リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Caulobacter crescentus DciA promotes chromosome replication through topological loading of the DnaB replicative helicase at replication forks」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Caulobacter crescentus DciA promotes chromosome replication through topological loading of the DnaB replicative helicase at replication forks

Ozaki, Shogo 尾﨑, 省吾 オザキ, ショウゴ Wang, Dengyu Wakasugi, Yasutaka 若杉, 泰敬 ワカスギ, ヤスタカ Itani, Naoto 井谷, 直登 イタニ, ナオト Katayama, Tsutomu 片山, 勉 カタヤマ, ツトム 九州大学

2022.12.09

概要

The replicative DNA helicase translocates on single-stranded DNA to drive replication forks during chromosome replication. In most bacteria the ubiquitous replicative helicase, DnaB, co-evolved with the accessory subunit DciA, but how they function remains incompletely understood. Here, using the model bacterium Caulobacter crescentus, we demonstrate that DciA plays a prominent role in DNA replication fork maintenance. Cell cycle analyses using a synchronized Caulobacter cell population showed that cells devoid of DciA exhibit a severe delay in fork progression. Biochemical characterization revealed that the DnaB helicase in its default state forms a hexamer that inhibits self-loading onto single-stranded DNA. We found that upon binding to DciA, the DnaB hexamer undergoes conformational changes required for encircling single-stranded DNA, thereby establishing the replication fork. Further investigation of the functional structure of DciA revealed that the C-terminus of DciA includes conserved leucine residues responsible for DnaB binding and is essential for DciA in vivo functions. We propose that DciA stimulates loading of DnaB onto single strands through topological isomerization of the DnaB structure, thereby ensuring fork progression. Given that the DnaB-DciA modules are widespread among eubacterial species, our findings suggest that a common mechanism underlies chromosome replication.

この論文で使われている画像

関連論文

参考文献

1. Fernandez,A.J. and Berger,J.M. (2021) Mechanisms of hexameric helicases. Crit. Rev. Biochem. Mol. Biol., 56, 621–639.

2. O’Donnell,M.E. and Li,H. (2018) The ring-shaped hexameric helicases that function at DNA replication forks. Nat. Struct. Mol. Biol., 25, 122–130.

3. Bell,S.P. and Kaguni,J.M. (2013) Helicase loading at chromosomal origins of replication. Cold Spring Harb. Perspect. Biol., 5, a010124.

4. Katayama,T., Ozaki,S., Keyamura,K. and Fujimitsu,K. (2010) Regulation of the replication cycle: conserved and diverse regulatory systems for DnaA and oriC. Nat. Rev. Microbiol., 8, 163–170.

5. Kaguni,J.M. (2011) Replication initiation at the Escherichia coli chromosomal origin. Curr. Opin. Chem. Biol., 15, 606–613.

6. Katayama,T., Kasho,K. and Kawakami,H. (2017) The DnaA cycle in Escherichia coli: Activation, Function and Inactivation of the Initiator Protein. Front. Microbiol., 8. 2496.

7. Grimwade,J.E. and Leonard,A.C. (2021) Blocking, bending, and binding: regulation of initiation of chromosome replication during the Escherichia coli cell cycle by transcriptional modulators that interact with origin DNA. Front. Microbiol., 12. 732270.

8. Trojanowski,D., Hołowka,J. and Zakrzewska-Czerwi ´ nska,J. (2018) ´ Where and when bacterial chromosome replication starts: a single cell perspective. Front. Microbiol., 9. 2819.

9. Wegrzyn,K.E., Gross,M., Uciechowska,U. and Konieczny,I. (2016) Replisome assembly at bacterial chromosomes and iteron plasmids. Front. Mol. Biosci., 3. 39.

10. Luo,H. and Gao,F. (2019) DoriC 10.0: an updated database of replication origins in prokaryotic genomes including chromosomes and plasmids. Nucleic Acids Res., 47, D74–D77.

11. Ozaki,S. (2019) Regulation of replication initiation: lessons from Caulobacter crescentus. Genes Genet. Syst., 94, 183–196.

12. Xu,Z.-Q. and Dixon,N.E. (2018) Bacterial replisomes. Curr. Opin. Struct. Biol., 53, 159–168.

13. Windgassen,T.A., Wessel,S.R., Bhattacharyya,B. and Keck,J.L. (2018) Mechanisms of bacterial DNA replication restart. Nucleic Acids Res., 46, 504–519.

14. Michel,B., Sinha,A.K. and Leach,D.R.F. (2018) Replication fork breakage and restart in Escherichia coli. Microbiol. Mol. Biol. Rev., 82, e00013-18.

15. Spinks,R.R., Spenkelink,L.M., Stratmann,S.A., Xu,Z.-Q., Stamford,N.P.J., Brown,S.E., Dixon,N.E., Jergic,S. and van Oijen,A.M. (2021) DnaB helicase dynamics in bacterial DNA replication resolved by single-molecule studies. Nucleic Acids Res., 49, 6804–6816.

16. Biswas,E.E. and Biswas,S.B. (1999) Mechanism of DnaB helicase of Escherichia coli : structural domains involved in ATP hydrolysis, DNA binding, and oligomerization. Biochemistry, 38, 10919–10928.

17. Arias-Palomo,E., Puri,N., O’Shea Murray,V.L., Yan,Q. and Berger,J.M. (2019) Physical basis for the loading of a bacterial replicative helicase onto DNA. Mol. Cell, 74, 173–184.

18. Itsathitphaisarn,O., Wing,R.A., Eliason,W.K., Wang,J. and Steitz,T.A. (2012) The hexameric helicase DnaB adopts a nonplanar conformation during translocation. Cell, 151, 267–277.

19. Oakley,A.J. (2019) A structural view of bacterial DNA replication. Protein Sci., 28, 990–1004.

20. Bailey,S., Eliason,W.K. and Steitz,T.A. (2007) The crystal structure of the Thermus aquaticus DnaB helicase monomer. Nucleic Acids Res., 35, 4728–4736.

21. Nagata,K., Okada,A., Ohtsuka,J., Ohkuri,T., Akama,Y., Sakiyama,Y., Miyazaki,E., Horita,S., Katayama,T., Ueda,T. et al. (2020) Crystal structure of the complex of the interaction domains of escherichia coli DnaB helicase and DnaC helicase loader: structural basis implying a distortion-accumulation mechanism for the DnaB ring opening caused by DnaC binding. J. Biochem., 167, 1–14.

22. Hayashi,C., Miyazaki,E., Ozaki,S., Abe,Y. and Katayama,T. (2020) DnaB helicase is recruited to the replication initiation complex via binding of DnaA domain I to the lateral surface of the DnaB N-terminal domain. J. Biol. Chem., 295, 11131–11143.

23. Davey,M.J., Fang,L., McInerney,P., Georgescu,R.E. and O’Donnell,M. (2002) The DnaC helicase loader is a dual ATP/ADP switch protein. EMBO J., 21, 3148–3159.

24. Kobori,J.A. and Kornberg,A. (1982) The Escherichia coli dnaC gene product. III. Properties of the dnaB-dnaC protein complex. J. Biol. Chem., 257, 13770–13775.

25. Arias-Palomo,E., O’Shea,V.L., Hood,I.V. and Berger,J.M. (2013) The bacterial DnaC helicase loader is a DnaB ring breaker. Cell, 153, 438–448.

26. Makowska-Grzyska,M. and Kaguni,J.M. (2010) Primase directs the release of DnaC from DnaB. Mol. Cell, 37, 90–101.

27. Chase,J., Catalano,A., Noble,A.J., Eng,E.T., Olinares,P.D., Molloy,K., Pakotiprapha,D., Samuels,M., Chait,B., des Georges,A. et al. (2018) Mechanisms of opening and closing of the bacterial replicative helicase. Elife, 7, e41140.

28. Liu,B., Eliason,W.K. and Steitz,T.A. (2013) Structure of a helicase–helicase loader complex reveals insights into the mechanism of bacterial primosome assembly. Nat. Commun., 4, 2495.

29. Brezellec,P., Vallet-Gely,I., Possoz,C., Quevillon-Cheruel,S. and ´ Ferat,J.-L. (2016) DciA is an ancestral replicative helicase operator essential for bacterial replication initiation. Nat. Commun., 7, 13271.

30. Mann,K.M., Huang,D.L., Hooppaw,A.J., Logsdon,M.M., Richardson,K., Lee,H.J., Kimmey,J.M., Aldridge,B.B. and Stallings,C.L. (2017) Rv0004 is a new essential member of the mycobacterial DNA replication machinery. PLoS Genet., 13, e1007115.

31. Marsin,S., Adam,Y., Cargemel,C., Andreani,J., Baconnais,S., Legrand,P., Li de la Sierra-Gallay,I., Humbert,A., Aumont-Nicaise,M., Velours,C. et al. (2021) Study of the DnaB:DciA interplay reveals insights into the primary mode of loading of the bacterial replicative helicase. Nucleic Acids Res., 49, 6569–6586.

32. Hallez,R., Delaby,M., Sanselicio,S. and Viollier,P.H. (2017) Hit the right spots: cell cycle control by phosphorylated guanosines in alphaproteobacteria. Nat. Rev. Microbiol., 15, 137–148.

33. Tsokos,C.G. and Laub,M.T. (2012) Polarity and cell fate asymmetry in Caulobacter crescentus. Curr. Opin. Microbiol., 15, 744–750.

34. Curtis,P.D. and Brun,Y.V. (2010) Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol. Mol. Biol. Rev., 74, 13–41.

35. Lasker,K., Mann,T.H. and Shapiro,L. (2016) An intracellular compass spatially coordinates cell cycle modules in Caulobacter crescentus. Curr. Opin. Microbiol., 33, 131–139.

36. Surovtsev,I.V. and Jacobs-Wagner,C. (2018) Subcellular organization: a critical feature of bacterial cell replication. Cell, 172, 1271–1293.

37. Lori,C., Ozaki,S., Steiner,S., Bohm,R., Abel,S., Dubey,B.N., ¨ Schirmer,T., Hiller,S. and Jenal,U. (2015) Cyclic di-GMP acts as a cell cycle oscillator to drive chromosome replication. Nature, 523, 236–239.

38. Ozaki,S., Schalch-Moser,A., Zumthor,L., Manfredi,P., Ebbensgaard,A., Schirmer,T. and Jenal,U. (2014) Activation and polar sequestration of PopA, a c-di-GMP effector protein involved in Caulobacter crescentus cell cycle control. Mol. Microbiol., 94, 580–594.

39. Ozaki,S., Wakasugi,Y. and Katayama,T. (2021) Z-Ring-Associated proteins regulate clustering of the replication terminus-binding protein ZapT in Caulobacter crescentus. mBio, 12, e02196-20.

40. Ozaki,S., Jenal,U. and Katayama,T. (2020) Novel divisome-associated protein spatially coupling the Z-Ring with the chromosomal replication terminus in Caulobacter crescentus. mBio, 11, e00487-20.

41. Ozaki,S. and Katayama,T. (2012) Highly organized DnaA–oriC complexes recruit the single-stranded DNA for replication initiation. Nucleic Acids Res., 40, 1648–1665.

42. McGinness,K.E., Baker,T.A. and Sauer,R.T. (2006) Engineering controllable protein degradation. Mol. Cell, 22, 701–707.

43. Skerker,J.M. and Laub,M.T. (2004) Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat. Rev. Microbiol., 2, 325–337.

44. Stelter,M., Gutsche,I., Kapp,U., Bazin,A., Bajic,G., Goret,G., Jamin,M., Timmins,J. and Terradot,L. (2012) Architecture of a dodecameric bacterial replicative helicase. Structure, 20, 554–564.

45. Velten,M., McGovern,S., Marsin,S., Ehrlich,S.D., Noirot,P. and Polard,P. (2003) A two-protein strategy for the functional loading of a cellular replicative DNA helicase. Mol. Cell, 11, 1009–1020.

46. Jumper,J., Evans,R., Pritzel,A., Green,T., Figurnov,M., Ronneberger,O., Tunyasuvunakool,K., Bates,R., Zˇ´ıdek,A., Potapenko,A. et al. (2021) Highly accurate protein structure prediction with alphafold. Nature, 596, 583–589.

47. Allen,G.C. and Kornberg,A. (1991) Fine balance in the regulation of DnaB helicase by DnaC protein in replication in Escherichia coli. J. Biol. Chem., 266, 22096–22101.

48. Sakiyama,Y., Nishimura,M., Hayashi,C., Akama,Y., Ozaki,S. and Katayama,T. (2018) The DnaA AAA+ domain His136 residue directs DnaB replicative helicase to the unwound region of the replication origin, oriC. Front. Microbiol., 9, 2017.

49. Abe,Y., Jo,T., Matsuda,Y., Matsunaga,C., Katayama,T. and Ueda,T. (2007) Structure and function of DnaA N-terminal domains: specific sites and mechanisms in inter-DnaA interaction and in DnaB helicase loading on oriC. J. Biol. Chem., 282, 17816–17827.

50. Chase,J., Berger,J. and Jeruzalmi,D. (2022) Convergent evolution in two bacterial replicative helicase loaders. Trends Biochem. Sci, 47, 620–630.

51. Tanaka,T. and Masai,H. (2006) Stabilization of a stalled replication fork by concerted actions of two helicases. J. Biol. Chem., 281, 3484–3493.

52. Lopper,M.E., Boone,J. and Morrow,C. (2015) Deinococcus radiodurans PriA is a pseudohelicase. PLoS One, 10, e0133419.

53. Jensen,R.B., Wang,S.C. and Shapiro,L. (2001) A moving DNA replication factory in Caulobacter crescentus. EMBO J., 20, 4952–4963.

54. Biswas,E.E., Biswas,S.B. and Bishop,J.E. (1986) The dnaB protein of Escherichia coli: mechanism of nucleotide binding, hydrolysis, and modulation by dnaC protein. Biochemistry, 25, 7368–7374.

55. Arai,K. and Kornberg,A. (1981) Mechanism of dnaB protein action. II. ATP hydrolysis by dnaB protein dependent on single- or double-stranded DNA. J. Biol. Chem., 256, 5253–5259.

56. Mallory,J.B., Alfano,C. and McMacken,R. (1990) Host virus interactions in the initiation of bacteriophage lambda DNA replication. Recruitment of Escherichia coli DnaB helicase by lambda P replication protein. J. Biol. Chem., 265, 13297–13307.

57. Ilves,I., Petojevic,T., Pesavento,J.J. and Botchan,M.R. (2010) Activation of the MCM2-7 helicase by association with Ccdc45 and GINS proteins. Mol. Cell, 37, 247–258.

58. Verma,V., Kumar,A., Nitharwal,R.G., Alam,J., Mukhopadhyay,A.K., Dasgupta,S. and Dhar,S.K. (2016) ‘Modulation of the enzymatic activities of replicative helicase (DnaB) by interaction with Hp0897: a possible mechanism for helicase loading in Helicobacter pylori’. Nucleic Acids Res., 44, 3288–3303.

59. Bruand,C., Farache,M., McGovern,S., Ehrlich,S.D. and Polard,P. (2008) DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol. Microbiol., 42, 245–256.

60. Martin,E., Williams,H.E.L., Pitoulias,M., Stevens,D., Winterhalter,C., Craggs,T.D., Murray,H., Searle,M.S. and Soultanas,P. (2019) DNA replication initiation in Bacillus subtilis: structural and functional characterization of the essential DnaA–DnaD interaction. Nucleic Acids Res., 47, 2101–2112.

61. Evinger,M. and Agabian,N. (1977) Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J. Bacteriol., 132, 294–301.

62. Thanbichler,M., Iniesta,A.A. and Shapiro,L. (2007) A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res., 35, e137.

63. Abel,S., Bucher,T., Nicollier,M., Hug,I., Kaever,V., Abel zur Wiesch,P. and Jenal,U. (2013) Bi-modal distribution of the second messenger c-di-GMP controls cell fate and asymmetry during the Caulobacter cell cycle. PLoS Genet., 9, 5–11.

64. Roberts,R.C., Toochinda,C., Avedissian,M., Baldini,R.L., Gomes,S.L. and Shapiro,L. (1996) Identification of a Caulobacter crescentus operon encoding hrcA, involved in negatively regulating heat-inducible transcription, and the chaperone gene grpE. J. Bacteriol., 178, 1829–1841.

65. Kaczmarczyk,A., Vorholt,J.A. and Francez-Charlot,A. (2013) Cumate-Inducible gene expression system for Sphingomonads and other Alphaproteobacteria. Appl. Environ. Microbiol., 79, 6795–6802.

66. Crooks,G.E., Hon,G., Chandonia,J.-M. and Brenner,S.E. (2004) WebLogo: a sequence logo generator. Genome Res., 14, 1188–1190.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る