リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Complete genome analyses of G12P[8] rotavirus strains from hospitalized children in Surabaya, Indonesia, 2017–2018」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Complete genome analyses of G12P[8] rotavirus strains from hospitalized children in Surabaya, Indonesia, 2017–2018

Yamani, Laura Navika Utsumi, Takako Doan, Yen Hai Fujii, Yoshiki Dinana, Zayyin Wahyuni, Rury Mega Gunawan, Emily Soegijanto, Soegeng Athiyyah, Alpha Fardah Sudarmo, Subijanto Marto Ranuh, Reza Gunadi Darma, Andy Soetjipto Juniastuti Bawono, Rheza Gandi Matsui, Chieko Deng, Lin Abe, Takayuki Shimizu, Hiroyuki Ishii, Koji Katayama, Kazuhiko Lusida, Maria Inge Shoji, Ikuo 神戸大学

2023.02

概要

Rotavirus A (RVA) is a major viral cause of acute gastroenteritis (AGE) worldwide. G12 RVA strains have emerged globally since 2007. There has been no report of the whole genome sequences of G12 RVAs in Indonesia. We performed the complete genome analysis by the next-generation sequencing of five G12 strains from hospitalized children with AGE in Surabaya from 2017 to 2018. All five G12 strains were Wa-like strains (G12-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1) and were clustered into lineage-III of VP7 gene phylogenetic tree. STM430 sample was observed as a mixed-infection between G12 and G1 strains: G12/G1-P[8]-I1-R1-C1-M1-A1-N1-T1-E1-H1. A phylogenetic tree analysis revealed that all five Indonesian G12 strains (SOEP379, STM371, STM413, STM430, and STM433) were genetically close to each other in all 11 genome segments with 98.0%–100% nucleotide identities, except VP3 and NSP4 of STM430, suggesting that these strains have originated from a similar ancestral G12 RVA. The VP3 and NSP4 genome segments of STM430-G12P[8] were separated phylogenetically from those of the other four G12 strains, probably due to intra-genotype reassortment between the G12 and G1 Wa-like strains. The change from G12P[6] lineage-II in 2007 to G12P[8] lineage-III 2017–2018 suggests the evolution and diversity of G12 RVAs in Indonesia over the past approximately 10 years.

この論文で使われている画像

参考文献

423

424

425

426

427

428

1.

429

430

3.

Global Introduction Status. https://preventrotavirus.org/vaccine-introduction/globalintroduction-status/, 2020.

431

432

433

434

4.

Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine

against severe rotavirus gastroenteritis in infants in developing countries in subSaharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet.

2010;376(9741):606-614.

435

436

5.

Madhi SA, Cunliffe NA, Steele D, et al. Effect of human rotavirus vaccine on severe

diarrhea in African infants. N Engl J Med. 2010;362(4):289-298.

437

438

439

440

6.

Tate JE, Burton AH, Boschi-Pinto C, Parashar UD, World Health OrganizationCoordinated Global Rotavirus Surveillance N. Global, Regional, and National

Estimates of Rotavirus Mortality in Children <5 Years of Age, 2000-2013. Clin Infect

Dis. 2016;62 Suppl 2:S96-S105.

441

442

443

7.

Burnett E, Jonesteller CL, Tate JE, Yen C, Parashar UD. Global Impact of Rotavirus

Vaccination on Childhood Hospitalizations and Mortality From Diarrhea. J Infect Dis.

2017;215(11):1666-1672.

444

445

8.

Tate JE, Parashar UD. Rotavirus vaccines in routine use. Clin Infect Dis.

2014;59(9):1291-1301.

446

447

448

9.

Burnett E, Tate JE, Kirkwood CD, et al. Estimated impact of rotavirus vaccine on

hospitalizations and deaths from rotavirus diarrhea among children <5 in Asia. Expert

Rev Vaccines. 2018;17(5):453-460.

449

450

451

10.

Nirwati H, Wibawa T, Aman AT, Wahab A, Soenarto Y. Detection of group A

rotavirus strains circulating among children with acute diarrhea in Indonesia.

Springerplus. 2016;5:97.

452

453

454

11.

Soenarto Y, Sebodo T, Ridho R, et al. Acute diarrhea and rotavirus infection in

newborn babies and children in Yogyakarta, Indonesia, from June 1978 to June 1979.

J Clin Microbiol. 1981;14(2):123-129.

455

456

457

12.

At Thobari J, Sutarman, Mulyadi AWE, et al. Direct and indirect costs of acute

diarrhea in children under five years of age in Indonesia: Health facilities and

community survey. Lancet Reg Health West Pac. 2022;19:100333.

2.

Crawford SE, Ramani S, Tate JE, et al. Rotavirus infection. Nat Rev Dis Primers.

2017;3:17083.

Zhang SX, Zhou YM, Tian LG, et al. Antibiotic resistance and molecular

characterization of diarrheagenic Escherichia coli and non-typhoidal Salmonella

strains isolated from infections in Southwest China. Infect Dis Poverty. 2018;7(1):53.

21

458

459

13.

Hu L, Crawford SE, Hyser JM, Estes MK, Prasad BV. Rotavirus non-structural

proteins: structure and function. Curr Opin Virol. 2012;2(4):380-388.

460

461

14.

Dennehy PH. Rotavirus vaccines: an overview. Clin Microbiol Rev. 2008;21(1):198208.

462

463

464

15.

Ursu K, Kisfali P, Rigo D, et al. Molecular analysis of the VP7 gene of pheasant

rotaviruses identifies a new genotype, designated G23. Arch Virol.

2009;154(8):1365-1369.

465

466

16.

Rahman M, Matthijnssens J, Yang X, et al. Evolutionary history and global spread of

the emerging g12 human rotaviruses. J Virol. 2007;81(5):2382-2390.

467

468

17.

Matthijnssens J, Bilcke J, Ciarlet M, et al. Rotavirus disease and vaccination: impact

on genotype diversity. Future Microbiol. 2009;4(10):1303-1316.

469

470

471

472

18.

Oluwatoyin Japhet M, Adeyemi Adesina O, Famurewa O, Svensson L, Nordgren J.

Molecular epidemiology of rotavirus and norovirus in Ile-Ife, Nigeria: high

prevalence of G12P[8] rotavirus strains and detection of a rare norovirus genotype. J

Med Virol. 2012;84(9):1489-1496.

473

474

475

476

19.

Japhet MO, Famurewa O, Iturriza-Gomara M, et al. Group A rotaviruses circulating

prior to a national immunization programme in Nigeria: Clinical manifestations, high

G12P[8] frequency, intra-genotypic divergence of VP4 and VP7. J Med Virol.

2018;90(2):239-249.

477

478

479

20.

Wulan WN, Listiyaningsih E, Samsi KM, Agtini MD, Kasper MR, Putnam SD.

Identification of a rotavirus G12 strain, Indonesia. Emerg Infect Dis. 2010;16(1):159161.

480

481

482

21.

McDonald SM, Matthijnssens J, McAllen JK, et al. Evolutionary dynamics of human

rotaviruses: balancing reassortment with preferred genome constellations. PLoS

Pathog. 2009;5(10):e1000634.

483

484

485

486

22.

Athiyyah AF, Utsumi T, Wahyuni RM, et al. Molecular Epidemiology and Clinical

Features of Rotavirus Infection Among Pediatric Patients in East Java, Indonesia

During 2015-2018: Dynamic Changes in Rotavirus Genotypes From Equine-Like G3

to Typical Human G1/G3. Front Microbiol. 2019;10:940.

487

488

489

23.

Fujii Y, Doan YH, Wahyuni RM, et al. Improvement of Rotavirus Genotyping

Method by Using the Semi-Nested Multiplex-PCR With New Primer Set. Front

Microbiol. 2019;10:647.

490

491

492

24.

Utsumi T, Wahyuni RM, Doan YH, et al. Equine-like G3 rotavirus strains as

predominant strains among children in Indonesia in 2015-2016. Infect Genet Evol.

2018;61:224-228.

493

494

495

25.

Doan YH, Haga K, Fujimoto A, et al. Genetic analysis of human rotavirus C: The

appearance of Indian-Bangladeshi strain in Far East Asian countries. Infect Genet

Evol. 2016;41:160-173.

22

496

497

26.

Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Res. 2004;32(5):1792-1797.

498

499

500

27.

Kimura M. A simple method for estimating evolutionary rates of base substitutions

through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111120.

501

502

503

28.

Doan YH, Nakagomi T, Agbemabiese CA, Nakagomi O. Changes in the distribution

of lineage constellations of G2P[4] Rotavirus A strains detected in Japan over 32

years (1980-2011). Infect Genet Evol. 2015;34:423-433.

504

505

506

29.

Mulyani NS, Prasetyo D, Karyana IPG, et al. Diarrhea among hospitalized children

under five: A call for inclusion of rotavirus vaccine to the national immunization

program in Indonesia. Vaccine. 2018;36(51):7826-7831.

507

508

509

30.

Parwata WSS, Sukardi W, Wahab A, Soenarto Y. Prevalence and clinical

characteristics of rotavirus diarrhea in Mataram, Lombok, Indonesia. Paediatrica

Indonesiana. 2016;56.

510

511

512

31.

Ogden KM, Tan Y, Akopov A, et al. Multiple Introductions and Antigenic Mismatch

with Vaccines May Contribute to Increased Predominance of G12P[8] Rotaviruses in

the United States. J Virol. 2019;93(1).

513

514

515

32.

Roczo-Farkas S, Kirkwood CD, Cowley D, et al. The Impact of Rotavirus Vaccines

on Genotype Diversity: A Comprehensive Analysis of 2 Decades of Australian

Surveillance Data. J Infect Dis. 2018;218(4):546-554.

516

517

518

33.

Roczo-Farkas S, Kirkwood CD, Bines JE, and the Australian Rotavirus Surveillance

G. Australian Rotavirus Surveillance Program annual report, 2015. Commun Dis

Intell Q Rep. 2016;40(4):E527-E538.

519

520

521

34.

Zeller M, Rahman M, Heylen E, et al. Rotavirus incidence and genotype distribution

before and after national rotavirus vaccine introduction in Belgium. Vaccine.

2010;28(47):7507-7513.

522

523

35.

Sadiq A, Bostan N, Jadoon K, Aziz A. Effect of rotavirus genetic diversity on vaccine

impact. Rev Med Virol. 2022;32(1):e2259.

524

525

526

36.

Doro R, Laszlo B, Martella V, et al. Review of global rotavirus strain prevalence data

from six years post vaccine licensure surveillance: is there evidence of strain selection

from vaccine pressure? Infect Genet Evol. 2014;28:446-461.

527

528

37.

Jain S, Vashistt J, Changotra H. Rotaviruses: is their surveillance needed? Vaccine.

2014;32(27):3367-3378.

529

530

38.

Jenkins GM, Rambaut A, Pybus OG, Holmes EC. Rates of molecular evolution in

RNA viruses: a quantitative phylogenetic analysis. J Mol Evol. 2002;54(2):156-165.

23

531

532

533

39.

Motayo BO, Oluwasemowo OO, Olusola BA, Opayele AV, Faneye AO.

Phylogeography and evolutionary analysis of African Rotavirus a genotype G12

reveals district genetic diversification within lineage III. Heliyon. 2019;5(10):e02680.

534

535

40.

Patton JT. Rotavirus diversity and evolution in the post-vaccine world. Discov Med.

2012;13(68):85-97.

536

537

538

539

41.

Bwogi J, Jere KC, Karamagi C, et al. Whole genome analysis of selected human and

animal rotaviruses identified in Uganda from 2012 to 2014 reveals complex genome

reassortment events between human, bovine, caprine and porcine strains. PLoS One.

2017;12(6):e0178855.

540

541

542

42.

Markkula J, Hemming-Harlo M, Salminen MT, et al. Rotavirus epidemiology 5-6

years after universal rotavirus vaccination: persistent rotavirus activity in older

children and elderly. Infect Dis (Lond). 2017;49(5):388-395.

543

544

545

43.

Delogu R, Ianiro G, Camilloni B, Fiore L, Ruggeri FM. Unexpected spreading of

G12P[8] rotavirus strains among young children in a small area of central Italy. J Med

Virol. 2015;87(8):1292-1302.

546

547

44.

Urasawa S, Urasawa T, Wakasugi F, et al. Presumptive seventh serotype of human

rotavirus. Arch Virol. 1990;113(3-4):279-282.

548

549

45.

Pongsuwanna Y, Guntapong R, Chiwakul M, et al. Detection of a human rotavirus

with G12 and P[9] specificity in Thailand. J Clin Microbiol. 2002;40(4):1390-1394.

550

551

552

46.

Trojnar E, Sachsenroder J, Twardziok S, Reetz J, Otto PH, Johne R. Identification of

an avian group A rotavirus containing a novel VP4 gene with a close relationship to

those of mammalian rotaviruses. J Gen Virol. 2013;94(Pt 1):136-142.

553

554

555

47.

Samajdar S, Varghese V, Barman P, et al. Changing pattern of human group A

rotaviruses: emergence of G12 as an important pathogen among children in eastern

India. J Clin Virol. 2006;36(3):183-188.

556

557

558

48.

Shinozaki K, Okada M, Nagashima S, Kaiho I, Taniguchi K. Characterization of

human rotavirus strains with G12 and P[9] detected in Japan. J Med Virol.

2004;73(4):612-616.

559

560

49.

Le VP, Kim JY, Cho SL, et al. Detection of unusual rotavirus genotypes G8P[8] and

G12P[6] in South Korea. J Med Virol. 2008;80(1):175-182.

561

562

563

50.

Tra My PV, Rabaa MA, Vinh H, et al. The emergence of rotavirus G12 and the

prevalence of enteric viruses in hospitalized pediatric diarrheal patients in southern

Vietnam. Am J Trop Med Hyg. 2011;85(4):768-775.

564

24

565

Figure Legends

566

Fig. 1. Phylogenetic tree analysis of VP7 genes for G12 RVA strains detected in five

567

samples collected in Surabaya, Indonesia. Black inverted triangles and Bullets: The RVA

568

strains sequenced in this study. The reference strains obtained from the GenBank database

569

are represented by the accession number, strain name, country, and year of isolation. Scale

570

bar: 0.050 substitutions per nucleotide.

571

572

Fig. 2. Phylogenetic tree analysis of VP4 genes detected in five samples collected in

573

Surabaya, Indonesia. Black inverted triangles and Bullets: The G12 and G1 RVA strains

574

sequenced in this study, respectively. The reference strains obtained from the GenBank

575

database are represented by the accession number, strain name, country, and year of isolation.

576

Scale bar: 0.020 substitutions per nucleotide.

577

578

Fig. 3. The VP7 genotyping of STM430.

579

To confirm the mixed infection for STM430 sample, the RNA was re-extracted from original

580

clinical sample. RVA genotyping using the semi-nested multiplex PCR were performed for

581

both 1st and 2nd extracted RNA of STM430 together with other G1 (STM387) and G12

582

(STM413) samples. The size of PCR products was determined by D1000 ScreenTape assay

583

on 4150 TapeStation (Agilent Technologies).

584

25

Table 1. RVA genotype constellations of five human G12 RVA study strains compared to the published human G12 RVA strains

G12 strain

Year

Genogroup

VP7

(Lineage)

VP4

VP6

VP1

VP2

VP3

NSP1

NSP2

NSP3

NSP4

NSP5

L26

1987

DS-1-like

G12 (I)

P[4]

I2

R2

C2

M1/M2

A2

N1

T2

E2

H1

T152

1998

AU-1-like

G12 (II)

P[9]

I3

R3

C3

M3

A12

N3

T3

E3

H6

RV161-00

2000–2002

DS-1-like

G12 (III)

P[6]

I2

R2

C2

M2

A2

N2

T2

E1

H2

RV176-00

2000–2002

DS-1-like

G12 (III)

P[6]

I2

R2

C2

M2

A2

N2

T2

E6

H2

N26-02

2000–2002

DS-1-like

G12 (III)

P[6]

I2

R2

C2

M2

A2

N1

T2

E6

H2

Dhaka25-02

2002–2005

Wa-like

G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

Dhaka12-03

2002–2005

Wa-like

G12 (III)

P[6]

I1

R1

C1

M1

A1

N1

T1

E1

H1

Matlab13-03

2002–2005

Wa-like

G12 (III)

P[6]

I1

R1

C1

M1

A1

N1

T2

E1

H1

SOEP379-18

2017–2018

Wa-like

G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

STM371-17

2017–2018

Wa-like

G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

STM413-17

2017–2018

Wa-like

G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

STM433-17

2017–2018

Wa-like

G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

STM430-17

2017–2018

Wa-like

G1/G12 (III)

P[8]

I1

R1

C1

M1

A1

N1

T1

E1

H1

Reference

Previous

study16

Present

study

The Wa-, DS-1-, and AU-1-like genogroups were assigned to human strains if at least seven gene segments belonged to the Wa-, DS-1, and AU-1-like

genotype, respectively. Colors were added to visualize patterns or gene constellations. Green: Wa-like, red: DS-1-like, and yellow: AU-like gene segments.

Gray: Subtype 4A, and blue: RVA gene from animals.

*Green is Wa-like strain. *Red is DS-1-like strain. *Yellow is AU-1-like strain. *Gray is an ST3-like strain. *Blue is a RVA gene from an animal.

Table 2. Nucleotide sequence identity between G12 RVA genes obtained from Illumina MiSeq sequencing and the closest strains isolated from

references based on NCBI homology BLAST

Gene

VP7

Accession

no.

Genotype

Samples

LC581270

LC581271

LC581272

LC581273

LC581274

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

LC581275

G1P[8]

STM430

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

LC721862

LC581261

LC581262

LC581263

LC721864

Closest strain of NCBI

homology

(% nt identity)

99.14%

99.24%

RVA/Human99.22% wt/USA/20137741

99.24%

66/2013/G12P[8]

99.24%

RVA/Human99.81%

wt/IDN/STM457/2

018/G1P[8]

99.22%

99.08%

RVA/Human99.35%

wt/BGD/Bang99.26%

065/2008/G9P[8]

99.26%

VP4

NSP1

Accession

no.

Genotype

Samples

LC721867

LC581221

LC581222

LC581223

LC581224

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

LC722500

G1P[8]

STM430

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

LC721868

LC581226

LC581227

LC581228

LC581229

Closest strain of NCBI

homology

(% nt identity)

99.45%

99.38%

Hungary human

99.52%

strain ERN5009

99.59%

isolated 2012

99.52%

RVA/Human99.60% wt/IDN/STM457/201

8/G1P[8]

98.80%

98.84%

RVA/Human98.88% wt/USA/2013774165

98.94%

/2013/G12P[8]

98.94%

NSP2

G1P[8]

STM430

100%

RVA/Humanwt/IDN/STM387/201

7/G1P8 and

RVA/Humanwt/IDN/STM453/201

7/G1P[8]

LC721869

LC581231

LC581232

LC581233

LC581234

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

98.93%

98.77%

99.28%

98.88%

98.71%

RVA/Humanwt/THA/DBM2018111/2018/G9P[8]

LC722502

G1P[8]

STM430

99.91%

RVA/Humanwt/IDN/STM457/201

7/G1P[8]

RVA/Humanwt/IDN/STM457/2

017/G3P[8]

LC722501

99.76%

99.76%

99.76%

99.76%

99.82%

RVA/human/SVK/

2451/I1

99.77%

MN304727.1

RVA/Humanwt/NGR/2017

G1P[8]

STM430

99.83%

LC721863

LC581266

LC581267

LC581268

LC581269

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

LC722499

G1P[8]

STM430

LC722498

VP6

Gene

NSP3

VP1

VP2

LC721864

LC581246

LC581247

LC581248

LC581249

STM430

SOEP379

STM371

STM413

STM433

99.25%

99.26%

99.33%

99.23%

99.26%

G12P[8]

LC722495

G1P[8]

STM430

99.88%

LC721865

LC581251

LC581252

LC581253

LC581254

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

99.10%

99.19%

99.44%

99.40%

99.33%

LC722496

G1P[8]

STM430

99.89%

STM430

(like G1)

99.81%

SOEP379

STM371

STM431

STM433

98.44%

98.33%

98.48%

98.48%

STM430

(like G12)

97.59%

LC721866

VP3

LC581256

LC581257

LC581258

LC581259

G12P[8]

LC722497

G1P[8]

LC721870

RVA/Humanwt/USA/VU12-1339/2013/G12P[8]

NSP4

RVA/Humanwt/IDN/STM453/2

018/G1P[8]

RVA/Humanwt/BGD/Bang015/2008/G12P[6]

RVA/Humanwt/IDN/STM453/2

018/G1P8

RVA/Humanwt/IDN/STM387/2

018/G1P[8]

RVA/Humanwt/USA/VU08-096/2008/G12P[8]

RVA/Humanwt/USA/VU08-096/2008/G12P[8]

STM430

(like G1)

99.86%

RVA/Humanwt/IDN/STM457/201

8/G1P[8]

SOEP379

STM371

STM413

STM433

99.46%

99.47%

99.31%

99.18%

RVA/Cowwt/UGA/BUW-14A035/2014/G12P[8]

LC581236

LC581237

LC581238

LC581239

G12P[8]

LC722503

G1P[8]

STM430

(like G12)

99.44%

LC722504

LC581241

LC581242

LC581243

LC581244

G12P[8]

STM430

SOEP379

STM371

STM413

STM433

99.39%

99.54%

99.52%

99.38%

99.54%

RVA/Humantc/USA/DC5685-40AG/1991/G1P[8]

LC721871

G1P[8]

STM430

100%

RVA/Humanwt/IDN/STM457/201

8/G1P[8]

RVA/Cowwt/UGA/BUW-14A035/2014/G12P8

NSP5

VP7

VP7_G12

100

VP7_G1

VP7_G3

0.050

100

RVA/Human/IDN/STM413/2017-2018/G12P[8][LC581273]

RVA/Human/IDN/STM371/2017-2018/G12P[8][LC581272]

83

RVA/Human//IDN/STM433/2017-2018/G12P[8][LC591274]

99

RVA/Human/IDN/STM430/2017-2018/G12P[8][LC581270]

RVA/Human/IDN/SOEP379/2017-2018/G12P[8][581271]

95

RVA/Human-wt/USA/2013774166/2013/G12P[8][KM116056]

RVA/Human-wt/USA/VU12-13-146/2013[KT919276]

95

RVA/Human-wt/USA/VU12-13-31/2013/G12P[8][KT919497]

76

96 RVA/Cow-wt/UGA/BUW-14-A035/2014/G12P[8][KX655533]

Human rotavirus A strain GER172-08 VP7[FJ747630]

RVA/Human-wt/BGD/SK327/2006/G12P[6][EU839944]

RVA/Human-wt/IND/ISO121/2005/G12P[x][EU016452]

75

RVA/Human-tc/MWI/MAL12/2007/G12P[6][JN591403]

RVA/Human-tc/MWI/MAL40/2007/G12P[6][AB938241]

RVA/Human-wt/SouthAFR/SA4727DGM04/G12P[6][EU284738]

RVA/Human-wt/IND/mani-74/2006/G12P[6][GQ229055]

RVA/Human-wt/BGD/Dhaka12/2003/G12P[6][DQ146665]

97

RVA/Human/BGD/Matlab13/2003/G12P[6][DQ146676]

RVA/Human-wt/SouthAFR/SA3332JHB04/G12P[6][EU284724]

RVA/Human-wt/UGA/MRC-DPRU3713/2010/G12P[6][KJ751872]

RVA/Human-wt/UGA/MUL-13-183/2013/G12P[6][KX632270]

77

RVA/Human-wt/ZMB/MRC-DPRU3491/2009/G12P[6][KF636151]

94

RVA/Human-wt/SRK/KUH407/2006/G12P[8][AB530274]

RVA/Human-wt/BR/RV98660/PA/2008/G12P[6][GU250829]

80 RVA/Human-wt/BGD/RV176/2000/G12P[6][DQ490556]

100 75 RVA/Human-wt/BGD/RV161/2000/G12P[6][DQ490550]

RVA/Human-wt/BGD/N26/2002/G12P[6][DQ145587]

RVA/Human-wt/BGD/Dhaka25/2002/G12P[8][DQ146654]

RVA/Human-wt/NPL/05NO65/2005/G12[AB275297]

RVA/Human-wt/SRK/05SLC033/2005/G12[AB306271]

RVA/Human-wt/THA/T152/1998/G12[AB071404]

91

78

RVA/Human-wt/JPN/K12/G12[AB186120]

RVA/Human-wt/ARG/Arg721-2A/2003/G12[EU496255]

RVA/Human-wt/JPN/CP1030/2003/G12[AB125853]

99

RVA/Human-wt/PRY/Py1135ASR07/2007/G12[FJ941102]

99 RVA/Human-wt/PRY/1135A/2007/G12P[9][KJ412846]

Human rotavirus A strain L26 neutralizing protein VP7[M58290]

100 RVA/Human-tc/PHL/L26/1987/G12P[4][EF672595]

RVA/Pig-wt/IND/RU172/2002/G12P[7][DQ204743]

RVA/Human/IDN/STM430/2017-2018/G1P[8][LC581275]

100

RVA/Human-wt/IDN/STM457/2018/G1P[8][LC434538]

RVA/Human-wt/IND/RV1326/2013/G1[KX638552]

RVA/Human-wt/IND/CMC/00033/2012/G1P[8][MN067085]

RVA/Human-tc/USA/Wa-20-AG/1974/G1P[8][KU861395]

RVA/Human-wt/AUS/D388/2013/G3P[8][KU059771]

Lineage III

Lineage II

Lineage I

Lineage IV

Fig. 1.

VP4

72

89

0.020

RVA/Human//IDN/STM433/2017-2018/G12P[8][LC721864]

RVA/Human/IDN/STM430/2017-2018/G12P[8][LC721862]

RVA/Human/IDN/STM413/2017-2018/G12P[8][LC581263]

98

RVA/Human/IDN/SOEP379/2017-2018/G12P[8][LC581261]

88

RVA/Human/IDN/STM371/2017-2018/G12P[8][LC581262]

95 RVA/Human-wt/BGD/Bang-065/2008/G9P[8][KP882000]

93 RVA/Human-wt/CAN/RT060-09/2009/G9P[8][JQ069696]

RVA/Human-wt/BGD/DH396/2004/G9P[8][EU839959]

74

RVA/Human-wt/USA/CNMC15/2011/G12P[8][KT920863]

RVA/Human-wt/BGD/Dhaka25/2002/G12P[8][DQ146652]

RVA/Human-wt/JPN/UR14-24/2014/G1P[8][LC105501]

RVA/Human-wt/USA/3000390639/2015/G3P[8][MF997038]

90

97 RVA/Human-wt/JPN/S140023/2014/G3P[8][AB930192]

RVA/Human-wt/Vanderbilt/USA/VU05-06-74/2005/G12P[8][JF790309]

88

RVA/Human-wt/Vanderbilt/USA/VU05-06-72/2005/G12P[8][JF790298]

RVA/Human-wt/IDN/STM457/2018/G3P[8][LC430884]

98

RVA/Human/IDN/STM430/2017-2018/G1P[8][LC722498]

RVA/Human-wt/IDN/STM453/2018/G3P[8][LC430883]

97 RVA/Human-wt/JPN/Tokyo17-21/2017/G3P[8](Wa)[LC477393]

RVA/Human-wt/IND/CMC/00048/2013/G9P[8][MN066757]

RVA/Human-wt/DOM/3000503708/2015/G1P[8][MG652340]

RVAHuman-wt/USA/VU12-13-30/2013/G2P[4][MF168166]

RVA/Human-tc/USA/Wa/1974/G1P[8][JX406750]

99 RVA/Human-wt/JPN/MU14-16/2014/G2P[4][LC105164]

95

RVA/Human-wt/USA/VU12-13-30/2013/G2P[4][MF168166]

RVA/Human-wt/BEL/BE35/2007/G2P[4][KR705281]

98

RVA/Human-wt/PAK/3085/2010/G2P[4][KY497532]

RVA/Human-wt/JPN/K-3-16/2016/G2P[4][LC228351]

97

Human rotavirus A strain L26 outer capsid protein VP4[EF672591]

RVA/Human-tc/USA/DS-1/1976/G2P[4][HQ650119]

RVA/Human-wt/BGD/RV161/2000/G12P[6][DQ490548]

RVA/Human-wt/BGD/RV176/2000/G12P[6][DQ490554]

81 RVA/Human-wt/BGD/MMC29/2005/G12P[6][EU839947]

RVA/Human/BGD/Matlab13/2003/G12P[6][DQ146674]

RVA/Human-wt/BGD/Dhaka12/2003/G12P[6][DQ146663]

96

RVA/Human-wt/BGD/N26/2002/G12P[6][DQ146685]

RVA/Human-wt/SouthKOR/CAU/214/G12[EF059921]

99

RVA/Human-wt/UGA/MUL-12-117/2012/G3P[6][KX655476]

96 RVA/Human-wt/THA/T152/1998/G12[AB077766]

RVA/Human-wt/BRA/PE15776/2008/G12P[9][KF907295]

100

RVA/Human/AU-1/1994/VP4[D10970]

P[8] [Wa-like]

P[4] [DS-1-like]

P[6] [ST3-like]

P[9] [AU-1-like]

Fig.2.

D1000

Ladder

Positive control

G1

G12

STM

430

(1st)

STM

430

(2nd)

STM

387

(G1)

STM

413

(G12)

Neg

control

636 bp (G1)

264 bp (G12)

Fig. 3.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る