リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「苔類ゼニゴケの器官形成における細胞系譜の寄与と核オーキシン信号伝達による制御機構の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

苔類ゼニゴケの器官形成における細胞系譜の寄与と核オーキシン信号伝達による制御機構の解析

鈴木, 秀政 京都大学 DOI:10.14989/doctor.k23331

2021.03.23

概要

陸上植物は内外の区別のある三次元的なボディープランを共有派生形質とする。コケ植物は現生陸上植物で最も早期に分岐した単系統群であり、残る維管束植物との比較分析は植物に普遍的な発生原理解明への一助となる。第一章では、苔類ゼニゴケの器官形成様式を解析した。維管束植物の地上部器官は、分裂組織周辺で位置情報に応じて繰返し形成される。一方コケ植物では、蘚類などでの解析から頂端幹細胞の娘細胞に由来するクローナルな細胞群“メロファイト”単位で器官形成されると考えられてきた。しかし、メロファイト単位の器官形成がコケ植物に普遍的であるのかは不明であった。そこで本研究では、ゼニゴケを用い、誘導的な少数細胞の遺伝的標識により細胞系譜を可視化する系を立ち上げた。ゼニゴケは葉状体先端のノッチに頂端幹細胞をもつ。無性繁殖体である無性芽で誘導処理して培養すると、しばしば基部からノッチにかけて葉状体を縦断するセクタが生じた。当該セクタにより背側器官の気室や杯状体も二分されており、位置情報に応じてメロファイトを跨いで器官形成されることが示唆された。この結果から、陸上植物の位置情報依存的な器官形成機構は共通祖先で獲得された、あるいは、進化上複数回獲得されたことが考えられる。第二章では、移動性シグナル分子である植物ホルモンオーキシンに着目した。被子植物では TIR1/AFB 受容体がオーキシン依存的に転写抑制因子 AUX/IAA の DII 領域に結合して分解を促し、転写因子 ARF による転写制御を亢進する。TIR1/AFB ホモログ MpTIR1 の過剰発現はゼニゴケのオーキシン感受性を上昇させた。逆に Mptir1 変異体は生理応答・転写応答両面でオーキシン感受性が低下した。MpTIR1 は in vitro でオーキシン依存的にゼニゴケ AUX/IAA (MpIAA)の DII と相互作用し、in vivo では DII 付加タンパク質の分解を促した。MpTIR1 とシロイヌナズナ TIR1 はともに Mptir1 変異体を相補した。これらの結果から MpTIR1 が被子植物 TIR1 と共通したオーキシン受容体機能を有することが示唆された。胞子発芽体における MpTIR1 ノックアウトにより、器官形成が損なわれ細胞塊状となった。また誘導的ノックアウトにより、無性芽形成時の体軸形成が攪乱される、無性芽が発芽後に細胞塊状となるなどの表現型を呈した。RNA-seq データに基づく主成分分析では、ゼニゴケ各器官は第一・第二主成分軸に沿って発生順に並び、Mptir1 変異体は胞子発芽体と葉状体の中間に位置した。Mptir1 変異体は胞子発芽体と葉状体いずれよりも、複数の既知の器官形成制御転写因子が低発現であった。以上から、MpTIR1 を介した核オーキシン信号伝達は体軸形成並びに器官形成を制御しており、三次元的な発生に必須であることが示唆された。

この論文で使われている画像

参考文献

Aoyama T, Hiwatashi Y, Shigyo M, Kofuji R, Kubo M, Ito M, Hasebe M. 2012. AP2-type transcription factors determine stem cell identity in the moss Physcomitrella patens. Development 139: 3120–3129.

Apostolakos P, Galatis B, Mitrakos K. 1982. Studies on the development of the air pores and air chambers of Marchantia paleacea 1. Light microscopy. Ann Bot 49: 377–396.

Ashton NW, Grimsley NH, Cove DJ. 1979. Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144: 427–435.

Axtell MJ, Snyder JA, Bartel DP. 2007. Common functions for diverse small RNAs of land plants. Plant Cell 19: 1750–1769.

Barnes CR, Land WJG. 1907. Bryological papers. I. The origin of air chambers. Bot Gaz 44: 197–213. Barnes CR, Land WJG. 1908.

Bryological papers. II. The origin of the cupule of Marchantia. Bot Gaz 46: 401–409.

Binns AN, Maravolo NC. 1972. Apical dominance, polarity, and adventitious grouth in Marchantia polymorpha. Am J Bot 59: 691–696.

Bowman JL, Briginshaw LN, Fisher TJ, Flores-Sandoval E. 2019. Something ancient and something neofunctionalized—evolution of land plant hormone signaling pathways. Curr Opin Plant Biol 47: 64–74.

Bowman JL, Kohchi T, Yamato KT, Jenkins J, Shu S, Ishizaki K, Yamaoka S, Nishihama R, Nakamura Y, Berger F, et al. 2017. Insights into land plant evolution garnered from the Marchantia polymorpha genome. Cell 171: 287–304.

Bowman JL. 2016. A brief history of Marchantia from Greece to genomics. Plant Cell Physiol 57: 210–229.

Breuninger H, Thamm A, Streubel S, Sakayama H, Nishiyama T, Dolan L. 2016. Diversification of a transcription factor family led to the evolution of antagonistically acting genetic regulators of root hair growth. Curr Biol 26: 1622–1628.

Cao M, Chen R, Li P, Yu Y, Zheng R, Ge D, Zheng W, Wang X, Gu Y, Gelová Z, et al. 2019. TMK1- mediated auxin signalling regulates differential growth of the apical hook. Nature 568: 240–243.

Chen S, Zhou Y, Chen Y, Gu J. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34: i884–i890.

Chiyoda S, Ishizaki K, Kataoka H, Yamato KT, Kohchi T. 2008. Direct transformation of the liverwort Marchantia polymorpha L. by particle bombardment using immature thalli developing from spores. Plant Cell Rep 27: 1467–1473.

Conway JR, Lex A, Gehlenborg N. 2017. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics 33: 2938–2940.

Cox CJ, Li B, Foster PG, Embley TM, Civáň P. 2014. Conflicting phylogenies for early land plants are caused by composition biases among synonymous substitutions. Syst Biol 63: 272–279.

Crandall-Stotler B. 1980. Morphogenetic designs and a theory of bryophyte origins and divergence. BioScience 30: 580–585.

Crandall-Stotler B. 1981. Morphology/anatomy of hepatics and anthocerotes. J. Cramer, Vaduz, Lichtenstein.

Dharmasiri N, Dharmasiri S, Estelle M. 2005. The F-box protein TIR1 is an auxin receptor. Nature 435: 441–445.

Dobin A, Davis CA, Schlesinger F, Drenkow, J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. 2013. STAR: ultrafast universal RNA-seq aligner Alexander. Bioinformatics 29: 15–21.

Dolan L, Duckett CM, Grierson C, Linstead P, Schneider K, Lawson E, Dean C, Poethig S, Roberts K. 1994. Clonal relationships and cell patterning in the root epidermis of Arabidopsis. Development 120: 2465–2474.

Douin C. 1925. La théorie des initiales chez les Hépatiques à feuilles. Bull Soc Bot Fr 72: 565–591.

Eklund DM, Ishizaki K, Flores-Sandoval E, Kikuchi S, Takebayashi Y, Tsukamoto S, Hirakawa Y, Nonomura M, Kato H, Kouno M, et al. 2015. Auxin produced by the indole-3-pyruvic acid pathway regulates development and gemmae dormancy in the liverwort Marchantia polymorpha. Plant Cell 27: 1650–69.

Finet C, Berne-Dedieu A, Scutt CP, Marlétaz F. 2013. Evolution of the ARF gene family in land plants: Old domains, new tricks. Mol Biol Evol 30: 45–56.

Flores-Sandoval E, Eklund DM, Bowman JL. 2015. A simple auxin transcriptional response system regulates multiple morphogenetic processes in the liverwort Marchantia polymorpha. PLoS Genet 11: e1005207. doi: 10.1371/journal.pgen.1005207.

Flores-Sandoval E, Eklund DM, Hong SF, Alvarez JP, Fisher TJ, Lampugnani ER, Golz JF, Vázquez- Lobo A, Dierschke T, Lin SS, et al. 2018a. Class C ARFs evolved before the origin of land plants and antagonize differentiation and developmental transitions in Marchantia polymorpha. New Phytol 218: 1612–1630.

Flores-Sandoval E, Romani F, Bowman JL. 2018b. Co-expression and transcriptome analysis of Marchantia polymorpha transcription factors supports class C ARFs as independent actors of an ancient auxin regulatory module. Front Plant Sci 9: 1–21.

Frangedakis E, Shimamura M, Villarreal JC, Li FW, Tomaselli M, Waller M, Sakakibara K, Renzaglia KS, Szövényi P. 2021. The Hornworts: morphology, evolution and development. New Phytol 229: 735–754.

Frank MH, Scanlon MJ. 2015. Transcriptomic evidence for the evolution of shoot meristem function in sporophyte-dominant land plants through concerted selection of ancestral gametophytic and sporophytic genetic programs. Mol Biol Evol 32: 355–367.

Fries K. 1964. Uber einen genuinen keimungs und streckungswachstumsaktiven hemmstoff bei Marchantia polymorpha L. Beiträge Biol Pflanz 40: 177–235.

Fujisawa M, Nakayama S, Nishio T, Fujishita M, Hayashi K, Ishizaki K, Kajikawa M, Yamato KT, Fukuzawa H, Ohyama K. 2003. Evolution of ribosomal DNA unit on the X chromosome inde- pendent of autosomal units in the liverwort Marchantia polymorpha. Chromosome Res 11:695–703.

Gaal DJ, Dufresne SJ, Maravolo NC. 1982. Transport of 14C-indoleacetic acid in the hepatic Marchantia polymorpha. Bryologist 85: 410–418.

Gamborg OL, Miller RA, Ojima, K. 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151–158

Gifford EMJ. 1983. Concept of apical cells in bryophytes and pteridophytes. Ann Rev Plant Physiol 34: 419–440.

Gray WM, del Pozo JC, Walker L, Hobbie L, Risseeuw E, Banks T, Crosby WL, Yang M, Ma H, Estelle M. 1999. Identification of an SCF ubiquitin-ligase complex required for auxin response in Arabidopsis thaliana. Genes Dev 13: 1678–1691.

Gray WM, Kepinski S, Rouse D, Leyser O, Estelle M. 2001. Auxin regulates SCFTIR1-dependent degradation of AUX/IAA proteins. Nature 414: 271–276.

Hąc-Wydro K, Flasiński M. 2015. The studies on the toxicity mechanism of environmentally hazardous natural (IAA) and synthetic (NAA) auxin – The experiments on model Arabidopsis thaliana and rat liver plasma membranes. Colloids Surf B Biointerfaces 130: 53–60.

Harrison CJ, Langdale JA. 2010. Comment: The developmental pattern of shoot apices in Selaginella kraussiana (Kunze) A. Braun. Int J Plant Sci 171: 690–692.

Harrison CJ, Rezvani M, Langdale JA. 2007. Growth from two transient apical initials in the meristem of Selaginella kraussiana. Development 134:881–889.

Harrison CJ, Roeder AHK, Meyerowitz EM, Langdale JA. 2009. Local cues and asymmetric cell divisions underpin body plan transitions in the moss Physcomitrella patens. Curr Biol 19: 461–471.

Harrison CJ. 2017. Development and genetics in the evolution of land plant body plans. Phil Trans R Soc B 372: 20150490.

Heidstra R, Welch D, Scheres B. 2004. Mosaic analyses using marked activation and deletion clones dissect Arabidopsis SCARECROW action in asymmetric cell division. Genes & Development 18:1964–1969.

Higo A, Niwa M, Yamato KT, Yamada L, Sawada H, Sakamoto T, Kurata T, Shirakawa M, Endo M, Shigenobu S, Yamaguchi K, Ishizaki K, Nishihama R, Kohchi T, Araki T. 2016. Transcriptional framework of male gametogenesis in the liverwort Marchantia polymorpha L. Plant Cell Physiol 57: 325–338.

Hisanaga T, Okahashi K, Yamaoka S, Kajiwara T, Nishihama R, Shimamura M, Yamato KT, Bowman JL, Kohchi T, Nakajima K. 2019. A cis-acting bidirectional transcription switch controls sexual dimorphism in the liverwort. EMBO J 38: e100240.

Ishizaki K, Chiyoda S, Yamato KT, Kohchi T. 2008. Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49: 1084–1091.

Ishizaki K, Johzuka-Hisatomi Y, Ishida S, Iida S, Kohchi T. 2013a. Homologous recombination- mediated gene targeting in the liverwort Marchantia polymorpha L. Sci Rep 3: 1532.

Ishizaki K, Mizutani M, Shimamura M, Masuda A, Nishihama R, Kohchi T. 2013b. Essential role of the E3 ubiquitin ligase NOPPERABO1 in schizogenous intercellular space formation in the liverwort Marchantia polymorpha. Plant Cell 25: 4075–4084.

Ishizaki K, Nishihama R, Ueda M, Inoue K, Ishida S, Nishimura Y, Shikanai T, Kohchi T. 2015. Development of Gateway binary vector series with four different selection markers for the liverwort Marchantia polymorpha. PLOS ONE 10:e0138876.

Ishizaki K, Nonomura M, Kato H, Yamato KT, Kohchi T. 2012. Visualization of auxin-mediated transcriptional activation using a common auxin-responsive reporter system in the liverwort Marchantia polymorpha. J Plant Res 125: 643–51.

Jang G, Dolan L. 2011. Auxin promotes the transition from chloronema to caulonema in moss protonema by positively regulating PpRSL1 and PpRSL2 in Physcomitrella patens. New Phytol 192: 319–327.

Jones VAS, Dolan L. 2017. MpWIP regulates air pore complex development in the liverwort Marchantia polymorpha. Development 144: 1472–1476.

Kanazawa T, Era A, Minamino N, Shikano Y, Fujimoto M, Uemura T, Nishihama R, Yamato KT, Ishizaki K, Nishiyama T, Kohchi T, Nakano A, Ueda T. 2016. SNARE molecules in Marchantia polymorpha: unique and conserved features of the membrane fusion machinery. Plant Cell Physiol 57: 307–324.

Kasahara H. 2016. Current aspects of auxin biosynthesis in plants. Biosci Biotechnol Biochem 80: 1– 9.

Kato H, Ishizaki K, Kouno M, Shirakawa M, Bowman JL, Nishihama R, Kohchi T. 2015. Auxin- mediated transcriptional system with a minimal set of components is critical for morphogenesis through the life cycle in Marchantia polymorpha. PLoS Genet 11: e1005084. doi: 10.1371/journal.pgen.1005084.

Kato H, Kouno M, Takeda M, Suzuki H, Ishizaki K, Nishihama R, Kohchi T. 2017. The roles of the sole activator-type auxin response factor in pattern formation of Marchantia polymorpha. Plant Cell Physiol 58: 1642–1651.

Kato H, Mutte SK, Suzuki H, Crespo I, Das S, Radoeva T, Fontana M, Yoshitake Y, Hainiwa E, van den Berg W, et al. 2020a. Design principles of a minimal auxin response system. Nat Plants 6: 473–482. doi: 10.1038/s41477-020-0662-y.

Kato H, Nishihama R, Weijers D, Kohchi T. 2018. Evolution of nuclear auxin signaling: lessons from genetic studies with basal land plants. J Exp Bot 69: 291–301.

Kato H, Yasui Y, Ishizaki K. 2020b. Gemma cup and gemma development in Marchantia polymorpha. New Phytol. 228: 459–465.

Kepinski S, Leyser O. 2005. The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435: 446–451.

Kidner C, Sundaresan V, Roberts K, Dolan L. 2000. Clonal analysis of the Arabidopsis root confirms that position, not lineage, determines cell fate. Planta 211: 191–199.

Kim J, Harter K, Theologis A. 1997. Protein–protein interactions among the Aux/IAA proteins. Proc Natl Acad Sci USA 94: 11786–11791.

Koide E, Suetsugu N, Iwano M, Gotoh E, Nomura Y, Stolze SC, Nakagami H, Kohchi T, Nishihama R. 2020. Regulation of photosynthetic carbohydrate metabolism by a Raf-like kinase in the liverwort Marchantia polymorpha. Plant Cell Physiol 61: 631–643.

Kopischke S, Schussler E, Althoff F, Zachgo S. 2017. TALEN-mediated genome-editing approaches in the liverwort Marchantia polymorpha yield high efficiencies for targeted mutagenesis. Plant Methods 13:20.

Korasick DA, Westfall CS, Lee SG, Nanao MH, Dumas R, Hagen G, Guilfoyle TJ, Jez JM, Strader LC. 2014. Molecular basis for AUXIN RESPONSE FACTOR protein interaction and the control of auxin response repression. Proc Natl Acad Sci USA 111: 5427–5432.

Korn RW. 1993. Apical cells as meristems. Acta Biotheor 41: 175–189.

Korn RW. 2001. Analysis of shoot apical organization in six species of the Cupressaceae based on chimeric behavior. Am J Bot 88: 1945–1952.

Korn RW. 2002. Chimeric patterns in Juniperus chinensis ‘Torulosa Variegata’ (Cupressaceae) expressed during leaf and stem formation. Am J Bot 89: 758–765.

Kubota A, Ishizaki K, Hosaka M, Kohchi T. 2013. Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77: 167–172.

Kubota A, Kita S, Ishizaki K, Nishihama R, Yamato KT, Kohchi T. 2020. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat Commun 5: 3668.

LaRue CD, Narayanaswami S. 1957. Auxin inhibition in the liverwort Lunularia. New Phytol 56: 61– 70.

Lavy M, Prigge MJ, Tao S, Shain S, Kuo A, Kirchsteiger K, Estelle M. 2016. Constitutive auxin response in Physcomitrella reveals complex interactions between Aux/IAA and ARF proteins. eLife 5: e13325. doi: 10.7554/eLife.13325.

Liao Y, Smyth GK, Shi W. 2019. The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads. Nucleic Acids Research 47: e47.

Ligrone R, Duckett JG, Renzaglia KS. 2012. The origin of the sporophyte shoot in land plants: A bryological perspective. Ann Bot 110: 935–941.

Lin PC, Lu CW, Shen BN, Lee GZ, Bowman JL, Arteaga-Vazquez MA, Liu LYD, Hong SF, Lo CF, Su GM, et al. 2016. Identification of miRNAs and their targets in the liverwort Marchantia polymorpha by integrating RNA-Seq and degradome analyses. Plant Cell Physiol 57: 339–358.

Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450: 56–62.

Löbenberg E. 1959. Über genuine wuchsstoffe bei Marchantia polymorpha L. PhD thesis, Frankfurt.

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA- seq data with DESeq2. Genome Biol 15: 550

Lv B, Yu Q, Liu J, Wen X, Yan Z, Hu K, Li H, Kong X, Li C, Tian H, et al. 2020. Non-canonical AUX/IAA protein IAA33 competes with canonical AUX/IAA repressor IAA5 to negatively regulate auxin signaling. EMBO J 39: e101515. doi: 10.15252/embj.2019101515.

Mallory AC, Bartel DP, Bartel B. 2005. MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17: 1360–1375.

Mano S, Nishihama R, Ishida S, Hikino K, Kondo M, Nishimura M, Yamato KT, Kohchi T, Nakagawa T. 2018. Novel gateway binary vectors for rapid tripartite DNA assembly and promoter analysis with various reporters and tags in the liverwort Marchantia polymorpha. PLOS ONE 13: e0204964.

Maravolo NC. 1976. Polarity and localization of auxin movement in the hepatic, Marchantia polymorpha. Am J Bot 63: 526–531.

Moody L. 2020. Three-dimensional growth: A developmental innovation that facilitated plant terrestrialization. J Plant Res 133: 283–290.

Morris JL, Puttick MN, Clark JW, Edwards D, Kenrick P, Pressel S, Wellman CH, Yang Z, Schneider H, Donoghue PCJ. 2018. The timescale of early land plant evolution. Proc Natl Acad Sci U S A 115: E2274–E2283.

Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GKS, Weijers D. 2018. Origin and evolution of the nuclear auxin response system. eLife 7: e33399. doi: 10.7554/eLife.33399.

Nanao MH, Vinos-Poyo T, Brunoud G, Thévenon E, Mazzoleni M, Mast D, Lainé S, Wang S, Hagen G, Li H, et al. 2014. Structural basis for oligomerization of auxin transcriptional regulators. Nat Commun 5: 3617.

Nishihama R, Ishida S, Urawa H, Kamei Y, Kohchi T. 2016. Conditional gene expression/deletion systems for Marchantia polymorpha using its own heat-shock promoter and Cre/loxP-mediated site- specific recombination. Plant Cell Physiol 57: 271–280.

Nishihama R, Ishizaki K, Hosaka M, Matsuda Y, Kubota A, Kohchi T. 2015. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha. J Plant Res 128: 407–421.

Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, Wakasugi T, Yamada K, Yoshinaga K, Yamaguchi K, et al. 2004. Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol Biol Evol 21: 1813–1819.

Okada S, Fujisawa M, Sone T, Nakayama S, Nishiyama R, Takenaka M, Yamaoka S, Sakaida M, Kono K, Takahama M, et al. 2000. Construction of male and female PAC genomic libraries suit- able for identification of Y-chromosome-specific clones from the liverwort, Marchantia polymorpha. Plant J 24:421–428.

Paponov IA, Friz T, Budnyk V, Teale W, Wüst F, Paponov M, Al-Babili S, Palme K. 2019. Natural Auxin Does Not Inhibit Brefeldin A Induced PIN1 and PIN2 Internalization in Root Cells. Front Plant Sci 10: 1–7.

Parihar NS. 1967. An introduction to Embryophyta volume I: Bryophyta. Allahbad: Indian Universities Press.

Pfaffl MW. 2001. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29: e45.

Poethig RS, Szymkowiak EJ. 1995. Clonal analysis of leaf development in maize. Maydica (Italy) 40: 67–76.

Poethig RS. 1987. Clonal analysis of cell lineage patterns in plant development. Am J Bot 74: 581– 594.

Prigge MJ, Lavy M, Ashton NW, Estelle M. 2010. Physcomitrella patens auxin-resistant mutants affect conserved elements of an auxin-signaling pathway. Curr Biol 20: 1907–1912.

Prigge MJ, Platre M, Kadakia N, Zhang Y, Greenham K, Szutu W, Pandey BK, Bhosale RA, Bennett MJ, Busch W, et al. 2020. Genetic analysis of the Arabidopsis TIR1/AFB auxin receptors reveals both overlapping and specialized functions. eLife 9: e54740. doi: 10.7554/eLife.54740.

Proust H, Honkanen S, Jones VAS, Morieri G, Prescott H, Kelly S, Ishizaki K, Kohchi T, Dolan L. 2016. RSL class I genes controlled the development of epidermal structures in the common ancestor of land plants. Curr Biol 26: 93–99.

Puttick MN, Morris JL, Williams TA, Cox CJ, Edwards D, Kenrick P, Pressel S, Wellman CH, Schneider H, Pisani D, Donoghue PCJ. 2018. The interrelationships of land plants and the nature of the ancestral embryophyte. Curr Biol 28: 1–13.

Reinhardt D, Frenz M, Mandel T, Kuhlemeier C. 2005. Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato. Development 132: 15–26.

Rensing SA, Goffinet B, Meyberg R, Wu SZ, Bezanilla M. 2020. The moss physcomitrium (Physcomitrella) patens: A model organism for non-seed plants. Plant Cell 32: 1361–1376.

Ruhland W. 1924. Musci. Allgemeiner Teil. Verlag von Wilhelm Engelmann, Leipzig.

Sanders HL, Darrah PR, Langdale JA. 2011. Sector analysis and predictive modelling reveal iterative shoot-like development in fern fronds. Development 138: 2925–2934.

Satina S, Blakeslee AF, Avery AG. 1940. Demonstration of the three germ layers in the shoot apex of datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27: 895–905.

Saulsberry A, Martin PR, O'Brien T, Sieburth LE, Pickett FB. 2002. The induced sector Arabidopsis apical embryonic fate map. Development 129: 3403–3410.

Scheres B, Wolkenfelt H, Willemsen V, Terlouw M, Lawson E, Dean C, Weisbeek P. 1994. Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120: 2475– 2487.

Scheres B. 2001. Plant Cell Identity. The Role of Position and Lineage. Plant Physiology 125: 112– 114.

Schneider MJ, Voth PD, Troxler RF. 1967. Methods of propagating bryophyte plants, tissues, and propagules. Bot Gaz 128: 169–174.

Shimamura M. 2016. Marchantia polymorpha: taxonomy, phylogeny and morphology of a model system. Plant Cell Physiol 57: 230–256.

Sieburth LE, Drews GN, Meyerowitz EM. 1998. Non-autonomy of AGAMOUS function in flower development: use of a Cre/loxP method for mosaic analysis in Arabidopsis. Development 125: 4303.

Solly JE, Cunniffe NJ, Harrison CJ. 2017. Regional growth rate differences specified by apical notch activities regulate liverwort thallus shape. Curr Biol 27: 16–26.

Sugano SS, Nishihama R, Shirakawa M, Takagi J, Matsuda Y, Ishida S, Shimada T, Hara-Nishimura I, Osakabe K, Kohchi T. 2018. Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLOS ONE 13: e0205117.

Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y, et al. 2015. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 56: 1641–1654.

Sussex IM. 1951. Experiments on the cause of dorsiventrality in leaves. Nature 167: 651–652. Sussex IM. 1954. Experiments on the cause of dorsiventrality in leaves. Nature 174: 351–352.

Suzuki H, Kohchi T, Nishihama R. 2021. Auxin biology in bryophyta: A simple platform with vaersatile functions. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a040055.

Szemenyei H, Hannon M, Long JA. 2008. TOPLESS mediates auxin-dependent transcriptional repression during Arabidopsis embryogenesis. Science 319: 1384–1386.

Tam THY, Catarino B, Dolan L. 2015. Conserved regulatory mechanism controls the development of cells with rooting functions in land plants. Proc Natl Acad Sci 112: E3959–E3968.

Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson C V, Estelle M, Zheng N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446: 640–645.

Thelander M, Landberg K, Sundberg E. 2019. Minimal auxin sensing levels in vegetative moss stem cells revealed by a ratiometric reporter. New Phytol 224: 775–788.

Tiwari SB, Hagen G, Guilfoyle T. 2003. The roles of auxin response factor domains in auxin- responsive transcription. Plant Cell 15: 533–543.

Tsuzuki M, Nishihama R, Ishizaki K, Kurihara Y, Matsui M, Bowman JL, Kohchi T, Hamada T, Watanabe Y. 2016. Profiling and characterization of small RNAs in the liverwort, Marchantia polymorpha, belonging to the first diverged land plants. Plant Cell Physiol 57: 359–372.

Ulmasov T, Hagen G, Guilfoyle TJ. 1997. ARF1, a transcription factor that binds to auxin response elements. Science 276: 1865–1868.

Ulmasov T, Hagen G, Guilfoyle TJ. 1999a. Activation and repression of transcription by auxin- response factors. Proc Natl Acad Sci 96: 5844–5849.

Ulmasov T, Hagen G, Guilfoyle TJ. 1999b. Dimerization and DNA binding of auxin response factors. Plant J 19: 309–319.

van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B. 1995. Cell fate in the Arabidopsis root meristem determined by directional signalling. Nature 378: 62–65.

Vöchting H. 1885. Ueber die regeneration der Marchantieen. Jahrbücher für wissenschaftliche Bot 16: 367–414; Taf. XII-XV.

Wachsman G, Heidstra R, Scheres B. 2011. Distinct cell-autonomous functions of RETINOBLASTOMA-RELATED in Arabidopsis stem cells revealed by the Brother of Brainbow clonal analysis system. Plant Cell 23: 2581–2591.

Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY. 2005. Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17: 2204–2216.

Wickett NJ, Mirarab S, Nguyen N, Warnow T, Carpenter E, Matasci N, Ayyampalayam S, Barker MS, Burleigh JG, Gitzendanner MA, et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc Natl Acad Sci USA 111: E4859–E4868.

Yamamoto M, Yamamoto KT. 1998. Differential effects of 1-naphthaleneacetic acid, indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid on the gravitropic response of roots in an auxin-resistant mutant of Arabidopsis, aux1. Plant Cell Physiol. 39: 660–664.

Yang Y, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E. 2006. High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol. 16: 1123–1127.

Yasui Y, Tsukamoto S, Sugaya T, Nishihama R, Wang Q, Kato H, Yamato KT, Fukaki H, Mimura T, Kubo H, Theres K, Kohchi T, Ishizaki K. 2019. GEMMA CUP-ASSOCIATED MYB1, an ortholog of axillary meristem regulators, is essential in vegetative reproduction in Marchantia polymorpha. Curr Biol 29: 3987–3995.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る