リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Thermodynamic Study of Acylglycerols Solidification for Predicting Cold Flow Properties of Biodiesel」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Thermodynamic Study of Acylglycerols Solidification for Predicting Cold Flow Properties of Biodiesel

LATIFA, SENIORITA 京都大学 DOI:10.14989/doctor.k23535

2021.09.24

概要

本論文は、バイオディーゼル中でのアシルグリセロールの凝固挙動の解明と予測について研究した結果をまとめたものであり、7章からなっている。
第1章は序論であり、バイオディーゼルの主成分である脂肪酸メチルエステル(FAME)や不純物のモノ、ジ、及びトリアシルグリセロール(それぞれ MAG、DAG、 TAG)の物理的、化学的特性を説明しつつ、バイオディーゼルの低温流動性及びその予測方法に関し、既往の研究や課題をまとめ、研究の目的及び意義を述べている。

第2章では、バイオディーゼル中での MAG、DAG 及び TAG の凝固挙動を明らかにするため、アシルグリセロール/FAME の二成分系を検討した。混合物の液相線温度(それ以下で固体が析出する温度)は示差走査熱量分析(DSC)により測定した。その結果、MAG、DAG 及び TAG はいずれも FAME 中に僅かに加えるだけで混合物の液相線温度を著しく上昇させ、FAME 中で凝固しやすい傾向があった。この液相線温度の変化は、異なる成分が固溶体を作らずそれぞれ純物質として凝固すると仮定した非固溶モデルの計算結果とよく一致した。また、UNIFAC(Dortmund)法により推算した活量係数を用いて液相線温度を再現できることを示した。その計算によると、MAG は 2 つの水酸基に起因して高い活量係数(>>1)を持つため、FAME に対する親和性が低く、 FAME 中で凝固しやすい傾向があることがわかった。一方、TAG は活量係数が低い(≒1)にもかかわらず MAG と同様に凝固しやすかったが、これは TAG が大きな融解エントロピーを持つことに由来した。さらに、DAG が凝固しやすかった理由は MAG と TAG の中間的な性質、すなわち、やや高い活量係数と大きな融解エントロピーが合わさった結果であることが示された。

第3章では、異なる種類の MAG 間の相互作用を明らかにするため、様々な MAG/ MAG 二成分系を検討した。その結果、液相線は上に凸の曲線を複数持つ雑な形状を示すことが判明した。この雑な液相線は非固溶モデルでは説明できず、2 種類の MAG が化合物を形成して凝固すると仮定した化合物形成モデルに従うことがわかった。このことから、バイオディーゼル中では 1 種類の MAG が単独で凝固するのではなく、数種の MAG が化合物を形成して凝固することが示唆された。なお、化合物形成モデルには実験データから決定されるパラメータが含まれており、その値は MAG の組み合わせや組成によって変化した。この意味において化合物形成モデルは半実験式である。実際のバイオディーゼルは数種の MAG を含むため、その液相線温度を非固溶モデルのように成分の熱力学物性(融点や融解エンタルピー)と組成の情報のみから予測することは難しいことが示唆された。

このように MAG/MAG 二成分系で化合物形成挙動が観察されたことから、第4章で は、他のアシルグリセロールの組み合わせも検討した。TAG/TAG 二成分系は広く研究 されており、特定の例外を除いて化合物形成挙動は見られず、液相線は非固溶モデル に従うことが示されている。本研究で DAG/DAG 二成分系を検討したところ、同様に非 固溶モデルに従うことが判明した。さらに、異種のアシルグリセロールの組み合わせ MAG/DAG、MAG/TAG 及び DAG/TAG においても液相線の実測値は非固溶モデルの 計算結果とよく一致した。すなわち、アシルグリセロール混合物では、一般に各成分が 化合物を形成せず単独で凝固する傾向があり、MAG/MAG のみが化合物形成挙動を 示すことが判明した。MAG はバイオディーゼル製造における最終反応中間体のため、 一般に DAG や TA G よりも含有量が多く、融点も高い。そのため、液相線温度に最も大 きな影響を与えると考えられる。さらに、本章において MAG は DAG や TA G とは化合 物を形成しないことも判明したため、実際のバイオディーゼルの液相線温度の予測に は、MAG の凝固挙動を化合物形成モデルで評価すれば十分であることが示唆された。

このことを検証するため、第5章ではヤシ油、パーム油及び菜種油から MAG 含有量 の異なるバイオディーゼルを調製して凝固挙動を検討した。その結果、ヤシ油バイオ ディーゼルでは MAG 含有量が約 0.25wt%以下、パーム油及び菜種油バイオディーゼ ルでは約 0.5wt%以下の場合、MAG よりも先に FA M E の凝固が起こることが示された。 一方、MAG 含有量がこれらの値よりも大きい場合は MAG が先に凝固し、このときの 液相線は化合物形成モデルとよく適合した。さらに、現実のバイオディーゼルの MAG 含有量(およそ 0.8wt%以下)の範囲に限り、実験パラメータが 1 つになるように単純化 した化合物形成モデルが提案され、油脂原料が判明しているバイオディーゼルの液相 線温度を MAG 含有率を基に精度よく予測できることが示された。

第6章では、軽油との混合燃料を想定し、軽油成分(アルカン及び芳香族炭化水素) 中でのバイオディーゼル成分(FA M E 及び MAG)の凝固挙動を検討した。その結果、 FA M E / アルカン及び FA M E / 芳香族分の 二成分系は非固溶モデルで説明できた。一 方、MAG/アルカン及び MAG/芳香族分の二成分系は化合物形成の兆候が無いにも関 わらず非固溶モデルにも従わなかった。その理由として、これらの軽油成分中では活量 係数の推算方法に課題があることが示され、MAG の水酸基による分子内または分子 間水素結合の影響の可能性が示唆された。

第7章(結論)では、本研究で得られた成果についてまとめている。

この論文で使われている画像

参考文献

Abrams, D. S., & Prausnitz, J. M. (1975). Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems. AIChE Journal, 21(1), 116–128. https://doi.org/10.1002/aic.690210115

Al-Shanableh, F., Evcil, A., & Savaş, M. A. (2016). Prediction of Cold Flow Properties of Biodiesel Fuel Using Artificial Neural Network. Procedia Computer Science, 102(August), 273–280. https://doi.org/10.1016/j.procs.2016.09.401

Baker, M., Bouzidi, L., & Narine, S. S. (2015). Mitigating crystallization of saturated FAMEs (fatty acid methyl esters) in biodiesel: 2 The phase behavior of 2-stearoyl diolein-methyl stearate binary system. Energy, 83, 647–657. https://doi.org/10.1016/j.energy.2015.02.076

Balabin, R. M., & Safieva, R. Z. (2011). Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum. Energy and Fuels, 25(5), 2373–2382. https://doi.org/10.1021/ef200356h

Baptista, P., Felizardo, P., Menezes, J. C., & Neiva Correia, M. J. (2008). Multivariate near infrared spectroscopy models for predicting the iodine value, CFPP, kinematic viscosity at 40 °C and density at 15 °C of biodiesel. Talanta, 77(1), 144–151. https://doi.org/10.1016/j.talanta.2008.06.001

Benziane, M., Khimeche, K., Dahmani, A., Nezar, S., & Trache, D. (2013). Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of heavy alkanes and fatty acids methyl esters. Journal of Thermal Analysis and Calorimetry, 112(1), 229–235. https://doi.org/10.1007/s10973-012-2654-2

Benziane, M., Khimeche, K., Trache, D., & Dahmani, A. (2013). Experimental determination and prediction of (solid + liquid) phase equilibria for binary mixtures of aromatic and fatty acids methyl esters. Journal of Thermal Analysis and Calorimetry, 114(3), 1383–1389. https://doi.org/10.1007/s10973-013-3147-7

Branco, N. F. M., Lobo Ferreira, A. I. M. C., Ribeiro, J. C., Santos, L. M. N. B. F., & Coutinho, J. A. P. (2020). Understanding the thermal behaviour of blends of biodiesel and diesel: Phase behaviour of binary mixtures of alkanes and FAMEs. Fuel, 262(October 2019), 116488. https://doi.org/10.1016/j.fuel.2019.116488

Chabane, S., Benziane, M., Khimeche, K., Trache, D., Didaoui, S., & Yagoubi, N. (2018). Low-temperature behavior of diesel/biodiesel blends: Solid–liquid phase diagrams of binary mixtures composed of fatty acid ethyl esters and alkanes. Journal of Thermal Analysis and Calorimetry, 131(2), 1615–1624. https://doi.org/10.1007/s10973-017-6614-8

Chen, C. H., Van Damme, I., & Terentjev, E. M. (2009). Phase behavior of C18 monoglyceride in hydrophobic solutions. Soft Matter, 5(2), 432–439. https://doi.org/10.1039/b813216j

Chupka, G. M., Fouts, L., Lennon, J. A., Alleman, T. L., Daniels, D. A., & McCormick, R. L. (2014). Saturated monoglyceride effects on low-temperature performance of biodiesel blends. Fuel Processing Technology, 118, 302–309. https://doi.org/10.1016/j.fuproc.2013.10.002

Chupka, G. M., Fouts, L., & McCormick, R. L. (2012). Effect of low-level impurities on low-temperature performance properties of biodiesel. Energy and Environmental Science, 5(9), 8734–8742. https://doi.org/10.1039/c2ee22565d

Chupka, G. M., Yanowitz, J., Chiu, G., Alleman, T. L., & McCormick, R. L. (2011). Effect of saturated monoglyceride polymorphism on low-temperature performance of biodiesel. Energy Fuels, 25, 398–405. https://doi.org/10.1016/j.fuproc.2013.10.002

Committee for Standardization Automotive Fuels. (2008). Fatty acid methyl esters (FAME) for biodiesel engines - Requirements and test methods (EN14214). European Committee for Standardization CEN.

Committee for Standardization Automotive Fuels. (2012). Automotive fuels - Fatty acid methyl esters (FAME) for biodiesel engines - Requirements and test methods (EN14214). European Standard.

Correa, D. F., Beyer, H. L., Fargione, J. E., Hill, J. D., Possingham, H. P., Thomas-Hall, S. R., & Schenk, P. M. (2019). Towards the implementation of sustainable biofuel production systems. Renewable and Sustainable Energy Reviews, 107(February), 250–263. https://doi.org/10.1016/j.rser.2019.03.005

Craven, R. J., & Lencki, R. W. (2011a). Binary phase behavior of diacid 1,3- diacylglycerols. Journal of the American Oil Chemists’ Society, 88(8), 1125–1134. https://doi.org/10.1007/s11746-011-1777-0

Craven, R. J., & Lencki, R. W. (2011b). Crystallization and polymorphism of 1,3-acyl- palmitoyl-rac-glycerols. Journal of the American Oil Chemists’ Society, 88(8), 1113–1123. https://doi.org/10.1007/s11746-011-1769-0

Cunha, C. L., Luna, A. S., Oliveira, R. C. G., Xavier, G. M., Paredes, M. L. L., & Torres, A. R. (2017). Predicting the properties of biodiesel and its blends using mid-FT-IR spectroscopy and first-order multivariate calibration. Fuel, 204, 185–194. https://doi.org/10.1016/j.fuel.2017.05.057

Cunha, C. L., Torres, A. R., & Luna, A. S. (2020). Multivariate regression models obtained from near-infrared spectroscopy data for prediction of the physical properties of biodiesel and its blends. Fuel, 261, 116344. https://doi.org/10.1016/j.fuel.2019.116344

de Matos, F. C., da Costa, M. C., de Almeida Meirelles, A. J., & Batista, E. A. C. (2015). Binary solid-liquid equilibrium systems containing fatty acids, fatty alcohols and triolein by differential scanning calorimetry. Fluid Phase Equilibria, 404(110), 1–8. https://doi.org/10.1016/j.fluid.2015.06.015

de Matos, F. C., da Costa, M. C., Meirelles, A. J. de A., & Batista, E. A. C. (2016). Binary solid-liquid equilibrium systems containing fatty acids, fatty alcohols and trilaurin by differential scanning calorimetry. Fluid Phase Equilibria, 423, 74–83. https://doi.org/10.1016/j.fluid.2016.04.008

Dunn, R. O. (2012). Effects of High-Melting Methyl Esters on Crystallization Properties of Fatty Acid Methyl Ester Mixtures. Transactions of the ASABE, 55(2), 637–646. https://doi.org/10.13031/2013.41365

Dunn, R. O., & Bagby, M. O. (1995). Low-temperature properties of triglyceride-based diesel fuels: Transesterified methyl esters and petroleum middle distillate/ester blends. Journal of the American Oil Chemists’ Society, 72(8), 895–904. https://doi.org/10.1007/BF02542067

Dunn, Robert O. (1999). Thermal analysis of alternative diesel fuels from vegetable oils. JAOCS, Journal of the American Oil Chemists’ Society, 76(1), 109–115. https://doi.org/10.1007/s11746-999-0056-9

Dunn, Robert O. (2008). Crystallization behavior of fatty acid methyl esters. Journal of the American Oil Chemists’ Society, 85(10), 961–972. https://doi.org/10.1007/s11746-008-1279-x

Dunn, Robert O. (2009). Effects of minor constituents on cold flow properties and performance of biodiesel. Progress in Energy and Combustion Science, 35(6), 481–489. https://doi.org/10.1016/j.pecs.2009.07.002

Dunn, Robert O. (2012). Effects of monoacylglycerols on the cold flow properties of biodiesel. Journal of the American Oil Chemists’ Society, 89(8), 1509–1520. https://doi.org/10.1007/s11746-012-2045-7

Dunn, Robert O. (2015). Cold flow properties of biodiesel: A guide to getting an accurate analysis. Biofuels, 6(1–2), 115–128. https://doi.org/10.1080/17597269.2015.1057791

Dunn, Robert O. (2018). Correlating the Cloud Point of Biodiesel to the Concentration and Melting Properties of the Component Fatty Acid Methyl Esters. Energy and Fuels, 32(1), 455–464. https://doi.org/10.1021/acs.energyfuels.7b02935

Dunn, Robert O. (2020). Correlating the Cold Filter Plugging Point to Concentration and Melting Properties of Fatty Acid Methyl Ester (Biodiesel) Admixtures. Energy and Fuels, 34(1), 501–515. https://doi.org/10.1021/acs.energyfuels.9b03311

Echim, C., Maes, J., & Greyt, W. De. (2012). Improvement of cold filter plugging point of biodiesel from alternative feedstocks. Fuel, 93, 642–648. https://doi.org/10.1016/j.fuel.2011.11.036

Engström, L. (1992). Triglyceride systems forming molecular compounds. Eur. J. Lipid Sci. Tech., 94(5), 173–181.

http://onlinelibrary.wiley.com/doi/10.1002/lipi.19920940503/abstract

Etter, M. C. (1990). Encoding and decoding hydrogen-bond patterns of organic compounds. Accounts of Chemical Research, 23(4), 120–126. https://doi.org/10.1021/ar00172a005

Fischer, E., Bergmann, M., & Barwind, H. (1920). Neue synthese von a-monoglyceriden. Berichte Der Deutschen Chemischen Gesellschaft, 53, 1589–1605.

Foubert, I., Dewettinck, K., Van de Walle, D., Dijkstra, A. J., & Quinn, P. J. (2007). Physical properties: Structural and physical characteristics. In F. D. Gunstone, J. L. Harwood, & A. J. Dijkstra (Eds.), The Lipid Handbook with CD-ROM (3rd ed.). CRC Press. https://doi.org/10.1201/9781420009675

Fredenslund, A., Jones, R. L., & Prausnitz, J. M. (1975). Group‐contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE Journal, 21(6), 1086–1099. https://doi.org/10.1002/aic.690210607

Gmehling, J., Li, J., & Schiller, M. (1993). A modified UNIFAC model. 2. Present parameter matrix and results for different thermodynamic properties. Industrial and Engineering Chemistry Research, 32(1), 178–193. https://doi.org/10.1021/ie00013a024

Gunstone, F. D., Harwood, J. L., & Albert J. Dijkstra. (2007). The Lipid Handbook with CD-ROM. In CRC Press (3rd ed.). CRC Press. https://doi.org/10.1201/9781420009675

Heino, E. L. (1987). Determination of cloud point for petroleum middle distillates by differential scanning calorimetry. Thermochimica Acta, 114, 125–130. https://doi.org/10.1016/0040-6031(87)80250-2

Hoekman, S. K., Broch, A., Robbins, C., Ceniceros, E., & Natarajan, M. (2012). Review of biodiesel composition, properties, and specifications. Renewable and Sustainable Energy Reviews, 16(1), 143–169. https://doi.org/10.1016/j.rser.2011.07.143

Hohne, G. W. H., Hemminger, W. F., & Flammersheim, H.-J. (2003). Differential Scanning Calorimetry (2nd ed.). Springer-Verlag Berlin Heidelberg. https://doi.org/10.1007/978-3-662-06710-9

Holmgren, A., Lindblom, G., & Johansson, L. B. . (1988). Intramolecular hydrogen bonding in a monoglyceride lipid studied by Fourier transform infrared spectroscopy. Journal of Physical Chemistry, 92(20), 5639–5642. https://doi.org/10.1021/j100331a020

Humas EBTKE. (2019). Standar dan Mutu (Spesifikasi) Bahan Bakar Nabati (Biofuel) Jenis Biodiesel Sebagai Bahan Bakar Lain yang Dipasarkan di Dalam Negeri. Ministry of Energy, Resources, and Minerals of Indonesia. https://ebtke.esdm.go.id/post/2019/11/13/2394/standar.dan.mutu.spesifikasi.bahan. bakar.nabati.biofuel.jenis.biodiesel.sebagai.bahan.bakar.lain.yang.dipasarkan.di.dal am.negeri

IEA. (2019). Renewables 2019. https://www.iea.org/reports/renewables-2019

Imahara, H., Minami, E., & Saka, S. (2006). Thermodynamic study on cloud point of biodiesel with its fatty acid composition. Fuel, 85(12–13), 1666–1670. https://doi.org/10.1016/j.fuel.2006.03.003

Inoue, T., Hisatsugu, Y., Yamamoto, R., & Suzuki, M. (2004). Solid-liquid phase behavior of binary fatty acid mixtures: 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chemistry and Physics of Lipids, 127(2), 143–152. https://doi.org/10.1016/j.chemphyslip.2003.09.014

Kellens, M., Meeussen, W., & Reynaers, H. (1990). Crystallization and phase transition studies of tripalmitin. Chemistry and Physics of Lipids, 55(2), 163–178. https://doi.org/10.1016/0009-3084(90)90077-5

King, A. M., & Garner, W. E. (1936). The melting points of long-chain carbon compounds. J Chem Soc, 1368–1372. https://doi.org/https://doi.org/10.1039/JR9360001368

Knothe, G., & Dunn, R. O. (2009). A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimetry. Journal of the American Oil Chemists’ Society, 86(9), 843–856. https://doi.org/10.1007/s11746- 009-1423-2

Leng, L., Li, W., Li, H., Jiang, S., & Zhou, W. (2020). Cold Flow Properties of Biodiesel and the Improvement Methods: A Review. Energy and Fuels, 34(9), 10364–10383. https://doi.org/10.1021/acs.energyfuels.0c01912

Lopes, J. C. A., Boros, L., Kráhenbúhl, M. A., Meirelles, A. J. A., Daridon, J. L., Pauly, J., Marrucho, I. M., & Coutinho, J. A. P. (2008). Prediction of cloud points of biodiesel. Energy and Fuels, 22(2), 747–752. https://doi.org/10.1021/ef700436d

Lutton, E. S. (1971). The phases of saturated 1-monoglycerides C14-C22. Journal of the American Oil Chemists Society, 48(12), 778–781. https://doi.org/10.1007/BF02609279

Lutton, E. S., & Jackson, F. L. (1967). Binary systems with monoglycerides. Journal of the American Oil Chemists’ Society, 44(6), 357–358. https://doi.org/10.1007/BF02582659

Mahlia, T. M. I., Syazmi, Z. A. H. S., Mofijur, M., Abas, A. E. P., Bilad, M. R., Ong, H. C., & Silitonga, A. S. (2020). Patent landscape review on biodiesel production: Technology updates. Renewable and Sustainable Energy Reviews, 118(April 2019), 109526. https://doi.org/10.1016/j.rser.2019.109526

Malkin, T., & Shurbagy, M. R. E. (1936). An x-ray and thermal examination of the glycerides. Part II. The alpha-monoglycerides. J Chem Soc, 1936, 1628–1634.

Maruyama, T., Niiya, I., Imamura, M., Okada, M., & Matsumoto, T. (1973). Study on polymorphism of monoglyceride. II. Thermodynamic considerations on transition. Journal of Japan Oil Chemists’ Society, 22(2), 19–22.

Maruyama, T., Niiya, I., Imamura, M., Okada, M., Matsumoto, T., Horisawa, M., & Matsumoto, T. (1971). Study on polymorphism of monoglyceride. I. Transition of crystal modification of 1-monolaurin, 1-monomyristin, 1-monopalmitin, and 1- monostearin. Journal of Japan Oil Chemists’ Society, 20(7), 11–18. https://doi.org/https://doi.org/10.5650/jos1956.20.395

Maruyama, T., Niiya, I., Okada, M., & Matsumoto, T. (1978). Studies on polymorphism of monoglycerides. VIII. Phase behavior of binary monoglycerides systems. Journal of Japan Oil Chemists’ Society, 843, 26–31.

Meher, L. C., Dharmagadda, V. S. S., & Naik, S. N. (2006). Optimization of alkali- catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresource Technology, 97(12), 1392–1397. https://doi.org/10.1016/j.biortech.2005.07.003

Ministry of Agriculture Livestock and Food Supply of Brazil. (2015). Uses for Biodiesel in Brazil and Globally (1st ed.). Biblioteca Nacional de Agricultura – BINAGRI Brasil. file:///C:/Users/Latifa Seniorita/Downloads/uses-for-biodiesel-in-brazil-and- globally.pdf

Mohanan, A., Darling, B., Bouzidi, L., & Narine, S. S. (2015). Mitigating crystallization of saturated FAMEs (fatty acid methyl esters) in biodiesel: 3. The binary phase behavior of 1,3-dioleoyl-2-palmitoyl glycerol - Methyl palmitate - A multi-length scale structural elucidation of mechanism responsible for inhibiti. Energy, 86, 500–513. https://doi.org/10.1016/j.energy.2015.04.011

Moser, B. R. (2008). Influence of blending canola, palm, soybean, and sunflower oil methyl esters on fuel properties of biodiesel. Energy and Fuels, 22(6), 4301–4306. https://doi.org/10.1021/ef800588x

Moser, B. R. (2014). Impact of fatty ester composition on low temperature properties of biodiesel-petroleum diesel blends. Fuel, 115, 500–506. https://doi.org/10.1016/j.fuel.2013.07.075

Mostafaei, M. (2018). Prediction of biodiesel fuel properties from its fatty acids composition using ANFIS approach. Fuel, 229(February), 227–234. https://doi.org/10.1016/j.fuel.2018.04.148

Palou, A., Miró, A., Blanco, M., Larraz, R., Gómez, J. F., Martínez, T., González, J. M., & Alcalà, M. (2017). Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 180, 119–126. https://doi.org/10.1016/j.saa.2017.03.008

Park, J. Y., Kim, D. K., Lee, J. P., Park, S. C., Kim, Y. J., & Lee, J. S. (2008). Blending effects of biodiesels on oxidation stability and low temperature flow properties. Bioresource Technology, 99(5), 1196–1203. https://doi.org/10.1016/j.biortech.2007.02.017

Paryanto, I., Prakoso, T., & Gozan, M. (2019). Determination of the upper limit of monoglyceride content in biodiesel for B30 implementation based on the measurement of the precipitate in a Biodiesel–Petrodiesel fuel blend (BXX). Fuel, 258, 116104. https://doi.org/10.1016/j.fuel.2019.116104

Pereira, E., Meirelles, A. J. A., & Maximo, G. J. (2020). Predictive models for physical properties of fats, oils, and biodiesel fuels. Fluid Phase Equilibria, 508, 112440. https://doi.org/10.1016/j.fluid.2019.112440

Prausnitz, J. M., Lichtenthaler, R. N., & de Azevedo, E. G. (1999). Molecular thermodynamics of fluid-phase equilibria (N. R. Amundson (ed.); 3rd ed.). Prentice Hall PTR. https://doi.org/10.1016/0021-9614(70)90078-9

Rahmanulloh, A., & McDonald, G. (2020). Biofuels Annual 2020. https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?file Name=Biofuels Annual_Jakarta_Indonesia_06-22-2020

Ramalho, E. F. S. M., Carvalho Filho, J. R., Albuquerque, A. R., De Oliveira, S. F., Cavalcanti, E. H. S., Stragevitch, L., Santos, I. M. G., & Souza, A. G. (2012). Low temperature behavior of poultry fat biodiesel:diesel blends. Fuel, 93, 601–605. https://doi.org/10.1016/j.fuel.2011.10.051

Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, Á. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology, 100(1), 261–268. https://doi.org/10.1016/j.biortech.2008.06.039

Razavi, R., Bemani, A., Baghban, A., Mohammadi, A. H., & Habibzadeh, S. (2019). An insight into the estimation of fatty acid methyl ester based biodiesel properties using a LSSVM model. Fuel, 243(June 2018), 133–141. https://doi.org/10.1016/j.fuel.2019.01.077

REN21. (2017). Renewables 2017 Global Status Report. https://www.ren21.net/gsr- 2017/

REN21. (2020). Renewables 2020 Global Status Report. https://www.ren21.net/reports/global-status-report/

Renon, H., & Prausnitz, J. M. (1968). Local compositions in thermodynamic excess functions for liquid mixtures. AIChE Journal, 14(1), 135–144. https://doi.org/10.1002/aic.690140124

Robustillo, M. D., Barbosa, D. F., Meirelles, A. J. de A., & Pessoa Filho, P. de A. (2014). Solid-liquid equilibrium of binary and ternary mixtures containing ethyl oleate, ethyl myristate and ethyl stearate. Fluid Phase Equilibria, 370, 85–94. https://doi.org/10.1016/j.fluid.2014.03.001

Sarin, A., Arora, R., Singh, N. P., Sarin, R., Malhotra, R. K., & Kundu, K. (2009). Effect of blends of Palm-Jatropha-Pongamia biodiesels on cloud point and pour point. Energy, 34(11), 2016–2021. https://doi.org/10.1016/j.energy.2009.08.017

Sarin, A., Arora, R., Singh, N. P., Sarin, R., Malhotra, R. K., & Sarin, S. (2010). Blends of biodiesels synthesized from non-edible and edible oils: Effects on the cold filter plugging point. Energy and Fuels, 24(3), 1996–2001. https://doi.org/10.1021/ef901131m

Sato, K., & Kuroda, T. (1987). Kinetics of melt crystallization and transformation of tripalmitin polymorphs. Journal of the American Oil Chemists’ Society, 64(1), 124–127. https://doi.org/10.1007/BF02546266

Serrano, M., Oliveros, R., Sánchez, M., Moraschini, A., Martínez, M., & Aracil, J. (2014). Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties. Energy, 65, 109–115. https://doi.org/10.1016/j.energy.2013.11.072

Shannon, R. J., Fenerty, J., Hamilton, R. J., & Padley, F. B. (1992). The polymorphism of diglycerides. Journal of the Science of Food and Agriculture, 60(4), 405–417. https://doi.org/10.1002/jsfa.2740600402

Shrestha, L. K., Sato, T., Acharya, D. P., Iwanaga, T., Aramaki, K., & Kunieda, H. (2006). Phase behavior of monoglycerol fatty acid esters in nonpolar oils: Reverse rodlike micelles at elevated temperatures. Journal of Physical Chemistry B, 110(25), 12266–12273. https://doi.org/10.1021/jp060587p

Sia, C. B., Kansendo, J., Tan, Y. H., & Lee, K. T. (2020). Evaluation on biodiesel cold flow properties, oxidative stability and enhancement. Biocatalysis and Agricultural Biotechnology, 24, 101514. https://doi.org/10.1016/j.bcab.2020.101514

Sierra-Cantor, J. F., & Guerrero-Fajardo, C. A. (2017). Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review. Renewable and Sustainable Energy Reviews, 72(January), 774–790. https://doi.org/10.1016/j.rser.2017.01.077

Sugami, Y., Yoshidomi, S., Minami, E., Shisa, N., Hayashi, H., & Saka, S. (2017). The effect of monoglyceride polymorphism on cold-flow properties of biodiesel model fuel. Journal of the American Oil Chemists’ Society, 94(8), 1095–1100. https://doi.org/10.1007/s11746-017-3016-9

Tang, H., De Guzman, R. C., Salley, S. O., & Ng, K. Y. S. (2008). Formation of insolubles in palm oil-, yellow grease-, and soybean oil-based biodiesel blends after cold soaking at 4 °c. Journal of the American Oil Chemists’ Society, 85(12), 1173–1182. https://doi.org/10.1007/s11746-008-1303-1

Tang, H., Salley, S. O., & Simon Ng, K. Y. (2008). Fuel properties and precipitate formation at low temperature in soy-, cottonseed-, and poultry fat-based biodiesel blends. Fuel, 87(13–14), 3006–3017. https://doi.org/10.1016/j.fuel.2008.04.030

Timms, R. E. (1984). Phase behaviour of fats and their mixtures. Progress in Lipid Research, 23(1), 1–38. https://doi.org/10.1016/0163-7827(84)90004-3

Wilson, G. M. (1964). Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. Journal of the American Chemical Society, 86(2), 127–130. https://doi.org/10.1021/ja01056a002

Xu, Y., & Dong, C. (2017). Phase behavior of binary mixtures of three different 1,3- diacylglycerols. European Journal of Lipid Science and Technology, 119(9), 1–13. https://doi.org/10.1002/ejlt.201600497

Yoshidomi, S., Sugami, Y., Minami, E., Shisa, N., Hayashi, H., & Saka, S. (2017). Predicting solid-liquid equilibrium of fatty acid methyl ester and monoacylglycerol mixtures as biodiesel model fuels. Journal of the American Oil Chemists Society, 94(8), 1087–1094. https://doi.org/10.1007/s11746-017-3029-4

Yu, L., Lee, I., Hammond, E. G., Johnson, L. A., & Van Gerpen, J. H. (1998). The influence of trace components on the melting point of methyl soyate. Journal of the American Oil Chemists’ Society, 75(12), 1821–1824. https://doi.org/10.1007/s11746-998-0337-8

Yuan, M. H., Chen, Y. H., Chen, J. H., & Luo, Y. M. (2017). Dependence of cold filter plugging point on saturated fatty acid profile of biodiesel blends derived from different feedstocks. Fuel, 195, 59–68. https://doi.org/10.1016/j.fuel.2017.01.054

Zhang, L., Ueno, S., & Sato, K. (2018). Binary phase behavior of saturated-unsaturated mixed-acid triacylglycerols—A review. Journal of Oleo Science, 67(6), 679–687. https://doi.org/10.5650/jos.ess17263

Živković, S. B., Veljković, M. V., Banković-Ilić, I. B., Krstić, I. M., Konstantinović, S. S., Ilić, S. B., Avramović, J. M., Stamenković, O. S., & Veljković, V. B. (2017). Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 79 (February), 222–247. https://doi.org/10.1016/j.rser.2017.05.048

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る