リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Selective trans-omic regulation of insulin action by its doses across the multiple-omic layers」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Selective trans-omic regulation of insulin action by its doses across the multiple-omic layers

川田, 健太郎 東京大学 DOI:10.15083/0002001505

2021.09.08

概要

序論
生体内では多くのホルモンが協調的に作用することで、多くの生体機能が制御される。インスリンは血糖値低下に関与する唯一のホルモンであり、インスリン抵抗性などの代謝異常に起因する疾患の増加は、近年の大きな社会問題となっている (Zimmet et al., 2001)。インスリンによる細胞機能制御機構を理解することにより、インスリンの機能異常に起因する代謝障害の予防や治療に繋がる知見を得ることが可能となる。血中インスリン濃度は体内の栄養状態により異なる時間パターンを示す。これは摂食直後に認められる高濃度で一過的な変動を特徴とする追加分泌と、空腹時に認められる低濃度で持続的な変動を示す基礎分泌とに大別される (Polonsky et al., 1988) (Fig. 1 left)。過去に当研究室ではインスリンの制御を受ける分子が各々の感受性や時定数に応じて時間パターン選択的な応答を示すことを明らかにしている (Kubota et al., 2012; Noguchi et al., 2013; Sano et al., 2016)。しかしながら、インスリンの情報伝達ネットワークに含まれる分子がインスリンの基礎分泌と追加分泌のどちらに選択的に応答するかについて網羅的に明らかにした例はない。

結果と考察
本研究では複数のオミクスデータを用いて、インスリンの情報を伝えるネットワーク (trans-omic regulatory network) を構築し、さらに各分子のインスリン濃度に対する感受性を推定することにより、インスリン濃度に対する各分子の選択性を解明した。

初めにインスリン刺激を施したラット肝がん由来 Fao 細胞からリン酸化プロテオームデータ、トランスクリプトームデータ、メタボロームデータを時系列で取得した。初めに、リン酸化プロテオームデータを用いてリン酸化を介した細胞機能制御ネットワーク(cellular functions regulatory network) を再構築した。次に、リン酸化プロテオームおよびトランスクリプトームデータを用いて転写因子を介した遺伝子発現制御ネットワーク (transcriptional regulatory network) を再構築した。最後に、リン酸化プロテオームおよびメタボロームデータを用いてリン酸化を介した代謝制御ネットワーク (metabolism regulatory network) を再構築した。これらを統合することで、インスリンによる細胞機能制御ネットワークである trans-omic regulatory network を構築した (Fig. 2)。

Trans-omic regulatory network 内の各分子に対してインスリンへの感受性および時定数を推定し、各分子の追加分泌および基礎分泌に対する選択性を明らかにした。感受性の指標として EC50、および応答速度の指標として T1/2 を算出した。感受性の低い分子は刺激濃度に対し広いダイナミックレンジを示し、追加分泌への応答を示す。また感受性の高い分子は狭いダイナミックレンジを示し、主に基礎分泌に応答する (Fig. 1 right)。これらの指標によりシグナル伝達分子、発現変動遺伝子、変動代謝物を 4 クラスに分け、インスリンに対する各分子の応答性を推定した (Fig. 3)。シグナル伝達分子について、インスリンシグナル伝達のハブ分子であるAkt およびErk のリン酸化は、広範囲のインスリン濃度への応答が認められ、広いインスリン濃度の情報を下流に伝達することが示唆された。遺伝子発現について、転写因子や脂質代謝酵素を含む増加性遺伝子は広いダイナミックレンジを示し、追加分泌に対する応答を示す一方で、糖代謝酵素を含む減少性遺伝子はインスリン濃度に対して狭いダイナミックレンジを示し、主に基礎分泌への応答を示した。代謝物について、解糖系に含まれる対代謝物は主に基礎分泌に応答するが、TCA 回路に含まれる dicarboxylic acids は主に追加分泌に応答した。また解糖系上流と下流ではインスリンに対する応答速度に違いが認められた。アミノ酸の多くが主に基礎分泌に応答する一方で、解糖系からの反応距離の近い Ser、Ala、Arg は主に追加分泌への応答を示した。

まとめ
本研究ではインスリン刺激に対する情報伝達ネットワークを網羅的に再構築し、さらにネットワークに含まれる分子がインスリンの追加分泌と基礎分泌のどちらに選択的に応答するかを感受性の見地から網羅的に推定した。本研究で用いた手法は細胞や刺激の種類に依存するものではなく、さまざまなホルモンやサイトカインに対して適用が可能である。生体内における細胞間伝達物質の濃度および時間的挙動と、各分子の感受性や時定数と比較することにより、特定の条件下における各経路もしくは分子の選択性を推定することが可能となる。

この論文で使われている画像

参考文献

1. Zimmet P, Alberti KGMM, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414: 782–787. doi:10.1038/414782a

2. Whiteman EL, Cho H, Birnbaum MJ. Role of Akt/protein kinase B in metabolism. Trends Endocrinol Metab. 2002;13: 444–51. Available: http://www.ncbi.nlm.nih.gov/pubmed/12431841

3. Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 2001;414: 799–806. doi:10.1038/414799a

4. Jastrzebski K, Hannan KM, Tchoubrieva EB, Hannan RD, Pearson RB. Coordinate regulation of ribosome biogenesis and function by the ribosomal protein S6 kinase, a key mediator of mTOR function. Growth Factors. 2007;25: 209–226. doi:10.1080/08977190701779101

5. Lizcano JM, Alessi DR. The insulin signalling pathway. Curr Biol. 2002;12: R236-8. Available: http://www.ncbi.nlm.nih.gov/pubmed/11937037

6. Asnaghi L, Bruno P, Priulla M, Nicolin A. mTOR: a protein kinase switching between life and death. Pharmacol Res. 2004;50: 545–9. doi:10.1016/j.phrs.2004.03.007

7. Kotzka J, Lehr S, Roth G, Avci H, Knebel B, Muller-Wieland D. Insulin-activated Erk-mitogen-activated protein kinases phosphorylate sterol regulatory element-binding Protein-2 at serine residues 432 and 455 in vivo. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2004;279: 22404–11. doi:10.1074/jbc.M401198200

8. Zhang W, Thompson BJ, Hietakangas V, Cohen SM. MAPK/ERK Signaling Regulates Insulin Sensitivity to Control Glucose Metabolism in Drosophila. Rulifson E, editor. PLoS Genet. 2011;7: e1002429. doi:10.1371/journal.pgen.1002429

9. Mounier C, Posner BI. Transcriptional regulation by insulin: from the receptor to the geneThis paper is one of a selection of papers published in this Special issue, entitled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol. 2006;84: 713–724. doi:10.1139/y05-152

10. Barthel A, Schmoll D, Unterman TG. FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab. 2005;16: 183–9. doi:10.1016/j.tem.2005.03.010

11. Au W-S, Kung H, Lin MC. Regulation of microsomal triglyceride transfer protein gene by insulin in HepG2 cells: roles of MAPKerk and MAPKp38. Diabetes. 2003;52: 1073–80. Available: http://www.ncbi.nlm.nih.gov/pubmed/12716735

12. Biggs WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC. Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A. 1999;96: 7421–6. Available: http://www.ncbi.nlm.nih.gov/pubmed/10377430

13. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 1999;96: 857–68. Available: http://www.ncbi.nlm.nih.gov/pubmed/10102273

14. Lu M, Wan M, Leavens KF, Chu Q, Monks BR, Fernandez S, et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nat Med. 2012;18: 388–395. doi:10.1038/nm.2686

15. Nakayama K, Satoh T, Igari A, Kageyama R, Nishida E. FGF induces oscillations of Hes1 expression and Ras/ERK activation. Curr Biol. 2008;18: R332-4. doi:10.1016/j.cub.2008.03.013

16. Shaul YD, Seger R. The MEK/ERK cascade: From signaling specificity to diverse functions. Biochim Biophys Acta - Mol Cell Res. 2007;1773: 1213–1226. doi:10.1016/j.bbamcr.2006.10.005

17. Murphy LO, MacKeigan JP, Blenis J. A network of immediate early gene products propagates subtle differences in mitogen-activated protein kinase signal amplitude and duration. Mol Cell Biol. 2004;24: 144–53. Available: http://www.ncbi.nlm.nih.gov/pubmed/14673150

18. Deak M, Clifton AD, Lucocq LM, Alessi DR. Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J. 1998;17: 4426–41. doi:10.1093/emboj/17.15.4426

19. Lee YH, Giraud J, Davis RJ, White MF. c-Jun N-terminal kinase (JNK) mediates feedback inhibition of the insulin signaling cascade. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2003;278: 2896–902. doi:10.1074/jbc.M208359200

20. Fukunaga K, Noguchi T, Takeda H, Matozaki T, Hayashi Y, Itoh H, et al. Requirement for protein-tyrosine phosphatase SHP-2 in insulin-induced activation of c-Jun NH(2)-terminal kinase. J Biol Chem. American Society for Biochemistry and Molecular Biology; 2000;275: 5208–13. doi:10.1074/JBC.275.7.5208

21. Rosner M, Siegel N, Valli A, Fuchs C, Hengstschl?ger M. mTOR phosphorylated at S2448 binds to raptor and rictor. Amino Acids. Springer Vienna; 2010;38: 223–228. doi:10.1007/s00726-008-0230-7

22. Humphrey S, Yang G, Yang P, Fazakerley D, St?ckli J, Yang J, et al. Dynamic Adipocyte Phosphoproteome Reveals that Akt Directly Regulates mTORC2. Cell Metab. 2013;17: 1009–1020. doi:10.1016/j.cmet.2013.04.010

23. Tsakiridis T, Tong P, Matthews B, Tsiani E, Bilan PJ, Klip A, et al. Role of the actin cytoskeleton in insulin action. Microsc Res Tech. 1999;47: 79–92. doi:10.1002/(SICI)1097-0029(19991015)47:2<79::AID-JEMT1>3.0.CO;2-S

24. Wolf A, Rietscher K, Glaß M, Hüttelmaier S, Schutkowski M, Ihling C, et al. Insulin signaling via Akt2 switches plakophilin 1 function from stabilizing cell adhesion to promoting cell proliferation. J Cell Sci. 2013;126: 1832–44. doi:10.1242/jcs.118992

25. Reiss K, Wang JY, Romano G, Tu X, Peruzzi F, Baserga R. Mechanisms of regulation of cell adhesion and motility by insulin receptor substrate-1 in prostate cancer cells. Oncogene. 2001;20: 490–500. doi:10.1038/sj.onc.1204112

26. Hartmann B, Castelo R, Blanchette M, Boue S, Rio DC, Valcárcel J. Global analysis of alternative splicing regulation by insulin and wingless signaling in Drosophila cells. Genome Biol. 2009;10: R11. doi:10.1186/gb-2009-10-1-r11

27. Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, Hu Y, et al. Proteomic and Functional Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal-Regulated Kinase Signaling. Sci Signal. 2011;4: rs10-rs10. doi:10.1126/scisignal.2002029

28. Vinayagam A, Kulkarni MM, Sopko R, Sun X, Hu Y, Nand A, et al. An Integrative Analysis of the InR/PI3K/Akt Network Identifies the Dynamic Response to Insulin Signaling. Cell Rep. 2016;16: 3062–74. doi:10.1016/j.celrep.2016.08.029

29. Monetti M, Nagaraj N, Sharma K, Mann M. Large-scale phosphosite quantification in tissues by a spike-in SILAC method. Nat Methods. 2011;8: 655–8. doi:10.1038/nmeth.1647

30. Zhang Y, Zhang Y, Yu Y. Global Phosphoproteomic Analysis of Insulin/Akt/mTORC1/S6K Signaling in Rat Hepatocytes. J Proteome Res. 2017; acs.jproteome.7b00140. doi:10.1021/acs.jproteome.7b00140

31. Krüger M, Kratchmarova I, Blagoev B, Tseng Y-H, Kahn CR, Mann M. Dissection of the insulin signaling pathway via quantitative phosphoproteomics. Proc Natl Acad Sci U S A. 2008;105: 2451–6. doi:10.1073/pnas.0711713105

32. Yugi K, Kubota H, Toyoshima Y, Noguchi R, Kawata K, Komori Y, et al. Reconstruction of Insulin Signal Flow from Phosphoproteome and Metabolome Data. Cell Rep. 2014;8: 1171–1183. doi:10.1016/j.celrep.2014.07.021

33. Hectors TLM, Vanparys C, Pereira-Fernandes A, Knapen D, Blust R. Mechanistic evaluation of the insulin response in H4IIE hepatoma cells: New endpoints for toxicity testing? Toxicol Lett. 2012;212: 180–189. doi:10.1016/j.toxlet.2012.05.016

34. Dupont J, Khan J, Qu B-H, Metzler P, Helman L, LeRoith D. Insulin and IGF-1 Induce Different Patterns of Gene Expression in Mouse Fibroblast NIH-3T3 Cells: Identification by cDNA Microarray Analysis. Endocrinology. 2001;142: 4969–4975. doi:10.1210/endo.142.11.8476

35. Versteyhe S, Klaproth B, Borup R, Palsgaard J, Jensen M, Gray SG, et al. IGF-I, IGF-II, and Insulin Stimulate Different Gene Expression Responses through Binding to the IGF-I Receptor. Front Endocrinol (Lausanne). 2013;4: 98. doi:10.3389/fendo.2013.00098

36. Kim HS, Lee NK. Gene expression profiling in osteoclast precursors by insulin using microarray anlysis. Mol Cells. 2014;37: 827–32. doi:10.14348/molcells.2014.0223

37. Rome S, Clément K, Rabasa-Lhoret R, Loizon E, Poitou C, Barsh GS, et al. Microarray profiling of human skeletal muscle reveals that insulin regulates approximately 800 genes during a hyperinsulinemic clamp. J Biol Chem. 2003;278: 18063–8. doi:10.1074/jbc.M300293200

38. Sano T, Kawata K, Ohno S, Yugi K, Kakuda H, Kubota H, et al. Selective control of up-regulated and down-regulated genes by temporal patterns and doses of insulin. Sci Signal. 2016;112: 1–12. doi:10.1126/scisignal.aaf3739

39. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, Lien LF, et al. A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cell Metab. 2009;9: 311–326. doi:10.1016/j.cmet.2009.02.002

40. Everman S, Meyer C, Tran L, Hoffman N, Carroll CC, Dedmon WL, et al. Insulin does not stimulate muscle protein synthesis during increased plasma branched-chain amino acids alone but still decreases whole body proteolysis in humans. Am J Physiol Endocrinol Metab. 2016;311: E671–E677. doi:10.1152/ajpendo.00120.2016

41. Noguchi R, Kubota H, Yugi K, Toyoshima Y, Komori Y, Soga T, et al. The selective control of glycolysis, gluconeogenesis and glycogenesis by temporal insulin patterns. Mol Syst Biol. 2013;9: 664. doi:10.1038/msb.2013.19

42. Buescher JM, Liebermeister W, Jules M, Uhr M, Muntel J, Botella E, et al. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism. Science (80- ). 2012;335: 1099–1103. doi:10.1126/science.1206871

43. Palsson B, Zengler K. The challenges of integrating multi-omic data sets. Nat Chem Biol. 2010;6: 787–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/20976870

44. Joyce AR, Palsson BØ. The model organism as a system: integrating “omics” data sets. Nat Rev Mol Cell Biol. 2006;7: 198–210. doi:10.1038/nrm1857

45. Hatzimanikatis V, Saez-Rodriguez J. Integrative approaches for signalling and metabolic networks. Integr Biol (Camb). 2015;7: 844–5. doi:10.1039/c5ib90030a

46. Hyduke DR, Lewis NE, Palsson BØ. Analysis of omics data with genome-scale models of metabolism. Mol Biosyst. NIH Public Access; 2013;9: 167–74. doi:10.1039/c2mb25453k

47. Yugi K, Kuroda S. Metabolism-Centric Trans-Omics. Cell Syst. 2017;4: 19–20. doi:10.1016/j.cels.2017.01.007

48. Yugi K, Kubota H, Hatano A, Kuroda S. Trans-Omics: How To Reconstruct Biochemical Networks Across Multiple ?Omic? Layers. Trends Biotechnol. 2016;34: 276–290. doi:10.1016/j.tibtech.2015.12.013

49. Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, et al. Multiple high-throughput analyses monitor the response of E. coli to perturbations. Science. 2007;316: 593–7. doi:10.1126/science.1132067

50. Gerosa L, Haverkorn van Rijsewijk BRB, Christodoulou D, Kochanowski K, Schmidt TSB, Noor E, et al. Pseudo-transition Analysis Identifies the Key Regulators of Dynamic Metabolic Adaptations from Steady-State Data. Cell Syst. 2015;1: 270–282. doi:10.1016/j.cels.2015.09.008

51. Oliveira AP, Ludwig C, Picotti P, Kogadeeva M, Aebersold R, Sauer U. Regulation of yeast central metabolism by enzyme phosphorylation. Mol Syst Biol. 2012;8: 623. doi:10.1038/msb.2012.55

52. Hackett SR, Zanotelli VRT, Xu W, Goya J, Park JO, Perlman DH, et al. Systems-level analysis of mechanisms regulating yeast metabolic flux. Science (80- ). 2016;354: aaf2786-aaf2786. doi:10.1126/science.aaf2786

53. Gonçalves E, Raguz Nakic Z, Zampieri M, Wagih O, Ochoa D, Sauer U, et al. Systematic Analysis of Transcriptional and Post-transcriptional Regulation of Metabolism in Yeast. Patil KR, editor. PLOS Comput Biol. 2017;13: e1005297. doi:10.1371/journal.pcbi.1005297

54. Yusufi FNK, Lakshmanan M, Ho YS, Loo BLW, Ariyaratne P, Yang Y, et al. Mammalian Systems Biotechnology Reveals Global Cellular Adaptations in a Recombinant CHO Cell Line. Cell Syst. 2017;4: 530–542.e6. doi:10.1016/j.cels.2017.04.009

55. Geiger R, Rieckmann JC, Wolf T, Basso C, Feng Y, Fuhrer T, et al. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell. 2016;167: 829–842.e13. doi:10.1016/j.cell.2016.09.031

56. Behar M, Hoffmann A. Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev. 2010;20: 684–93. doi:10.1016/j.gde.2010.09.007

57. Polonsky KS, Given BD, Van Cauter E. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. J Clin Invest. 1988;81: 442–448. doi:10.1172/JCI113339

58. Lindsay JR, McKillop AM, Mooney MH, Flatt PR, Bell PM, O’Harte FPM. Meal-induced 24-hour profile of circulating glycated insulin in type 2 diabetic subjects measured by a novel radioimmunoassay. Metabolism. 2003;52: 631–635. doi:10.1053/meta.2003.50150

59. Kubota H, Noguchi R, Toyoshima Y, Ozaki Y, Uda S, Watanabe K, et al. Temporal Coding of Insulin Action through Multiplexing of the AKT Pathway. Mol Cell. 2012;46: 820–832. doi:10.1016/j.molcel.2012.04.018

60. Humphrey SJ, Azimifar SB, Mann M. High-throughput phosphoproteomics reveals in vivo insulin signaling dynamics. Nat Biotechnol. 2015;33: 990–5. doi:10.1038/nbt.3327

61. Olsen J V, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, et al. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010;3: ra3. doi:10.1126/scisignal.2000475

62. Olsen J V, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127: 635–48. doi:10.1016/j.cell.2006.09.026

63. Horn H, Schoof EM, Kim J, Robin X, Miller ML, Diella F, et al. KinomeXplorer: an integrated platform for kinome biology studies. Nat Methods. 2014;11: 603–4. doi:10.1038/nmeth.2968

64. Miller ML, Jensen LJ, Diella F, Jorgensen C, Tinti M, Li L, et al. Linear Motif Atlas for Phosphorylation-Dependent Signaling. Sci Signal. 2008;1: ra2-ra2. doi:10.1126/scisignal.1159433

65. Workman CT, Yin Y, Corcoran DL, Ideker T, Stormo GD, Benos P V. enoLOGOS: a versatile web tool for energy normalized sequence logos. Nucleic Acids Res. 2005;33: W389-92. doi:10.1093/nar/gki439

66. Colaert N, Helsens K, Martens L, Vandekerckhove J, Gevaert K. Improved visualization of protein consensus sequences by iceLogo. Nat Methods. 2009;6: 786–787. doi:10.1038/nmeth1109-786

67. Matys V, Kel-Margoulis O V, Fricke E, Liebich I, Land S, Barre-Dirrie A, et al. TRANSFAC(R) and its module TRANSCompel(R): transcriptional gene regulation in eukaryotes. Nucleic Acids Res. 2006;34: D108–D110. doi:10.1093/nar/gkj143

68. Kel AE, Gössling E, Reuter I, Cheremushkin E, Kel-Margoulis O V, Wingender E. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 2003;31: 3576–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/12824369

69. Matsuzaki H, Daitoku H, Hatta M, Tanaka K, Fukamizu A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci U S A. 2003;100: 11285–90. doi:10.1073/pnas.1934283100

70. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, et al. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature. 2003;423: 550–5. doi:10.1038/nature01667

71. Schomburg I, Chang A, Placzek S, Söhngen C, Rother M, Lang M, et al. BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res. 2013;41: D764-72. doi:10.1093/nar/gks1049

72. Thiel G, Cibelli G. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol. 2002;193: 287–292. doi:10.1002/jcp.10178

73. Sukhatme VP, Cao XM, Chang LC, Tsai-Morris CH, Stamenkovich D, Ferreira PC, et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell. 1988;53: 37–43. Available: http://www.ncbi.nlm.nih.gov/pubmed/3127059

74. Herzig S, Hedrick S, Morantte I, Koo S-H, Galimi F, Montminy M. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature. 2003;426: 190–193. doi:10.1038/nature02110

75. Lemke U, Krones-Herzig A, Diaz MB, Narvekar P, Ziegler A, Vegiopoulos A, et al. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1. Cell Metab. 2008;8: 212–223. doi:10.1016/j.cmet.2008.08.001

76. Durr IF, Rudney H. The reduction of beta-hydroxy-beta-methyl-glutaryl coenzyme A to mevalonic acid. J Biol Chem. 1960;235: 2572–8. Available: http://www.ncbi.nlm.nih.gov/pubmed/13818862

77. Lindgren V, Luskey KL, Russell DW, Francke U. Human genes involved in cholesterol metabolism: chromosomal mapping of the loci for the low density lipoprotein receptor and 3-hydroxy-3-methylglutaryl-coenzyme A reductase with cDNA probes. Proc Natl Acad Sci U S A. 1985;82: 8567–71. Available: http://www.ncbi.nlm.nih.gov/pubmed/3866240

78. Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebersold R, Sauer U. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci Signal. 2015;8: rs4. doi:10.1126/scisignal.2005768

79. Shyh-Chang N, Locasale JW, Lyssiotis CA, Zheng Y, Teo RY, Ratanasirintrawoot S, et al. Influence of threonine metabolism on S-adenosylmethionine and histone methylation. Science. 2013;339: 222–6. doi:10.1126/science.1226603

80. Ota K, Feng S-Y, Ito T. Detecting protein-DNA interactions using a modified yeast one-hybrid system. Methods Mol Biol. 2014;1164: 39–50. doi:10.1007/978-1-4939-0805-9_5

81. Colicchio JM, Miura F, Kelly JK, Ito T, Hileman LC. DNA methylation and gene expression in Mimulus guttatus. BMC Genomics. 2015;16: 507. doi:10.1186/s12864-015-1668-0

82. Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40: D109-14. doi:10.1093/nar/gkr988

83. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45: D353–D361. doi:10.1093/nar/gkw1092

84. Fisher RA. On the Interpretation of χ 2 from Contingency Tables, and the Calculation of P. J R Stat Soc. 1922;85: 87. doi:10.2307/2340521

85. Storey JD, Taylor JE, Siegmund D. Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach. J R Stat Soc Ser B (Statistical Methodol. Blackwell Publishing; 2004;66: 187–205. doi:10.1111/j.1467-9868.2004.00439.x

86. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R. The International Protein Index: An integrated database for proteomics experiments. Proteomics. 2004;4: 1985–1988. doi:10.1002/pmic.200300721

87. Ward JH. Hierarchical Grouping to Optimize an Objective Function. J Am Stat Assoc. 1963;58: 236–244. doi:10.1080/01621459.1963.10500845

88. Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25: 1105–11. doi:10.1093/bioinformatics/btp120

89. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14: R36. doi:10.1186/gb-2013-14-4-r36

90. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc. 2012;7: 562–578. doi:10.1038/nprot.2012.016

91. Hollander M, A. Wolfe D, Chicken E. Nonparametric Statistical Methods [Internet]. Nonparametric Statistical Methods. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2015. doi:10.1002/9781119196037.ch1

92. Gibbons JD, Chakraborti S. Nonparametric statistical inference [Internet]. Chapman & Hall/Taylor & Francis; 2011. Available: https://www.crcpress.com/Nonparametric-Statistical-Inference-Fifth-Edition/Gibbons-Chakraborti/p/book/9781420077612

93. Bonferroni. Teoria statistica delle classi e calcolo delle probabilit¥`{a}. Pubbl del R Ist Super di Sci Econ e Commer di Firenze. 1936;8. Available: http://www.citeulike.org/user/barriot/article/1778138

94. Otsu N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans Syst Man Cybern. 1979;9: 62–66. doi:10.1109/TSMC.1979.4310076

95. Kinsella RJ, Kahari A, Haider S, Zamora J, Proctor G, Spudich G, et al. Ensembl BioMarts: a hub for data retrieval across taxonomic space. Database. 2011;2011: bar030-bar030. doi:10.1093/database/bar030

96. Arner E, Daub CO, Vitting-Seerup K, Andersson R, Lilje B, Drabløs F, et al. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells. Science. 2015;347: 1010–4. doi:10.1126/science.1259418

97. Mudunuri U, Che A, Yi M, Stephens RM. bioDBnet: the biological database network. Bioinformatics. 2009;25: 555–6. doi:10.1093/bioinformatics/btn654

98. Lange AJ, Argaud D, el-Maghrabi MR, Pan W, Maitra SR, Pilkis SJ. Isolation of a cDNA for the catalytic subunit of rat liver glucose-6-phosphatase: regulation of gene expression in FAO hepatoma cells by insulin, dexamethasone and cAMP. Biochem Biophys Res Commun. 1994;201: 302–9. Available: http://www.ncbi.nlm.nih.gov/pubmed/8198588

99. Soga T, Baran R, Suematsu M, Ueno Y, Ikeda S, Sakurakawa T, et al. Differential metabolomics reveals ophthalmic acid as an oxidative stress biomarker indicating hepatic glutathione consumption. J Biol Chem. 2006;281: 16768–76. doi:10.1074/jbc.M601876200

100. Soga T, Igarashi K, Ito C, Mizobuchi K, Zimmermann H-P, Tomita M. Metabolomic Profiling of Anionic Metabolites by Capillary Electrophoresis Mass Spectrometry. Anal Chem. 2009;81: 6165–6174. doi:10.1021/ac900675k

101. Alves R, Chaleil RAG, Sternberg MJE. Evolution of enzymes in metabolism: a network perspective. J Mol Biol. 2002;320: 751–70. Available: http://www.ncbi.nlm.nih.gov/pubmed/12095253

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る