱輸送の解析(6章)

■研究(1):PTCのイオン輸送過程をFacilitated ion transfer(FIT)と呼ぶ。Laforgeらは電場存在下でF-などの輸送が難しい親水性イオンに対して極微量の疎水性対イオンが界面輸送を劇的に促進することを報告し[7]、界面での局所的なイオン対形成が界面移動を触媒する”シャトリング機構”(図1)を提唱した。本研究では、この“シャトリング”と呼ばれる現象が界面数ナノメートルで起こることをMDによる2次元の自由エネルギー解析から解明した。

■研究(2):PTCは、混ざり合わない油水二相下で、親水性と親油性の試薬の反応を触媒する。これまでに合成反応への応用は多く、反応速度論から反応機構も議論されてきた。しかし、油水界面をまたぐ物質輸送と界面近傍でおこる化学反応を分子レベルで捉えることは難しい。本研究では、研究(1)を実際のPTC反応へ適用しOH-の相間移動で引き起こされる反応の代表例として、アリルベンゼン異性化反応1の解析を行い、反応機構の全貌の解明を目指している。

■研究(3):これまで油水界面や油中でのイオンの水和などがMDによって調べられてきた。しかし、水和数に関する先行研究によると、ジクロロエタン中のCl-の水和数は実験では2,3個であるのに対しMDでは0個という結果であった。[8,9]親水性イオンは油中で不安定で水和による安定化が大きいと予想され、水和しないという結果は不自然であることからMDの結果を精査し分子モデルの改良を行った。本研究で界面系や混合系など油水共存系をよく記述できる分子モデル作成の方針を示したと共に、MDを用いた水和数予測が十分精度よくできることを確認し、研究(2)でのOH-の水和数まで考慮した反応解析に至った。

■研究(4):界面では二種類の溶媒の熱伝導率の差が生じ、界面をこえた熱輸送には温度ジャンプが生じるはずである。これは水中の酸素ナノバブル界面系に適用できる。数値シミュレーションの先行研究によると、水中の酸素ナノバブルの自己崩壊では気泡内が過熱され、気泡内の温度が約3000Kまで上昇すると報告されている。[10]しかしこのモデルでは気泡崩壊の瞬間の熱の流入出とその熱抵抗が記述できていない可能性があった。本研究ではより信頼できる気泡崩壊の描像を得るために、数値シミュレーションへ組み込む熱抵抗値を非平衡分子動力学シミュレーションで見積もった。

参考文献

[1] Ilan Benjamin. I. mechanism and dynamics of ion transfer across a liquid-liquid interface. Science, Vol. 261, pp. 1558–1560, 1993.

[2] KJ Schweighofer and Ilan Benjamin. Transfer of small ions across the water/1, 2-dichloroethane interface. The Journal of Physical Chemistry, Vol. 99, pp. 9974–9985, 1995.

[3] M´aria Darvas, Miguel Jorge, M Natalia DS Cordeiro, and P´al Jedlovszky. Solvation free energy profile of the scn–ion across the water–1, 2-dichloroethane liquid/liquid interface. a computer simulation study. J. Phys. Chem. C, Vol. 115, No. 22, pp. 11140–11146, 2011.

[4] M´aria Darvas, Miguel Jorge, M Natalia DS Cordeiro, Sofia S Kantorovich, Marcello Sega, and P´al Jedlovszky. Calculation of the intrinsic solvation free energy profile of an ionic penetrant across a liquid–liquid interface with computer simulations. J. Phys. Chem. B, Vol. 117, No. 50, pp. 16148–16156, 2013.

[5] Nobuaki Kikkawa, Lingjian Wang, and Akihiro Morita. Microscopic barrier mechanism of ion transport through liquid–liquid interface. Journal of the American Chemical Society, Vol. 137, No. 25, pp. 8022–8025, 2015.

[6] Nobuaki Kikkawa, Lingjian Wang, and Akihiro Morita. Computational study of effect of water finger on ion transport through water-oil interface. The Journal of chemical physics, Vol. 145, No. 1, p. 014702, 2016.

[7] Fran¸cois O Laforge, Peng Sun, and Michael V Mirkin. Shuttling mechanism of ion transfer at the interface between two immiscible liquids. Journal of the American Chemical Society, Vol. 128, No. 46, pp. 15019– 15025, 2006.

[8] T Kenjo and R.M. Diamond. ydration of the halide ions in certain organic solvents. Journal of Inorganic and Nuclear Chemistry, Vol. 36, pp. 183–188, 1974.

[9] Lingjian Wang, Nobuaki Kikkawa, and Akihiro Morita. Hydrated ion clusters in hydrophobic liquid: Equilibrium distribution, kinetics, and implications. The Journal of physical chemistry B, Vol. 122, pp. 3562–3571, 2018.

[10] Kyuichi Yasui, Toru Tuziuti, and Wataru Kanematsu. High temperature and pressure inside a dissolving oxygen nanobubble. Ultrasonics sonochemistry, Vol. 55, pp. 308–312, 2019.

[11] Shuichi Nos´e. A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, Vol. 81, No. 1, pp. 511–519, 1984.

[12] William G Hoover. Canonical dynamics: Equilibrium phase-space distributions. Physical review A, Vol. 31, No. 3, p. 1695, 1985.

[13] Daan Frenkel, Berend Smit, Jan Tobochnik, Susan R McKay, and Wolfgang Christian. Understanding molecular simulation. Computers in Physics, Vol. 11, No. 4, pp. 351–354, 1997.

[14] Hans C Andersen. Rattle: A ”velocity” version of the shake algorithm for molecular dynamics calculations. Journal of computational Physics, Vol. 52, No. 1, pp. 24–34, 1983.

[15] Michael P Allen and Dominic J Tildesley. Some tricks of the trade. Oxford University Press, 1987.

[16] Tom Darden, Darrin York, and Lee Pedersen. Particle mesh ewald: An n log (n) method for ewald sums in large systems. The Journal of chemical physics, Vol. 98, No. 12, pp. 10089–10092, 1993.

[17] Abdulnour Toukmaji, Celeste Sagui, John Board, and Tom Darden. Efficient particle-mesh ewald based approach to fixed and induced dipolar interactions. The Journal of chemical physics, Vol. 113, No. 24, pp. 10913–10927, 2000.

[18] Y Sugita, A Kitao, and Y Okamoto. Multidimensional replica-exchange method for free-energy calculations. Journal of Chemical Physics, Vol. 113, No. 15, pp. 6042–6051, 2000.

[19] S Kumar, J. M. Rosenberg, Djamal Bouzida, Robert H. Swendsen, and Peter A. Kollman. The weighted histogram analysis method for free-energy calculations on biomolecules. i. the method. Journal of Computational Chemistry, Vol. 13, No. 2, pp. 1011–1021, 1992.

[20] Hubert H. Girault. Dynamics and structure of the liquid–liquid interface. Faraday Discussions, Vol. 129, pp. 1–370, 2005.

[21] Hubert H. Girault. Electrochemistry at Liquid-Liquid Interfaces, Vol. 23, pp. 1–104. CRC Press, Boca Raton, FL, 1st ed edition, 2010.

[22] R. A. W. Dryfe. The electrified liquid-liquid interface. Advances in Chemical Physics, Vol. 141, pp. 153–215, 2009.

[23] Shujuan Liu, Qing Li, and Yuanhua Shao. Electrochemistry at micro-and nanoscopic liquid/liquid interfaces. Chemical Society Reviews, Vol. 40, No. 5, pp. 2236–2253, 2011.

[24] Z. Samec and T. Kakiuchi. Charge Transfer Kinetics at Water-Organic Solvent Phase Boundaries, Vol. 4, pp. 297–361. Wiley, VCH, New York, 2008.

[25] Eric Bakker, Philippe B¨uhlmann, and Ern¨o Pretsch. Carrier-based ion-selective electrodes and bulk optodes. 1. general characteristics. Chemical Reviews, Vol. 97, No. 8, pp. 3083–3132, 1997.

[26] Charles M Starks, Charles L Liotta, and Marc E Halpern. Phase-Transfer Catalysts. Springer, 1994.

[27] Philippe B¨uhlmann, Ern¨o Pretsch, and Eric Bakker. Carrier-based ion-selective electrodes and bulk optodes. 2. ionophores for potentiometric and optical sensors. Chemical Reviews, Vol. 98, No. 4, pp. 1593–1688, 1998.

[28] Johan Bobacka, Ari Ivaska, and Andrzej Lewenstam. Potentiometric ion sensors. Chemical reviews, Vol. 108, No. 2, pp. 329–351, 2008.

[29] Philippe B¨uhlmann and Li D Chen. Ion-Selective Electrodes With Ionophore-Doped Sensing Membranes, Vol. 5, pp. 2539–2579. Wiley, 2012.

[30] Fr´ed´eric Reymond, David Fermın, Hye Jin Lee, and Hubert H Girault. Electrochemistry at liquid/liquid interfaces: methodology and potential applications. Electrochimica acta, Vol. 45, No. 15-16, pp. 2647–2662, 2000.

[31] Biao Liu and Michael V Mirkin. Electrochemistry at microscopic liquid–liquid interfaces. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, Vol. 12, No. 18, pp. 1433–1446, 2000.

[32] Celeste A Morris, Alicia K Friedman, and Lane A Baker. Applications of nanopipettes in the analytical sciences. Analyst, Vol. 135, No. 9, pp. 2190–2202, 2010.

[33] D Homolka, Le Quoc Hung, A Hofmanova, MW Khalil, J Koryta, V Marecek, Z Samec, SK Sen, P Vanysek, et al. Faradaic ion transfer across the interface of two immiscible electrolyte solutions: chronopotentiometry and cyclic voltammetry. Analytical Chemistry, Vol. 52, No. 11, pp. 1606–1610, 1980.

[34] Zdenˇek Samec, Daniel Homolka, and Vladimir Mareˇcek. Charge transfer between two immiscible electrolyte solutions part viii. transfer of alkali and alkaline earth-metal cations across the water/nitrobenzene interface facilitated by synthetic neutral ion carriers. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 135, No. 2, pp. 265–283, 1982.

[35] Tadaaki Kakutani, Yoshinori Nishiwaki, Toshiyuki Osakai, and Mitsugi Senda. On the mechanism of transfer of sodium ion across the nitrobenzene/water interface facilitated by dibenzo-18-crown-6. Bulletin of the Chemical Society of Japan, Vol. 59, No. 3, pp. 781–788, 1986.

[36] Y Shao, MD Osborne, and HH Girault. Assisted ion transfer at micro-ities supported at the tip of micropipettes. Journal of electroanalytical chemistry and interfacial electrochemistry, Vol. 318, No. 1-2, pp. 101–109, 1991.

[37] Lin Sinru, Zhao Zaofan, and Henry Freiser. Potassium ion transport processes across the interface of an immiscible liquid pair in the presence of crown ethers. Journal of electroanalytical chemistry and interfacial electrochemistry, Vol. 210, No. 1, pp. 137–146, 1986.

[38] Shigeru Amemiya, Jiyeon Kim, Anahita Izadyar, Benjamin Kabagambe, Mei Shen, and Ryoichi Ishimatsu. Electrochemical sensing and imaging based on ion transfer at liquid/liquid interfaces. Electrochimica acta, Vol. 110, pp. 836–845, 2013.

[39] MHM Ca¸cote, CM Pereira, L Tomaszewski, HH Girault, and F Silva. Ag+ transfer across the water/1, 2- dichloroethane interface facilitated by complex formation with tetraphenylborate derivatives. Electrochimica acta, Vol. 49, No. 2, pp. 263–270, 2004.

[40] Brian J Kirby and Pavel Jungwirth. Charge scaling manifesto: A way of reconciling the inherently macroscopic and microscopic natures of molecular simulations. The journal of physical chemistry letters, Vol. 10, No. 23, pp. 7531–7536, 2019.

[41] Lijiang Yang, Chun-hu Tan, Meng-Juei Hsieh, Junmei Wang, Yong Duan, Piotr Cieplak, James Caldwell, Peter A Kollman, and Ray Luo. New-generation amber united-atom force field. The journal of physical chemistry B, Vol. 110, No. 26, pp. 13166–13176, 2006.

[42] Xiangwen Wang, Dimitrios Toroz, Seonmyeong Kim, Simon L Clegg, Gun-Sik Park, and Devis Di Tommaso. Density functional theory based molecular dynamics study of solution composition effects on the solvation shell of metal ions. Physical Chemistry Chemical Physics, Vol. 22, No. 28, pp. 16301–16313, 2020.

[43] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, Jr. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian 09, revision A.02, 2016. Gaussian, Inc., Wallingford CT.

[44] DS Otkidach and IV Pletnev. Conformational analysis of boron-containing compounds using gillespie–kepert version of molecular mechanics. Journal of Molecular Structure: THEOCHEM, Vol. 536, No. 1, pp. 65–72, 2001.

[45] HJC Berendsen, JR Grigera, and TP Straatsma. The missing term in effective pair potentials. Journal of Physical Chemistry, Vol. 91, No. 24, pp. 6269–6271, 1987.

[46] Swaroop Chatterjee, Pablo G Debenedetti, Frank H Stillinger, and Ruth M Lynden-Bell. A computational investigation of thermodynamics, structure, dynamics and solvation behavior in modified water models. The Journal of chemical physics, Vol. 128, No. 12, p. 124511, 2008.

[47] Liem X Dang and David Feller. Molecular dynamics study of water- benzene interactions at the liquid/vapor interface of water. The Journal of Physical Chemistry B, Vol. 104, No. 18, pp. 4403–4407, 2000.

[48] James W Caldwell and Peter A Kollman. Structure and properties of neat liquids using nonadditive molecular dynamics: water, methanol, and n-methylacetamide. The Journal of Physical Chemistry, Vol. 99, No. 16, pp. 6208–6219, 1995.

[49] Koichi Ohno and Satoshi Maeda. Global reaction route mapping on potential energy surfaces of formaldehyde, formic acid, and their metal-substituted analogues. The Journal of Physical Chemistry A, Vol. 110, No. 28, pp. 8933–8941, 2006.

[50] Liem X Dang. A mechanism for ion transport across the water/dichloromethane interface: a molecular dynamics study using polarizable potential models. The Journal of Physical Chemistry B, Vol. 105, pp. 804–809, 2001.

[51] Jun Wang, Piotr Cieplak, Qin Cai, Meng-Juei Hsieh, Junmei Wang, Yong Duan, and Ray Luo. Development of polarizable models for molecular mechanical calculations. 3. polarizable water models conforming to thole polarization screening schemes. The Journal of Physical Chemistry B, Vol. 116, No. 28, pp. 7999–8008, 2012.

[52] David R. Lide. CRC Handbook of Chemistry and Physics. CRC Press, 85th ed edition, 2004.

[53] Akihiro Morita and Shigeki Kato. An ab initio analysis of medium perturbation on molecular polarizabilities. J. Chem. Phys., Vol. 110, pp. 11987–11998, 1999.

[54] Jon Applequist, James R. Carl, and Kwok-Keung Fung. Atom dipole interaction model for molecular polarizability. application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc., pp. 2952–2960, 1972.

[55] Kazuo Kitaura and Keiji Morokuma. A new energy decomposition scheme for molecular interactions within the hartree-fock approximation. International Journal of Quantum Chemistry, Vol. 10, No. 2, pp. 325–340, 1976.

[56] Michael W. Schmidt, Kim K. Baldridge, Jerry A. Boatz, Steven T. Elbert, Mark S. Gordon, Jan H. Jensen, Shiro Koseki, Nikita Matsunaga, Kiet A. Nguyen, Shujun Su, Theresa L. Windus, Michel Dupuis, and John A. Montgomery Jr. General atomic and molecular electronic structure system. J. Comput. Chem., Vol. 14, pp. 1347–1363, 1993.

[57] Takashi Kakiuchi, Masatoshi Nakanishi, and Mitsugi Senda. The electrocapillary curves of the phosphatidylcholine monolayer at the polarized oil–water interface. i. measurement of interfacial tension using a computeraided pendant-drop method. Bulletin of the Chemical Society of Japan, Vol. 61, No. 6, pp. 1845–1851, 1988.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る