リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The MRE11 nuclease promotes homologous recombination not only in DNA double-strand break resection but also in post-resection in human TK6 cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The MRE11 nuclease promotes homologous recombination not only in DNA double-strand break resection but also in post-resection in human TK6 cells

Shimizu, Naoto 京都大学 DOI:10.14989/doctor.k23091

2021.03.23

概要

DNA 二重鎖切断 (DSB) は、1つでも発生後一定時間再結合されないまま残ると細胞自殺を起こす。DSB の発生が、放射線治療の作用機序である。 DSB は、非相同末端結合経路と相同組換え経路によって修復(再結合)される。非相同末端経路は、細胞周期を通じて DSB 修復を行うのに対し、相同組換え経路は S/G2 期で活性化する。相同組換え欠損細胞では、放射線に超感受性を示すことから、DSB 修復おける相同組換えの役割は極めて大きい。相同組換えの修復効率は、放射線の治療効果を決定する。

相同組換えは、DSB 切断端の5’末端からヌクレアーゼによる削り込みを受ける(ステップ1)ことで開始される。削り込みよってできる3’末端が突出した一本鎖DNA は、RAD51蛋白質依存的に姉妹染色分体の相同領域に侵入する(ステップ2)。侵入した一本鎖 DNAの 3’末端から DNA 合成が起こる。DNA 合成後、 DNA 四本鎖からなる中間体、Joint molecule 構造が生じる。このJoint molecule 構造は、構造特異的エンドクレアーゼ GEN1などによって切断され(ステップ3)、相同組換えが完結する。

MRE11 ヌクレアーゼは、相同組換え修復の初期反応である DSB 切断端の5’末端の削り込み反応に関与すると言われている。マウスのMRE11 ヌクレアーゼ活性欠損MEF 細胞は、MRE11 正常細胞に比べ、削り込み反応が50%程度減弱する。以前の報告で、50%程度の削り込み反応低下では、相同組換え頻度に影響を与えないことが示されている。酵母及び哺乳類細胞におけるMRE11 ヌクレアーゼ活性欠損及び遺伝子欠損の表現型は、極めて重篤な相同組換え欠損を示す。したがって、削り込み反応におけるMRE11 の機能だけで、MRE11 変異による重篤な組換え欠損が説明できるかは不明である。本研究の目的は、 相同組換えにおける MRE11 の DSB 切断端の 5’末端の削り込み反応以外の機能を解明し、 MRE11 変異による重篤な組換え欠損を示す原因を明らかにすることである。

本研究では、MRE11 を条件的に欠損(MRE11-/-)あるいはヌクレアーゼ活性欠損 (MRE11-/H129N)することが可能なヒト TK6 細胞を使った。相同組換え進行を調べるために、DSB 発生に応答して形成されるRAD51 foci の経時変化を調べた。RAD51 は、姉妹染色分体の相同領域に侵入する反応(ステップ2)に必須であり、相同組換え進行を解析する分子マーカーである。MRE11-/-及びMRE11-/H129N 細胞は、放射線照射後、RAD51 foci形成が野生型細胞と同程度であった。一方で、これらの細胞では、RAD51 foci 消失が遅れた。これらのことは、5’末端の削り込み反応以降の相同組換え過程にMRE11 が重要な機能を担っていることを意味していた。また MRE11-/-及びMRE11-/H129N 細胞では、野生型に比べ、相同組換え中間体(Joint molecule 構造)であるIso-chromatid break が顕著に増加した。GEN1 ヌクレアーゼの過剰発現によって、放射線照射によって増加した Iso-chromatid break 形成が抑制された。このことから、TK6 細胞において、MRE11 ヌクレアーゼは、 5’末端の削り込み反応以降に形成される組換え中間体の解消(ステップ3)に重要な役割を果たしていることがわかった。将来、相同組換えに複数の機能を担う MRE11 を阻害することで、放射線治療の効果を高めることが期待される。

この論文で使われている画像

参考文献

Akagawa, R., Trinh, H. T., Saha, L. K., Tsuda, M., Hirota, K., Yamada, S., et al. (2020). UBC13-mediated ubiquitin signaling promotes removal of blocking adducts from DNA double-strand breaks. iScience. https://doi.org/10.1016/j.isci.2020.101027.

Bizard, A. H., & Hickson, I. D. (2014). The dissolution of double Hol- liday junctions. Cold Spring Harbor Perspectives in Biology, 6, 7. https://doi.org/10.1101/cshperspect.a016477.

Branzei, D., & Szakal, B. (2016). DNA damage tolerance by recombi- nation: Molecular pathways and DNA structures. DNA Repair, 44, 68–75. https://doi.org/10.1016/j.dnarep.2016.05.008.

Bruhn, C., Zhou, Z. W., Ai, H., & Wang, Z. Q. (2014). The essential function of the MRN complex in the resolution of endogenous replication intermediates. Cell Reports, 6(1), 182–195. https:// doi.org/10.1016/j.celrep.2013.12.018.

Bryant, H. E., Schultz, N., Thomas, H. D., Parker, K. M., Flower, D., Lopez, E., et al. (2005). Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature, 434(7035), 913–917. https://doi.org/10.1038/nature03443.

Buis, J., Wu, Y., Deng, Y., Leddon, J., Westfield, G., Eckersdorff, M., et al. (2008). Mre11 nuclease activity has essential roles in DNA repair and genomic stability distinct from ATM activation. Cell, 135(1), 85–96. https://doi.org/10.1016/j.cell.2008.08.015.

Castor, D., Nair, N., Déclais, A. C., Lachaud, C., Toth, R., Macartney, T. J., et al. (2013). Cooperative control of Holliday junction reso- lution and DNA Repair by the SLX1 and MUS81-EME1 nucle- ases. Molecular Cell, 52(2), 221–233. https://doi.org/10.1016/j.molcel.2013.08.036.

Chan, Y. W., & West, S. C. (2014). Spatial control of the GEN1 Hol- liday junction resolvase ensures genome stability. Nature Com- munications, 5(1), 1–11. https://doi.org/10.1038/ncomms5844.

Chan, Y. W., Fugger, K., & West, S. C. (2018). Unresolved recombina- tion intermediates lead to ultra-fine anaphase bridges, chromo- some breaks and aberrations. Nature Cell Biology, 20(1), 92–103. https://doi.org/10.1038/s41556-017-0011-1.

Chang, H. H. Y., Pannunzio, N. R., Adachi, N., & Lieber, M. R. (2017). Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nature Reviews Molecular Cell Biol- ogy, 18(8), 495–506. https://doi.org/10.1038/nrm.2017.48.

De Jager, M., Van Noort, J., Van Gent, D. C., Dekker, C., Kanaar, R., & Wyman, C. (2001). Human Rad50/Mre11 is a flexible complex that can tether DNA ends. Molecular Cell, 8(5), 1129–1135. https://doi.org/10.1016/S1097-2765(01)00381-1.

Doksani, Y., Bermejo, R., Fiorani, S., Haber, J. E., & Foiani, M. (2009). Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell, 137(2), 247–258. https://doi.org/10.1016/j.cell.2009.02.016.

Duursma, A. M., Driscoll, R., Elias, J. E., & Cimprich, K. A. (2013). A role for the MRN complex in ATR activation via TOPBP1 recruit- ment. Molecular Cell, 50(1), 116–122. https://doi.org/10.1016/j. molcel.2013.03.006.

Farmer, H., McCabe, H., Lord, C. J., Tutt, A. H. J., Johnson, D. A., Richardson, T. B., et al. (2005). Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature, 434(7035), 917–921. https://doi.org/10.1038/nature03445.

Fellows, M. D., & O’Donovan, M. R. (2010). Etoposide, cadmium chloride, benzo[a]pyrene, cyclophosphamide and colchicine tested in the in vitro mammalian cell micronucleus test (MNvit) in the presence and absence of cytokinesis block using L5178Y mouse lymphoma cells and 2-aminoanthracene tested in. Muta- tion Research/Genetic Toxicology and Environmental Mutagen- esis, 702(2), 163–170. https://doi.org/10.1016/J.MRGEN TOX.2009.09.003.

Gaillard, P. H. L., Noguchi, E., Shanahan, P., & Russell, P. (2003). The endogenous Mus81-Eme1 complex resolves Holliday junctions by a nick and counternick mechanism. Molecular Cell, 12(3), 747–759. https://doi.org/10.1016/S1097-2765(03)00342-3.

Garcia, V., Phelps, S. E. L., Gray, S., & Neale, M. J. (2011). Bidi- rectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature, 479(7372), 241–244. https://doi.org/10.1038/natur e10515.

Giannattasio, M., Zwicky, K., Follonier, C., Foiani, M., Lopes, M., & Branzei, D. (2014). Visualization of recombination-mediated damage bypass by template switching. Nature Structural and Molecular Biology, 21(10), 884–892. https://doi.org/10.1038/ nsmb.2888.

Haber, J. E. (2016). A life investigating pathways that repair broken chromosomes. Annual Review of Genetics, 50(1), 1–28. https://doi.org/10.1146/annurev-genet-120215-035043.

Hoa, N. N., Akagawa, R., Yamasaki, T., Hirota, K., Sasa, K., Natsume, T., et al. (2015a). Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes to Cells, 20(12), 1059– 1076. https://doi.org/10.1111/gtc.12310.

Hoa, N. N., Kobayashi, J., Omura, M., Hirakawa, M., Yang, S.-H., Komatsu, K., et al. (2015b). BRCA1 and CtIP are both required to recruit Dna2 at double-strand breaks in homologous recombina- tion (B. D. Price, Ed.). PLoS ONE, 10(4), e0124495. https://doi.org/10.1371/journal.pone.0124495.

Hoa, N. N., Shimizu, T., Zhou, Z. W., Wang, Z.-Q., Deshpande, R. A., Paull, T. T., et al. (2016). Mre11 is essential for the removal of lethal topoisomerase 2 covalent cleavage complexes. Molecu- lar Cell, 64(3), 580–592. https://doi.org/10.1016/J.MOLCEL.2016.10.011.

Honma, M., Izumi, M., Sakuraba, M., Tadokoro, S., Sakamoto, H., Wang, W., et al. (2003). Deletion, rearrangement, and gene con- version; genetic consequences of chromosomal double-strand breaks in human cells. Environ Mol Mutagen, 42(4), 288–298. https://doi.org/10.1002/em.10201.

Hopfner, K. P., Craig, L., Moncalian, G., Zinkel, R. A., Usui, T., Owen, B. A. L., et al. (2002). The Rad50 zinc-hook is a structure join- ing Mre11 complexes in DNA recombination and repair. Nature, 418(6897), 562–566. https://doi.org/10.1038/nature00922.

Ibrahim, M. A., Yasui, M., Saha, L. K., Sasanuma, H., Honma, M., & Takeda, S. (2020). Enhancing the sensitivity of the thymi- dine kinase assay by using DNA repair-deficient human TK6 cells. Environmental and Molecular Mutagenesis. https://doi.org/10.1002/em.22371.

Kakui, Y., & Uhlmann, F. (2018). SMC complexes orchestrate the mitotic chromatin interaction landscape. Current Genetics, 64(2), 335–339. https://doi.org/10.1007/s00294-017-0755-y.

Keka, I. S., Mohiuddin, M. Y., Rahman, M. M., Sakuma, T., Honma, M., et al. (2015). Smarcal1 promotes double-strand-break repair by nonhomologous end-joining. Nucleic Acids Research, 43(13), 6359–6372. https://doi.org/10.1093/nar/gkv621.

Kikuchi, K., Narita, T., Pham, V. T., Iijima, J., Hirota, K., Keka, I. S., et al. (2013). Structure-specific endonucleases Xpf and Mus81 play overlapping but essential roles in DNA repair by homologous recombination. Cancer Research, 73(14), 4362–4371. https://doi.org/10.1158/0008-5472.CAN-12-3154.

Kondratova, A., Watanabe, T., Marotta, M., Cannon, M., Segall, A. M., Serre, D., et al. (2015). Replication fork integrity and intra- S phase checkpoint suppress gene amplification. Nucleic Acids Research, 43(5), 2678–2690. https://doi.org/10.1093/nar/gkv084.

Kottemann, M. C., & Smogorzewska, A. (2013). Fanconi anaemia and the repair of Watson and Crick DNA crosslinks. Nature, 493(7432), 356–363. https://doi.org/10.1038/nature11863.

Lee, J., & Dunphy, W. G. (2013). The Mre11-Rad50-Nbs1 (MRN) complex has a specific role in the activation of Chk1 in response to stalled replication forks. Molecular Biology of the Cell, 24(9), 1343–1353. https://doi.org/10.1091/mbc.E13-01-0025.

Lorge, E. (2010). Comparison of different cytotoxicity measurements for the in vitro micronucleus assay using L5178Y and TK6 cells in support of OECD draft Test Guideline 487. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 702(2), 199–207. https://doi.org/10.1016/j.mrgentox.2010.03.002.

Mao, Z., Bozzella, M., Seluanov, A., & Gorbunova, V. (2008). DNA repair by nonhomologous end joining and homologous recombi- nation during cell cycle in human cells. Cell Cycle, 7(18), 2902– 2906. https://doi.org/10.4161/cc.7.18.6679.

Mazin, A. V., Mazina, O. M., Bugreev, D. V., & Rossi, M. J. (2010). Rad54, the motor of homologous recombination. DNA Repair, 9(3), 286–302. https://doi.org/10.1016/j.dnarep.2009.12.006.

Mehta, A., & Haber, J. E. (2014). Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harbor Perspectives in Biology, 6(9), a016428. https://doi. org/10.1101/cshperspect.a016428.

Mimitou, E. P., & Symington, L. S. (2008). Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature, 455(7214), 770–774. https://doi.org/10.1038/nature07312.

Moreau, S., Ferguson, J. R., & Symington, L. S. (1999). The nucle- ase activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Molecular and Cellular Biology, 19(1), 556–566. https://doi.org/10.1128/ mcb.19.1.556.

Moynahan, M. E., & Jasin, M. (2010). Mitotic homologous recombina- tion maintains genomic stability and suppresses tumorigenesis. Nature Reviews Molecular Cell Biology, 11(3), 196–207. https:// doi.org/10.1038/nrm2851.

Murai, J., Huang, S. Y. N., Das, B. B., Renaud, A., Zhang, Y., Doro- show, J. H., et al. (2012). Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Research, 72(21), 5588–5599. https://doi.org/10.1158/0008-5472.CAN-12-2753.

O’Driscoll, M., & Jeggo, P. A. (2006). The role of double-strand break repair—insights from human genetics. Nature Reviews Genetics, 7(1), 45–54. https://doi.org/10.1038/nrg1746.

Oh, J., & Symington, L. S. (2018). Role of the Mre11 complex in pre- serving genome integrity. Genes, 9, 12. https://doi.org/10.3390/genes9120589.

Paull, T. T. (2018). 20 Years of Mre11 biology: no end in sight. Molecular Cell, 71(3), 419–427. https://doi.org/10.1016/j.molcel.2018.06.033.

Petukhova, G., Stratton, S., & Sung, P. (1998). Catalysis of homolo- gous DNA pairing by yeast Rad51 and Rad54 proteins. Nature, 393(6680), 91–94. https://doi.org/10.1038/30037.

Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., & Jasin, M. (2011). Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell, 145(4), 529–542. https://doi.org/10.1016/j.cell.2011.03.041.

Seeber, A., Hegnauer, A. M., Hustedt, N., Deshpande, I., Poli, J., Eglinger, J., et al. (2016). RPA mediates recruitment of MRX to forks and double-strand breaks to hold sister chromatids together. Molecular Cell, 64(5), 951–966. https://doi.org/10.1016/j.molcel.2016.10.032.

Shibata, A., Moiani, D., Arvai, A. S., Perry, J., Harding, S. M., Genois, M. M., et al. (2014). DNA double-strand break repair pathway choice is directed by distinct MRE11 nuclease activi- ties. Molecular Cell, 53(1), 7–18. https://doi.org/10.1016/j.molce l.2013.11.003.

Shiotani, B., Nguyen, H. D., Håkansson, P., Maréchal, A., Tse, A., Tahara, H., et al. (2013). Two distinct modes of ATR activation orchestrated by Rad17 and Nbs1. Cell Reports, 3(5), 1651–1662. https://doi.org/10.1016/j.celrep.2013.04.018.

Sonoda, E., Sasaki, M. S., Buerstedde, J. M., Bezzubova, O., Shino- hara, A., Ogawa, H., et al. (1998). Rad51-deficient vertebrate cells accumulate chromosomal breaks prior to cell death. EMBO Journal, 17(2), 598–608. https://doi.org/10.1093/emboj/17.2.598.

Sonoda, E., Matsusaka, T., Morrison, C., Vagnarelli, P., Hoshi, O., Ushiki, T., et al. (2001). Scc1/Rad21/Mcd1 is required for sister chromatid cohesion and kinetochore function in vertebrate cells. Developmental cell, 1(6), 759–770. https://doi.org/10.1016/s1534-5807(01)00088-0.

Stracker, T. H., & Petrini, J. H. J. (2011). The MRE11 complex: Start- ing from the ends. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/nrm3047.

Sugawara, N., Wang, X., & Haber, J. E. (2003). In vivo roles of Rad52, Rad54, and Rad55 proteins in Rad51-mediated recombination. Molecular Cell, 12(1), 209–219. https://doi.org/10.1016/S1097-2765(03)00269-7.

Symington, L. S., & Gautier, J. (2011). Double-strand break end resec- tion and repair pathway choice. Annual Review of Genetics, 45(1), 247–271. https://doi.org/10.1146/annurev-genet-110410-132435.

Trenz, K., Smith, E., Smith, S., & Costanzo, V. (2006). ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks. The EMBO Journal, 25(8), 1764–1774. https://doi.org/10.1038/sj.emboj.7601045.

Wechsler, T., Newman, S., & West, S. C. (2011). Aberrant chromo- some morphology in human cells defective for Holliday junction resolution. Nature, 471(7340), 642–646. https://doi.org/10.1038/ nature09790.

West, S. C., & Chan, Y. W. (2017). Genome instability as a conse- quence of defects in the resolution of recombination intermedi- ates. Cold Spring Harbor symposia on quantitative biology, 82, 207–212. https://doi.org/10.1101/sqb.2017.82.034256.

Westmoreland, J. W., & Resnick, M. A. (2013). Coincident resection at both ends of random, γ–induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-Nuclease (M. Lichten, Ed.). PLoS Genetics, 9(3), e1003420. https://doi.org/10.1371/journal.pgen.1003420.

Wiese, C., Dray, E., Groesser, T., San Filippo, J., Shi, I., Collins, D. W., et al. (2007). Promotion of homologous recombination and genomic stability by RAD51AP1 via RAD51 recombinase enhancement. Molecular Cell, 28(3), 482–490. https://doi.org/10.1016/j.molcel.2007.08.027.

Wiltzius, J. J. W., Hohl, M., Fleming, J. C., & Petrini, J. H. J. (2005). The Rad50 hook domain is a critical determinant of Mre11 com- plex functions. Nature Structural and Molecular Biology, 12(5), 403–407. https://doi.org/10.1038/nsmb928.

Wu, L., & Hickson, I. O. (2003). The Bloom’s syndrome helicase sup- presses crossing over during homologous recombination. Nature, 426(6968), 870–874. https://doi.org/10.1038/nature02253.

Wu, L., Bachrati, C. Z., Ou, J., Xu, C., Yin, J., Chang, M., et al. (2006). BLAP75/RMI1 promotes the BLM-dependent dissolution of homologous recombination intermediates. Proceedings of the National Academy of Sciences of the United States of America, 103(11), 4068–4073. https://doi.org/10.1073/pnas.0508295103.

Wyatt, H. D. M., & West, S. C. (2014). Holliday junction resolvases. Cold Spring Harbor Perspectives in Biology, 6(9), a023192. https://doi.org/10.1101/cshperspect.a023192.

Wyatt, H. D. M., Sarbajna, S., Matos, J., & West, S. C. (2013). Coor- dinated actions of SLX1-SLX4 and MUS81-EME1 for holliday junction resolution in human cells. Molecular Cell, 52(2), 234–247. https://doi.org/10.1016/j.molcel.2013.08.035.

Yin, J., Sobeck, A., Xu, C., Meetei, A. R., Hoatlin, M., Li, L., et al. (2005). BLAP75, an essential component of Bloom’s syndrome protein complexes that maintain genome integrity. The EMBO Journal, 24(7), 1465–1476. https://doi.org/10.1038/sj.emboj.7600622.

Zhou, Y., Caron, P., Legube, G., & Paull, T. T. (2014). Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Research, 42(3), e19. https://doi.org/10.1093/ nar/gkt1309.

Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E., & Ira, G. (2008). Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell, 134(6), 981–994. https://doi. org/10.1016/j.cell.2008.08.037.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る