リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Rrp1 translocase and ubiquitin ligase activities restrict the genome destabilising effects of Rad51 in fission yeast」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Rrp1 translocase and ubiquitin ligase activities restrict the genome destabilising effects of Rad51 in fission yeast

Bilge Argunhan Kentaro Ito Yumiko Kurokawa Yasuto Murayama Hideo Tsubouchi 岩崎博史 Hiroshi Iwasaki 東京工業大学 DOI:https://doi.org/10.1093/nar/gkab511

2021.07.09

概要

Rad51 is the key protein in homologous recombina- tion that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 levels in a manner dependent on Rrp1 ATPase domain. Puri- fied Rrp1 binds to DNA and has a DNA-dependent AT- Pase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of mod- ulating Rad51 function. Rrp1 affects Rad51 binding at centromeres. Additionally, we demonstrate in vivo and in vitro that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.

この論文で使われている画像

参考文献

1. Kolinjivadi,A.M., Sannino,V., de Antoni,A., Te´cher,H., Baldi,G. and Costanzo,V. (2017) Moonlighting at replication forks – a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett., 591, 1083–1100.

2. Symington,L.S. (2002) Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev., 66, 630–670.

3. Kowalczykowski,S.C. (2015) An overview of the molecular mechanisms of recombinational DNA repair. Cold Spring Harb. Perspect. Biol., 7, a016410.

4. Krogh,B.O. and Symington,L.S. (2004) Recombination proteins in yeast. Annu. Rev. Genet., 38, 233–271.

5. Raji,H. and Hartsuiker,E. (2006) Double-strand break repair and homologous recombination in Schizosaccharomyces pombe. Yeast, 23, 963–976.

6. Liu,J. and Heyer,W.-D. (2011) Who’s who in human recombination: BRCA2 and RAD52. Proc. Natl. Acad. Sci. U.S.A., 108, 441–442.

7. Prakash,R., Zhang,Y., Feng,W. and Jasin,M. (2015) Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol., 7, a016600.

8. Yuan,J. and Chen,J. (2011) The role of the human SWI5-MEI5 complex in homologous recombination repair. J. Biol. Chem., 286, 9888–9893.

9. Argunhan,B., Murayama,Y. and Iwasaki,H. (2017) The differentiated and conserved roles of Swi5-Sfr1 in homologous recombination. FEBS Lett., 591, 2035–2047.

10. Akamatsu,Y., Tsutsui,Y., Morishita,T., Siddique,M.S.P., Kurokawa,Y., Ikeguchi,M., Yamao,F., Arcangioli,B. and Iwasaki,H. (2007) Fission yeast Swi5/Sfr1 and Rhp55/Rhp57 differentially regulate Rhp51-dependent recombination outcomes. EMBO J., 26, 1352–1362.

11. Mart´ın,V., Chahwan,C., Gao,H., Blais,V., Wohlschlegel,J., Yates,J.R., McGowan,C.H. and Russell,P. (2006) Sws1 is a conserved regulator of homologous recombination in eukaryotic cells. EMBO J., 25, 2564–2574.

12. Dziadkowiec,D., Petters,E., Dyjankiewicz,A., Karpin´ski,P., Garcia,V., Watson,A.T. and Carr,A.M. (2009) The role of novel genes rrp1(+) and rrp2(+) in the repair of DNA damage in Schizosaccharomyces pombe. DNA Repair (Amst.)., 8, 627–636.

13. Dziadkowiec,D., Kramarz,K., Kanik,K., Wis´niewski,P. and Carr,A.M. (2013) Involvement of Schizosaccharomyces pombe rrp1+and rrp2 + in the Srs2- and Swi5/Sfr1-dependent pathway in response to DNA damage and replication inhibition. Nucleic Acids Res., 41, 8196–8209.

14. Barg-Wojas,A., Muraszko,J., Kramarz,K., Schirmeisen,K., Baranowska,G., Carr,A.M. and Dziadkowiec,D. (2020) Schizosaccharomyces pombe DNA translocases Rrp1 and Rrp2 have distinct roles at centromeres and telomeres that ensure genome stability. J. Cell Sci., 133, jcs230193.

15. Wei,Y., Diao,L.-X., Lu,S., Wang,H.-T., Suo,F., Dong,M.-Q. and Du,L.-L. (2017) SUMO-targeted DNA translocase Rrp2 protects the genome from Top2-induced DNA damage. Mol. Cell, 66, 581–596.

16. Carr,A.M., Paek,A.L. and Weinert,T. (2011) DNA replication: failures and inverted fusions. Semin. Cell Dev. Biol., 22, 866–874.

17. Schlacher,K., Christ,N., Siaud,N., Egashira,A., Wu,H. and Jasin,M. (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 145, 529–542.

18. Hashimoto,Y., Ray Chaudhuri,A., Lopes,M. and Costanzo,V. (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat. Struct. Mol. Biol., 17, 1305–1311.

19. Zellweger,R., Dalcher,D., Mutreja,K., Berti,M., Schmid,J.A., Herrador,R., Vindigni,A. and Lopes,M. (2015) Rad51-mediated replication fork reversal is a global response to genotoxic treatments in human cells. J. Cell Biol., 208, 563–579.

20. Bugreev,D. V, Rossi,M.J. and Mazin,A.V. (2011) Cooperation of RAD51 and RAD54 in regression of a model replication fork. Nucleic. Acids. Res., 39, 2153–2164.

21. Vujanovic,M., Krietsch,J., Raso,M.C., Terraneo,N., Zellweger,R., Schmid,J.A., Taglialatela,A., Huang,J.W., Holland,C.L., Zwicky,K. et al. (2017) Replication fork slowing and reversal upon DNA damage require PCNA polyubiquitination and ZRANB3 DNA translocase activity. Mol. Cell, 67, 882–890.

22. Achar,Y.J., Balogh,D., Neculai,D., Juhasz,S., Morocz,M., Gali,H., Dhe-Paganon,S., Venclovas,Cˇ . and Haracska,L. (2015) Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling. Nucleic. Acids. Res., 43, 10277–10291.

23. Kile,A.C., Chavez,D.A., Bacal,J., Eldirany,S., Korzhnev,D.M., Bezsonova,I., Eichman,B.F. and Cimprich,K.A. (2015) HLTF’s ancient HIRAN domain binds 3r DNA ends to drive replication fork reversal. Mol. Cell, 58, 1090–1100.

24. Be´tous,R., Mason,A.C., Rambo,R.P., Bansbach,C.E., Badu-Nkansah,A., Sirbu,B.M., Eichman,B.F. and Cortez,D. (2012) SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication. Genes Dev., 26, 151–162.

25. Bhat,K.P. and Cortez,D. (2018) RPA and RAD51: fork reversal, fork protection, and genome stability. Nat. Struct. Mol. Biol., 25, 446–453.

26. McGlynn,P. and Lloyd,R.G. (2002) Recombinational repair and restart of damaged replication forks. Nat. Rev. Mol. Cell Biol., 3, 859–870.

27. Lambert,S., Watson,A.T., Sheedy,D.M., Martin,B. and Carr,A.M. (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell, 121, 689–702.

28. Pepe,A. and West,S.C. (2014) MUS81-EME2 promotes replication fork restart. Cell Rep., 7, 1048–1055.

29. Sung,P. and Klein,H.L. (2006) Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat. Rev. Mol. Cell Biol., 7, 739–750.

30. Heyer,W.-D. (2015) Regulation of recombination and genomic maintenance. Cold Spring Harb. Perspect. Med., 7, a016501.

31. Dungrawala,H., Bhat,K.P., Le Meur,R., Chazin,W.J., Ding,X., Sharan,S.K., Wessel,S.R., Sathe,A.A., Zhao,R. and Cortez,D. (2017) RADX promotes genome stability and modulates chemosensitivity by regulating RAD51 at replication forks. Mol. Cell, 67, 374–386.

32. Bhat,K.P., Krishnamoorthy,A., Dungrawala,H., Garcin,E.B., Modesti,M. and Cortez,D. (2018) RADX modulates RAD51 activity to control replication fork protection. Cell Rep., 24, 538–545.

33. Wright,W.D. and Heyer,W.-D. (2014) Rad54 functions as a heteroduplex DNA pump modulated by Its DNA substrates and Rad51 during D loop formation. Mol. Cell, 53, 420–432.

34. Solinger,J.A., Kiianitsa,K. and Heyer,W.-D. (2002) Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol. Cell, 10, 1175–1188.

35. Mason,J.M., Dusad,K., Wright,W.D., Grubb,J., Budke,B., Heyer,W.-D., Connell,P.P., Weichselbaum,R.R. and Bishop,D.K. (2015) RAD54 family translocases counter genotoxic effects of RAD51 in human tumor cells. Nucleic. Acids. Res., 43, 3180–3196.

36. Spies,J., Waizenegger,A., Barton,O., Su¨ rder,M., Wright,W.D., Heyer,W.-D. and Lo¨ brich,M. (2016) Nek1 Regulates Rad54 to orchestrate homologous recombination and replication fork stability. Mol. Cell, 62, 903–917.

37. Piwko,W., Mlejnkova,L.J., Mutreja,K., Ranjha,L., Stafa,D., Smirnov,A., Brodersen,M.M., Zellweger,R., Sturzenegger,A., Janscak,P. et al. (2016) The MMS22L–TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress. EMBO J., 35, 2584–2601.

38. Chi,P., Kwon,Y., Visnapuu,M.-L., Lam,I., Santa Maria,S.R., Zheng,X., Epshtein,A., Greene,E.C., Sung,P. and Klein,H.L. (2011) Analyses of the yeast Rad51 recombinase A265V mutant reveal different in vivo roles of Swi2-like factors. Nucleic. Acids. Res., 39, 6511–6522.

39. Shah,P.P., Zheng,X., Epshtein,A., Carey,J.N., Bishop,D.K. and Klein,H.L. (2010) Swi2/Snf2-related translocases prevent accumulation of toxic Rad51 complexes during mitotic growth. Mol. Cell, 39, 862–872.

40. Chi,P., Kwon,Y., Seong,C., Epshtein,A., Lam,I., Sung,P. and Klein,H.L. (2006) Yeast recombination factor Rdh54 functionally interacts with the Rad51 recombinase and catalyzes Rad51 removal from DNA. J. Biol. Chem., 281, 26268–26279.

41. Sung,P. and Robberson,D.L. (1995) DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell, 82, 453–461.

42. Bennett,B.T. and Knight,K.L. (2005) Cellular localization of human Rad51C and regulation of ubiquitin-mediated proteolysis of Rad51. J. Cell. Biochem., 96, 1095–1109.

43. Inano,S., Sato,K., Katsuki,Y., Kobayashi,W., Tanaka,H., Nakajima,K., Nakada,S., Miyoshi,H., Knies,K., Takaori-Kondo,A. et al. (2017) RFWD3-mediated ubiquitination promotes timely removal of both RPA and RAD51 from DNA damage sites to facilitate homologous recombination. Mol. Cell, 66, 622–634.

44. Tsutsui,Y., Kurokawa,Y., Ito,K., Siddique,M.S.P., Kawano,Y., Yamao,F. and Iwasaki,H. (2014) Multiple regulation of Rad51-mediated homologous recombination by fission yeast Fbh1. PLos Genet., 10, e1004542.

45. Chu,W.K., Payne,M.J., Beli,P., Hanada,K., Choudhary,C. and Hickson,I.D. (2015) FBH1 influences DNA replication fork stability and homologous recombination through ubiquitylation of RAD51. Nat. Commun., 6, 5931.

46. Moreno,S., Klar,A. and Nurse,P. (1991) Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol., 194, 795–823.

47. Tsang,E., Miyabe,I., Iraqui,I., Zheng,J., Lambert,S. and Carr,A.M. (2014) The extent of error-prone replication restart by homologous recombination is controlled by Exo1 and checkpoint proteins. J. Cell Sci., 127, 2983–2994.

48. Haruta,N., Kurokawa,Y., Murayama,Y., Akamatsu,Y., Unzai,S., Tsutsui,Y. and Iwasaki,H. (2006) The Swi5-Sfr1 complex stimulates Rhp51/Rad51- and Dmc1-mediated DNA strand exchange in vitro. Nat. Struct. Mol. Biol., 13, 823–830.

49. Kurokawa,Y., Murayama,Y., Haruta-Takahashi,N., Urabe,I. and Iwasaki,H. (2008) Reconstitution of DNA strand exchange mediated by Rhp51 recombinase and two mediators. PLoS Biol., 6, e88.

50. Ito,K., Murayama,Y., Kurokawa,Y., Kanamaru,S., Kokabu,Y., Maki,T., Mikawa,T., Argunhan,B., Tsubouchi,H., Ikeguchi,M. et al. (2020) Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51. Nat. Commun., 11, 2950.

51. Kim,W.J., Lee,H., Park,E.J., Park,J.K. and Park,S.D. (2001) Gain- and loss-of-function of Rhp51, a Rad51 homolog in fission yeast, reveals dissimilarities in chromosome integrity. Nucleic Acids Res., 29, 1724–1732.

52. Matsuo,Y., Sakane,I., Takizawa,Y., Takahashi,M. and Kurumizaka,H. (2006) Roles of the human Rad51 L1 and L2 loops in DNA binding. FEBS J., 273, 3148–3159.

53. Bernstein,K.A., Reid,R.J.D., Sunjevaric,I., Demuth,K., Burgess,R.C. and Rothstein,R. (2011) The Shu complex, which contains Rad51 paralogues, promotes DNA repair through inhibition of the Srs2 anti-recombinase. Mol. Biol. Cell, 22, 1599–1607.

54. Lorenz,A., Osman,F., Folkyte,V., Sofueva,S. and Whitby,M.C. (2009) Fbh1 limits Rad51-dependent recombination at blocked replication forks. Mol. Cell. Biol., 29, 4742–4756.

55. Ouyang,K.J., Woo,L.L., Zhu,J., Huo,D., Matunis,M.J. and Ellis,N.A. (2009) SUMO modification regulates BLM and RAD51 interaction at damaged replication forks. PLoS Biol., 7, e1000252.

56. Afshar,N., Argunhan,B., Palihati,M., Taniguchi,G., Tsubouchi,H. and Iwasaki,H. (2021) A novel motif of Rad51 serves as an interaction hub for recombination auxiliary factors. Elife, 10, e64131.

57. Ronneberger,O., Baddeley,D., Scheipl,F., Verveer,P.J., Burkhardt,H., Cremer,C., Fahrmeir,L., Cremer,T. and Joffe,B. (2008) Spatial quantitative analysis of fluorescently labeled nuclear structures: Problems, methods, pitfalls. Chromosom. Res., 16, 523–562.

58. Nakamura,K., Okamoto,A., Katou,Y., Yadani,C., Shitanda,T., Kaweeteerawat,C., Takahashi,T.S., Itoh,T., Shirahige,K., Masukata,H. et al. (2008) Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe. EMBO J., 27, 3036–3046.

59. Teixeira-Silva,A., Ait Saada,A., Hardy,J., Iraqui,I., Nocente,M.C., Fre´on,K. and Lambert,S. (2017) The end-joining factor Ku acts in the end-resection of double strand break-free arrested replication forks. Nat. Commun., 8, 1982.

60. Kramarz,K., Schirmeisen,K., Boucherit,V., Ait Saada,A., Lovo,C., Palancade,B., Freudenreich,C.H. and Lambert,S. (2020) The nuclear pore primes recombination-dependent DNA synthesis at arrested forks by promoting SUMO removal. Nat. Commun., 11, 5643.

61. Lock,A., Rutherford,K., Harris,M.A., Hayles,J., Oliver,S.G., Ba¨hler,J. and Wood,V. (2019) PomBase 2018: user-driven reimplementation of the fission yeast database provides rapid and intuitive access to diverse, interconnected information. Nucleic Acids Res., 47, D821–D827.

62. Zaitseva,E.M., Zaitsev,E.N. and Kowalczykowski,S.C. (1999) The DNA binding properties of Saccharomyces cerevisiae Rad51 protein. J. Biol. Chem., 274, 2907–2915.

63. Amunugama,R., He,Y., Willcox,S., Forties,R.A., Shim,K.-S., Bundschuh,R., Luo,Y., Griffith,J. and Fishel,R. (2012) RAD51 protein ATP cap regulates nucleoprotein filament stability. J. Biol. Chem., 287, 8724–8736.

64. Li,X., Zhang,X.-P., Solinger,J.A., Kiianitsa,K., Yu,X., Egelman,E.H. and Heyer,W.-D. (2007) Rad51 and Rad54 ATPase activities are both required to modulate Rad51-dsDNA filament dynamics. Nucleic. Acids. Res., 35, 4124–4140.

65. Flaus,A. and Owen-Hughes,T. (2011) Mechanisms for ATP-dependent chromatin remodelling: The means to the end. FEBS J., 278, 3579–3595.

66. Prasad,P. and Ekwall,K. (2013) A snapshot of Snf2 enzymes in fission yeast. Biochem. Soc. Trans., 41, 1640–1647.

67. Glickman,M.H. and Ciechanover,A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev., 82, 373–428.

68. Onaka,A.T., Toyofuku,N., Inoue,T., Okita,A.K., Sagawa,M., Su,J., Shitanda,T., Matsuyama,R., Zafar,F., Takahashi,T.S. et al. (2016) Rad51 and Rad54 promote noncrossover recombination between centromere repeats on the same chromatid to prevent isochromosome formation. Nucleic. Acids. Res., 44, 10744–10757.

69. Unk,I., Hajdu,I., Blastyak,A. and Haracska,L. (2010) Role of yeast Rad5 and its human orthologs, HLTF and SHPRH in DNA damage tolerance. DNA Repair (Amst.)., 9, 257–267.

70. Bru¨ hl,J., Trautwein,J., Scha¨fer,A., Linne,U. and Bouazoune,K. (2019) The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin, 12, 52.

71. Maacke,H., Jost,K., Opitz,S., Miska,S., Yuan,Y., Hasselbach,L., Lu¨ ttges,J., Kalthoff,H. and Stu¨ rzbecher,H.-W. (2000) DNA repair and recombination factor Rad51 is over-expressed in human pancreatic adenocarcinoma. Oncogene, 19, 2791–2795.

72. Maacke,H., Opitz,S., Jost,K., Hamdorf,W., Henning,W., Kru¨ ger,S., Feller,A.C., Lopens,A., Diedrich,K., Schwinger,E. et al. (2000) Over-expression of wild-type Rad51 correlates with histological grading of invasive ductal breast cancer. Int. J. Cancer, 88, 907–913.

73. Hansen,L.T., Lundin,C., Spang-Thomsen,M., Petersen,L.N. and Helleday,T. (2003) The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer. Int. J. Cancer, 105, 472–479.

74. Raderschall,E., Stout,K., Freier,S., Suckow,V., Schweiger,S. and Haaf,T. (2002) Elevated levels of Rad51 recombination protein in tumor cells. Cancer Res., 62, 219–225.

75. Tennstedt,P., Fresow,R., Simon,R., Marx,A., Terracciano,L., Petersen,C., Sauter,G., Dikomey,E. and Borgmann,K. (2013) RAD51 overexpression is a negative prognostic marker for colorectal adenocarcinoma. Int. J. Cancer, 132, 2118–2126.

76. Brown,E.T. and Holt,J.T. (2009) Rad51 overexpression rescues radiation resistance in BRCA2-defective cancer cells. Mol. Carcinog., 48, 105–109.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る