リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Temperature sensing with RF-dressed states of nitrogen-vacancy centers in diamond」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Temperature sensing with RF-dressed states of nitrogen-vacancy centers in diamond

Tabuchi, Hibiki Matsuzaki, Yuichiro Furuya, Noboru Nakano, Yuta Watanabe, Hideyuki Tokuda, Norio Mizuochi, Norikazu Ishi-Hayase, Junko 京都大学 DOI:10.1063/5.0129706

2023.01.14

概要

Using the electronic spin of nitrogen-vacancy (NV) centers in diamond is a promising approach to realizing high-precision temperature sensors; furthermore, pulsed optically detected magnetic resonance (pulsed-ODMR) is one way to measure the temperature using these NV centers. However, pulsed-ODMR techniques such as D-Ramsey, thermal echo, or thermal Carr–Purcell–Meiboom–Gill sequences require careful calibration and strict time synchronization to control the microwave (MW) pulses, which complicates their applicability. Continuous-wave ODMR (CW-ODMR) is a more advantageous way to measure temperature with NV centers because it can be implemented simply by continuous application of a green laser and MW radiation. However, CW-ODMR has lower sensitivity than pulsed-ODMR. Therefore, it is important to improve the temperature sensitivity of CW-ODMR techniques. Herein, we thus propose and demonstrate a method for measuring temperature using CW-ODMR with a quantum spin state dressed by a radio-frequency (RF) field under a transverse magnetic field. The use of an RF field is expected to suppress the inhomogeneous broadening resulting from strain and/or electric-field variations. The experimental results confirm that the linewidth is decreased in the proposed scheme when compared to the conventional scheme. In addition, we measured the temperature sensitivity to be about 50.4 ± 3.5 mK/ √Hz, and this is approximately eight times better than that of the conventional scheme.

この論文で使われている画像

参考文献

H. An, Z. Yin, C. Mitchell, A. Semnani, A. R. Hajrasouliha, and M. Hosseini,

Meas. Sci. Technol. 32, 015701 (2021).

G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo, H. J. Noh, P. K. Lo, H. Park, and

M. D. Lukin, Nature 500, 54–58 (2013).

H. Yukawa, M. Fujiwara, K. Kobayashi, Y. Kumon, K. Miyaji, Y. Nishimura,

K. Oshimi, Y. Umehara, Y. Teki, T. Iwasaki, M. Hatano, H. Hashimoto, and

Y. Baba, Nanoscale Adv. 2, 1859–1868 (2020).

P. Andrich, J. Li, X. Liu, F. J. Heremans, P. F. Nealey, and D. D. Awschalom,

Nano Lett. 18, 4684–4690 (2018).

Y. Chen, Z. Li, H. Guo, D. Wu, and J. Tang, EPJ Quantum Technol. 8, 1

(2021).

C. Foy, L. Zhang, M. E. Trusheim, M. E. Trusheim, K. R. Bagnall, M. Walsh,

M. Walsh, E. N. Wang, D. R. Englund, and D. R. Englund, ACS Appl. Mater.

Interfaces 12, 26525–26533 (2020).

M. W. Doherty, N. B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, and

L. C. L. Hollenberg, Phys. Rep. 528, 1–45 (2013).

L. Rondin, J. P. Tetienne, T. Hingant, J. F. Roch, P. Maletinsky, and V. Jacques,

Rep. Prog. Phys. 77, 056503 (2014).

V. M. Acosta, E. Bauch, M. P. Ledbetter, A. Waxman, L. S. Bouchard, and

D. Budker, Phys. Rev. Appl. 104, 070801 (2010).

10

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov,

N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer,

F. Jelezko, and J. Wrachtrup, Nat. Mater. 8, 383–387 (2009).

11

H. Morishita, T. Tashima, D. Mima, H. Kato, T. Makino, S. Yamasaki,

M. Fujiwara, and N. Mizuochi, Sci. Rep. 9, 13318 (2019).

12

E. D. Herbschleb, H. Kato, Y. Maruyama, T. Danjo, T. Makino, S. Yamasaki,

I. Ohki, K. Hayashi, H. Morishita, M. Fujiwara, and N. Mizuochi, Nat. Commun.

10, 3766 (2019).

J. Appl. Phys. 133, 024401 (2023); doi: 10.1063/5.0129706

Published under an exclusive license by AIP Publishing

ARTICLE

scitation.org/journal/jap

13

G. Balasubramanian, I. Y. Chan, R. Kolesov, M. Al-Hmoud, J. Tisler,

C. Shin, C. Kim, A. Wojcik, P. R. Hemmer, A. Krueger, T. Hanke,

A. Leitenstorfer, R. Bratschitsch, F. Jelezko, and J. Wrachtrup, Nature 455,

648–651 (2008).

14

J. P. Tetienne, A. Lombard, D. A. Simpson, C. Ritchie, J. Lu, P. Mulvaney, and

L. C. Hollenberg, Nano Lett. 16, 326–333 (2016).

15

K. Chang, A. Eichler, J. Rhensius, L. Lorenzelli, and C. L. Degen, Nano Lett.

17, 2367–2373 (2017).

16

M. Fukami, C. G. Yale, P. Andrich, X. Liu, F. J. Heremans, P. F. Nealey, and

D. D. Awschalom, Phys. Rev. Appl. 12, 014042 (2019).

17

M. Fujiwara and Y. Shikano, Nanotechnology 32, 482002 (2021).

18

G. Q. Liu, X. Feng, N. Wang, Q. Li, and R. B. Liu, Nat. Commun. 10, 1344

(2019).

19

J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer,

A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810–816

(2008).

20

S. Choe, J. Yoon, M. Lee, J. Oh, D. Lee, H. Kang, C. H. Lee, and D. Lee, Curr.

Appl. Phys. 18, 1066–1070 (2018).

21

P. Neumann, I. Jakobi, F. Dolde, C. Burk, R. Reuter, G. Waldherr, J. Honert,

T. Wolf, A. Brunner, J. H. Shim, D. Suter, H. Sumiya, J. Isoya, and J. Wrachtrup,

Nano Lett. 13, 2738–2742 (2013).

22

D. M. Toyli, C. F. De Las Casas, D. J. Christle, V. V. Dobrovitski, and

D. D. Awschalom, Proc. Natl. Acad. Sci. U.S.A. 110, 8417–8421 (2013).

23

J. Wang, F. Feng, J. Zhang, J. Chen, Z. Zheng, L. Guo, W. Zhang, X. Song,

G. Guo, L. Fan, C. Zou, L. Lou, W. Zhu, and G. Wang, Phys. Rev. B 91, 155404

(2015).

24

Y. K. Tzeng, P. C. Tsai, H. Y. Liu, O. Y. Chen, H. Hsu, F. G. Yee, M. S. Chang,

and H. C. Chang, Nano Lett. 15, 3945–3952 (2015).

25

J. Yun, K. Kim, S. Park, and D. Kim, Adv. Quantum Technol. 4, 2100084

(2021).

26

S. Saijo, Y. Matsuzaki, S. Saito, T. Yamaguchi, I. Hanano, H. Watanabe,

N. Mizuochi, and J. Ishi-Hayase, Appl. Phys. Lett. 113, 082405 (2018).

27

T. Yamaguchi, Y. Matsuzaki, S. Saito, S. Saijo, H. Watanabe, N. Mizuochi, and

J. Ishi-Hayase, Jpn. J. Appl. Phys. 58, 100901 (2019).

28

K. Fang, V. M. Acosta, C. Santori, Z. Huang, K. M. Itoh, H. Watanabe,

S. Shikata, and R. G. Beausoleil, Phys. Rev. Lett. 110, 1–5 (2013).

29

X. Zhu, Y. Matsuzaki, R. Amsüss, K. Kakuyanagi, T. Shimo-Oka, N. Mizuochi,

K. Nemoto, K. Semba, W. J. Munro, and S. Saito, Nat. Commun. 5, 3524

(2014).

30

Y. Matsuzaki, H. Morishita, T. Shimooka, T. Tashima, K. Kakuyanagi,

K. Semba, W. J. Munro, H. Yamaguchi, N. Mizuochi, and S. Saito, J. Phys.:

Condens. Matter 28, 275302 (2016).

31

A. Dréau, M. Lesik, L. Rondin, P. Spinicelli, O. Arcizet, J.-F. Roch, and

V. Jacques, Phys. Rev. B 84, 195204 (2011).

32

K. Jensen, V. M. Acosta, A. Jarmola, and D. Budker, Phys. Rev. B 87, 014115

(2013).

33

I. Diniz, S. Portolan, R. Ferreira, J. M. Gérard, P. Bertet, and A. Auffèves, Phys.

Rev. A 84, 063810 (2011).

34

K. Hayashi, Y. Matsuzaki, T. Taniguchi, T. Shimo-Oka, I. Nakamura,

S. Onoda, T. Ohshima, H. Morishita, M. Fujiwara, S. Saito, and N. Mizuochi,

Phys. Rev. Appl. 10, 034009 (2018).

35

A. K. Dmitriev, H. Y. Chen, G. D. Fuchs, and A. K. Vershovskii, Phys. Rev. A

100, 011801 (2019).

36

K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase,

K. M. Itoh, and E. Abe, Rev. Sci. Instrum. 87, 053904 (2016).

37

H. Ishiwata, M. Nakajima, K. Tahara, H. Ozawa, T. Iwasaki, and M. Hatano,

Appl. Phys. Lett. 111, 043103 (2017).

38

T. Fukui, Y. Doi, T. Miyazaki, Y. Miyamoto, H. Kato, T. Matsumoto,

T. Makino, S. Yamasaki, R. Morimoto, N. Tokuda, M. Hatano, Y. Sakagawa,

H. Morishita, T. Tashima, S. Miwa, Y. Suzuki, and N. Mizuochi, Appl. Phys.

Express 7, 055201 (2014).

39

M. Lesik, J. P. Tetienne, A. Tallaire, J. Achard, V. Mille, A. Gicquel, J. F. Roch,

and V. Jacques, Appl. Phys. Lett. 104, 113107 (2014).

133, 024401-7

Journal of

Applied Physics

40

J. Michl, T. Teraji, S. Zaiser, I. Jakobi, G. Waldherr, F. Dolde, P. Neumann,

M. W. Doherty, N. B. Manson, J. Isoya, and J. Wrachtrup, Appl. Phys. Lett. 104,

102407 (2014).

41

H. Zheng, J. Xu, G. Z. Iwata, T. Lenz, J. Michl, B. Yavkin, K. Nakamura,

H. Sumiya, T. Ohshima, J. Isoya, J. Wrachtrup, A. Wickenbrock, and D. Budker,

Phys. Rev. Appl. 11, 064068 (2019).

J. Appl. Phys. 133, 024401 (2023); doi: 10.1063/5.0129706

Published under an exclusive license by AIP Publishing

ARTICLE

42

scitation.org/journal/jap

C. S. Shin, C. E. Avalos, M. C. Butler, H. J. Wang, S. J.

R. B. Liu, A. Pines, and V. S. Bajaj, Phys. Rev. B 88,

(2013).

43

A. M. Wojciechowski, M. Karadas, C. Osterkamp, S. Jankuhn, J.

F. Jelezko, A. Huck, and U. L. Andersen, Appl. Phys. Lett. 113,

(2018).

Seltzer,

161412

Meijer,

013502

133, 024401-8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る