リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Posttranslational modifications regulating the stability of clock proteins PER2 and DBP」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Posttranslational modifications regulating the stability of clock proteins PER2 and DBP

増田, 周作 東京大学 DOI:10.15083/0002006193

2023.03.24

概要

論文審査の結果の要旨
氏名 増田 周作
本論文では、哺乳類の概日時計において時計タンパク質である PER2 及び DBP に対する翻
訳後修飾を介したタンパク質安定性の制御について論じられており、全7章から構成され
ている。
第1章では当該分野における研究の背景について概説されている。哺乳類の概日時計の発
振機構は時計タンパク質の転写・翻訳を介したネガティブフィードバックに基づいており、
時計タンパク質 PER2 はこの機構において転写抑制因子として機能していることが記述さ
れている。また、概日時計の発振機構を制御する仕組みの一つとして、時計タンパク質の翻
訳後修飾の重要性が示されている。加えて、翻訳後修飾の中でも、論文提出者が着目してい
るユビキチン化修飾について概説されている。
第2章では、時計タンパク質 PER2 の点変異マウスを用いた解析についてまとめられてい
る。この変異箇所のセリン残基がリン酸化酵素 CK1 によってリン酸化されると PER2 の分
解が促進することが示唆されていたものの、概日時計の振動速度に対する寄与は検証され
ていなかった。論文提出者はまず、この変異がマウス個体の行動リズムを長周期化すること
を見出した。この変異マウスにおいて PER2 タンパク質は安定化すると期待されたため、論
文提出者は mRNA とタンパク質の発現量を解析した。その結果、Per2 mRNA 量は両遺伝
子型間で有意な差がなかったにもかかわらず、変異型マウスにおいて PER2 タンパク質量
が増加することを見出した。さらに、この PER2 タンパク質の増加により、CRY1 や CRY2
といった他の時計タンパク質が安定化することを明らかにした。これらのタンパク質の安
定化も概日時計の長周期化に寄与する可能性があると論文提出者は議論している。また、行
動リズムの長周期化と一致して、概日時計の制御下にある遺伝子の発現パターンが影響を
受けることを示した。また、PER2 変異マウス由来の培養細胞において、PER2 の概日時計
の周期の温度補償性が弱まることが明らかにされた。本研究は、概日時計の発振機構におけ
る PER2 のリン酸化制御の重要性を理解するうえで極めて重要な知見を含んでいるといえ
る。
第3章では、時計タンパク質 DBP の安定性を制御する翻訳後修飾因子の同定についてまと
められている。論文提出者は E2 ユビキチン結合酵素の活性変異体スクリーニングと、先行
研究によるインタラクトーム解析の結果から DBP の安定性制御を担う E2 ユビキチン結合
酵素と E3 ユビキチンリガーゼを同定した。この E3 リガーゼの機能欠損は DBP タンパク

1

質の日内発現パターンを大きく変化させた。DBP の発現パターンの変化は下流の遺伝子発
現に影響を与える可能性が高いと論文提出者は議論している。
第4章では、第2章と第3章の研究結果や考察をふまえた総括が述べられている。
第5章から第7章では出典、略語、謝辞が記載されている。
なお、本論文の第2章は Rajesh Narasimamurthy 氏、吉種光氏、Jae Kyoung Kim 氏、深田
吉孝氏、David M Virshup 氏との、第3章は布川莉奈氏、吉種光氏、秦裕子氏、尾山大明氏、
饗場篤氏、井上純一郎氏、深田吉孝氏との共同研究であるが、論文提出者が主体となって立
案・遂行したものであり、論文提出者の寄与が十分であると判断する。
したがって本審査委員会は、博士(理学)の学位を授与できると認める。

2

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

Reppert SM, Weaver DR (2002) Coordination of circadian timing in

mammals. Nature 418:935–941. https://doi.org/10.1038/nature00965

Takahashi JS (2017) Transcriptional architecture of the mammalian

circadian clock. Nat Rev Genet 18:164–179.

https://doi.org/10.1038/nrg.2016.150

Zheng B, Albrecht U, Kaasik K, et al (2001) Nonredundant roles of the

mPer1 and mPer2 genes in the mammalian circadian clock. Cell

105:683–694. https://doi.org/10.1016/S0092-8674(01)00380-4

van der Horst GTJ, Muijtjens M, Kobayashi K, et al (1999) Mammalian

Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature

398:627–630. https://doi.org/10.1038/19323

Bae K, Jin X, Maywood ES, et al (2001) Differential functions of mPer1,

mPer2, and mPer3 in the SCN circadian clock. Neuron 30:525–536.

https://doi.org/10.1016/S0896-6273(01)00302-6

Lee C, Weaver DR, Reppert SM (2004) Direct Association between

Mouse PERIOD and CKIε Is Critical for a Functioning Circadian Clock.

Mol Cell Biol 24:584–594. https://doi.org/10.1128/MCB.24.2.584594.2004

Hirano A, Fu YH, Ptácek LJ (2016) The intricate dance of posttranslational modifications in the rhythm of life. Nat Struct Mol Biol

23:1053–1060. https://doi.org/10.1038/nsmb.3326

Gallego M, Virshup DM (2007) Post-translational modifications regulate

the ticking of the circadian clock. Nat Rev Mol Cell Biol 8:139–148.

https://doi.org/10.1038/nrm2106

Kwon YT, Ciechanover A (2017) The Ubiquitin Code in the UbiquitinProteasome System and Autophagy. Trends Biochem Sci 42:873–886.

https://doi.org/10.1016/j.tibs.2017.09.002

Yau R, Rape M (2016) The increasing complexity of the ubiquitin code.

Nat Cell Biol 18:579–586. https://doi.org/10.1038/ncb3358

Busino L, Bassermann F, Maiolica A, et al (2007) SCFFbxl3 Controls the

Oscillation of the Circadian Clock by Directing the Degradation of

Cryptochrome Proteins. Science (80- ) 316:900–904.

https://doi.org/10.1126/science.1141194

34

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Lamia KA, Sachdeva UM, Di Tacchio L, et al (2009) AMPK regulates the

circadian clock by cryptochrome phosphorylation and degradation.

Science (80- ) 326:437–440. https://doi.org/10.1126/science.1172156

Yoo SH, Mohawk JA, Siepka SM, et al (2013) Competing E3 ubiquitin

ligases govern circadian periodicity by degradation of CRY in nucleus and

cytoplasm. Cell 152:1091–1105. https://doi.org/10.1016/j.cell.2013.01.055

Hirano A, Yumimoto K, Tsunematsu R, et al (2013) FBXL21 regulates

oscillation of the circadian clock through ubiquitination and stabilization of

cryptochromes. Cell 152:1106–1118.

https://doi.org/10.1016/j.cell.2013.01.054

Ralph M, Menaker M (1988) A mutation of the circadian system in golden

hamsters. Science (80- ) 241:1225–1227.

https://doi.org/10.1126/science.3413487

Lowrey PL, Shimomura K, Antoch MP, et al (2000) Positional Syntenic

Cloning and Functional Characterization of the Mammalian Circadian

Mutation. Science (80- ) 288:483–491.

https://doi.org/10.1126/science.288.5465.483

Kloss B, Price JL, Saez L, et al (1998) The Drosophila clock gene doubletime encodes a protein closely related to human casein kinase Iε. Cell

94:97–107. https://doi.org/10.1016/S0092-8674(00)81225-8

Price JL, Blau J, Rothenfluh A, et al (1998) double-time Is a Novel

Drosophila Clock Gene that Regulates PERIOD Protein Accumulation.

Cell 94:83–95. https://doi.org/10.1016/S0092-8674(00)81224-6

Xu Y, Padiath QS, Shapiro RE, et al (2005) Functional consequences of a

CKIδ mutation causing familial advanced sleep phase syndrome. Nature

434:640–644. https://doi.org/10.1038/nature03453

Brennan KC, Bates EA, Shapiro RE, et al (2013) Casein kinase Iδ

mutations in familial migraine and advanced sleep phase. Sci Transl Med

5:. https://doi.org/10.1126/scitranslmed.3005784

Toh KL, Jones CR, He Y, et al (2001) An hPer2 phosphorylation site

mutation in familiar advanced sleep phase syndrome. Science (80- )

291:1040–1043. https://doi.org/10.1126/science.1057499

Shanware NP, Hutchinson JA, Kim SH, et al (2011) Casein kinase 1dependent phosphorylation of familial advanced sleep phase syndromeassociated residues controls PERIOD 2 stability. J Biol Chem 286:12766–

12774. https://doi.org/10.1074/jbc.M111.224014

35

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Vanselow K, Vanselow JT, Westermark PO, et al (2006) Differential

effects of PER2 phosphorylation: Molecular basis for the human familial

advanced sleep phase syndrome (FASPS). Genes Dev 20:2660–2672.

https://doi.org/10.1101/gad.397006

Xu Y, Toh KL, Jones CR, et al (2007) Modeling of a Human Circadian

Mutation Yields Insights into Clock Regulation by PER2. Cell 128:59–70.

https://doi.org/10.1016/j.cell.2006.11.043

Gross SD, Anderson RA (1998) Casein kinase I: Spatial organization and

positioning of a multifunctional protein kinase family. Cell Signal 10:699–

711. https://doi.org/10.1016/S0898-6568(98)00042-4

Fustin J, Kojima R, Itoh K, et al (2018) Two Ck1δ transcripts regulated by

m6A methylation code for two antagonistic kinases in the control of the

circadian clock. Proc Natl Acad Sci 115:5980–5985.

https://doi.org/10.1073/pnas.1721371115

Narasimamurthy R, Hunt SR, Lu Y, et al (2018) CK1δ/ε protein kinase

primes the PER2 circadian phosphoswitch. Proc Natl Acad Sci 115:5986–

5991. https://doi.org/10.1073/pnas.1721076115

Keesler GA, Camacho F, Guo Y, et al (2000) Phosphorylation and

destabilization of human period I clock protein by human casein kinase Iε.

Neuroreport 11:951–955. https://doi.org/10.1097/00001756-20000407000011

Camacho F, Cilio M, Guo Y, et al (2001) Human casein kinase Iδ

phosphorylation of human circadian clock proteins period 1 and 2. FEBS

Lett 489:159–165. https://doi.org/10.1016/S0014-5793(00)02434-0

Eide EJ, Woolf MF, Kang H, et al (2005) Control of Mammalian Circadian

Rhythm by CKI ε -Regulated Proteasome-Mediated PER2 Degradation

Control of Mammalian Circadian Rhythm by CKI ε -Regulated

Proteasome-Mediated PER2 Degradation. Mol Cell Biol 25:2795–2807.

https://doi.org/10.1128/MCB.25.7.2795

Isojima Y, Nakajima M, Ukai H, et al (2009) CKIε/δ-dependent

phosphorylation is a temperature-insensitive, period-determining process

in the mammalian circadian clock. Proc Natl Acad Sci 106:15744–15749.

https://doi.org/10.1073/pnas.0908733106

Meng Q-J, Maywood ES, Bechtold DA, et al (2010) Entrainment of

disrupted circadian behavior through inhibition of casein kinase 1 (CK1)

enzymes. Proc Natl Acad Sci 107:15240–15245.

36

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

https://doi.org/10.1073/pnas.1005101107

Uehara TN, Mizutani Y, Kuwata K, et al (2019) Casein kinase 1 family

regulates PRR5 and TOC1 in the Arabidopsis circadian clock. Proc Natl

Acad Sci 116:11528–11536. https://doi.org/10.1073/pnas.1903357116

Shirogane T, Jin J, Ang XL, Harper JW (2005) SCFβ-TRCP controls

Clock-dependent transcription via casein kinase 1-dependent degradation

of the mammalian period-1 (Per1) protein. J Biol Chem 280:26863–

26872. https://doi.org/10.1074/jbc.M502862200

Zhou M, Kim JK, Eng GWL, et al (2015) A Period2 Phosphoswitch

Regulates and Temperature Compensates Circadian Period. Mol Cell

60:77–88. https://doi.org/10.1016/j.molcel.2015.08.022

Tosini G, Menaker M (1998) The tau mutation affects temperature

compensation of hamster retinal circadian oscillators. Neuroreport

9:1001–5

Hastings JW, Sweeney BM (1957) on the Mechanism of Temperature

Independence in a Biological Clock. Proc Natl Acad Sci 43:804–811.

https://doi.org/10.1073/pnas.43.9.804

Shinohara Y, Koyama YM, Ukai-Tadenuma M, et al (2017) TemperatureSensitive Substrate and Product Binding Underlie TemperatureCompensated Phosphorylation in the Clock. Mol Cell 67:783–798.e20.

https://doi.org/10.1016/j.molcel.2017.08.009

Yoshitane H, Takao T, Satomi Y, et al (2009) Roles of CLOCK

Phosphorylation in Suppression of E-Box-Dependent Transcription. Mol

Cell Biol 29:3675–3686. https://doi.org/10.1128/MCB.01864-08

Philpott JM, Narasimamurthy R, Ricci CG, et al (2020) Casein kinase 1

dynamics underlie substrate selectivity and the PER2 circadian

phosphoswitch. Elife 9:1–24. https://doi.org/10.7554/eLife.52343

Lee C, Etchegaray J-P, Cagampang FRA, et al (2001) Posttranslational

Mechanisms Regulate the Mammalian Circadian Clock. Cell 107:855–

867. https://doi.org/10.1016/S0092-8674(01)00610-9

Aryal RP, Kwak PB, Tamayo AG, et al (2017) Macromolecular

Assemblies of the Mammalian Circadian Clock. Mol Cell 67:770–782.e6.

https://doi.org/10.1016/j.molcel.2017.07.017

Ye R, Selby CP, Chiou Y, et al (2014) Dual modes of CLOCK:BMAL1

inhibition mediated by Cryptochrome and Period proteins in the

mammalian circadian clock. Genes Dev 28:1989–1998.

37

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

https://doi.org/10.1101/gad.249417.114

Chen R, Schirmer A, Lee Y, et al (2009) Rhythmic PER Abundance

Defines a Critical Nodal Point for Negative Feedback within the Circadian

Clock Mechanism. Mol Cell 36:417–430.

https://doi.org/10.1016/j.molcel.2009.10.012

Nangle SN, Rosensweig C, Koike N, et al (2014) Molecular assembly of

the period-cryptochrome circadian transcriptional repressor complex. Elife

3:1–14. https://doi.org/10.7554/eLife.03674

Xing W, Busino L, Hinds TR, et al (2013) SCF FBXL3 ubiquitin ligase

targets cryptochromes at their cofactor pocket. Nature 496:64–68.

https://doi.org/10.1038/nature11964

Koike N, Yoo S-H, Huang H-C, et al (2012) Transcriptional Architecture

and Chromatin Landscape of the Core Circadian Clock in Mammals.

Science (80- ) 338:349–354. https://doi.org/10.1126/science.1226339

Yoo SH, Yamazaki S, Lowrey PL, et al (2004) PERIOD2::LUCIFERASE

real-time reporting of circadian dynamics reveals persistent circadian

oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A

101:5339–5346. https://doi.org/10.1073/pnas.0308709101

Hirota T, Lee JW, Lewis WG, et al (2010) High-throughput chemical

screen identifies a novel potent modulator of cellular circadian rhythms

and reveals CKIα as a clock regulatory kinase. PLoS Biol 8:.

https://doi.org/10.1371/journal.pbio.1000559

Lam VH, Li YH, Liu X, et al (2018) CK1α collaborates with DOUBLETIME

to regulate PERIOD function in the Drosophila circadian clock. J Neurosci

38:10631–10643. https://doi.org/10.1523/JNEUROSCI.0871-18.2018

Tsuchiya Y, Akashi M, Matsuda M, et al (2009) Involvement of the Protein

Kinase CK2 in the Regulation of Mammalian Circadian Rhythms. Sci

Signal 2:ra26-ra26. https://doi.org/10.1126/scisignal.2000305

Jakubcakova V, Oster H, Tamanini F, et al (2007) Light Entrainment of

the Mammalian Circadian Clock by a PRKCA-Dependent

Posttranslational Mechanism. Neuron 54:831–843.

https://doi.org/10.1016/j.neuron.2007.04.031

Mehta N, Cheng AH, Chiang CK, et al (2015) GRK2 Fine-Tunes

Circadian Clock Speed and Entrainment via Transcriptional and Posttranslational Control of PERIOD Proteins. Cell Rep 12:1272–1288.

https://doi.org/10.1016/j.celrep.2015.07.037

38

54.

56.

Garceau NY, Liu Y, Loros JJ, Dunlap JC (1997) Alternative initiation of

translation and time-specific phosphorylation yield multiple forms of the

essential clock protein FREQUENCY. Cell 89:469–476.

https://doi.org/10.1016/S0092-8674(00)80227-5

Querfurth C, Diernfellner ACR, Gin E, et al (2011) Circadian

Conformational Change of the Neurospora Clock Protein FREQUENCY

Triggered by Clustered Hyperphosphorylation of a Basic Domain. Mol Cell

43:713–722. https://doi.org/10.1016/j.molcel.2011.06.033

He Q, Cha J, He Q, et al (2006) CKI and CKII mediate the FREQUENCY-

57.

dependent phosphorylation of the WHITE COLLAR complex to close the

Neurospora circadian negative feedback loop. Genes Dev 20:2552–2565.

https://doi.org/10.1101/gad.1463506

Larrondo LF, Olivares-Yanez C, Baker CL, et al (2015) Decoupling

55.

58.

59.

circadian clock protein turnover from circadian period determination.

Science (80- ) 347:1257277–1257277.

https://doi.org/10.1126/science.1257277

Liu X, Chen A, Caicedo-Casso A, et al (2019) FRQ-CK1 interaction

determines the period of circadian rhythms in Neurospora. Nat Commun

10:4352. https://doi.org/10.1038/s41467-019-12239-w

61.

Shearman LP, Sriram S, Weaver DR, et al (2000) Interacting molecular

loops in the mammalian circadian clock. Science (80- ) 288:1013–1019.

https://doi.org/10.1126/science.288.5468.1013

Ye R, Selby CP, Ozturk N, et al (2011) Biochemical analysis of the

canonical model for the mammalian circadian clock. J Biol Chem

286:25891–25902. https://doi.org/10.1074/jbc.M111.254680

Ruoff P (1992) Introducing temperature‐compensation in any reaction

62.

kinetic oscillator model. J Interdisiplinary Cycle Res 23:92–99.

https://doi.org/10.1080/09291019209360133

Ohsaki K, Oishi K, Kozono Y, et al (2008) The role of β-TrCP1 and β-

60.

63.

TrCP2 in circadian rhythm generation by mediating degradation of clock

protein PER2. J Biochem 144:609–618. https://doi.org/10.1093/jb/mvn112

Liu J, Zou X, Gotoh T, et al (2018) Distinct control of PERIOD2

degradation and circadian rhythms by the oncoprotein and ubiquitin ligase

MDM2. Sci Signal 11:eaau0715.

https://doi.org/10.1126/scisignal.aau0715

39

6. List of Abbreviations

PER

Period

DBP

Albumin D-site binding protein

CLOCK

Circadian locomotor output cycle kaput

BMAL1

Brain muscle arnt-like 1

CRY

Cryptochrome

CK1

Casein kinase 1

FASP

Familial advanced sleep phase

β-TrCP

Beta-transducin repeat-containing homologue protein

LD

Light dark cycle

DD

Constant darkness

MEF

Mouse embryonic fibroblast

LUC

Luciferase

CHX

Cycloheximide

Dex

Dexamethasone

RING

Really interesting new gene

PAR bZIP

TRAF7

SUMO

Proline- and acidic amino acid-rich basic leucine zipper

5 年以内に雑誌等で刊行予定のため、非公開。

Tumor necrosis factor receptor-associated factor 7

Small ubiquitin like modifier

40

7. Acknowledgements

This thesis could not be completed without help of those involved. I would

like to thank everyone who supported me during my research.

Firstly, I am grateful to my supervisor, Dr. Yoshitaka Fukada for training me

to be a scientist. His advices enabled me to make my research more valuable.

In addition, he gave me an opportunity to do research on PER2 mutant mice in

parallel with the study on the DBP proteolysis. Secondly, I would like to express

my gratitude to Dr. Hikari Yoshitane who gave me a million of constructive

comments on my research. I would also like to show my respect and gratitude

to Ms. Rina Nunokawa. She instilled me most of biochemical techniques

required for this thesis. In addition, it would be simply impossible to identify the

regulator unless she performed the DBP-interactome analysis.

I am grateful to co-authors of the paper on PER2 mutant mice, Drs. David

Marc Virshup (Duke-NUS Medical School), Rajesh Narasimamurthy (Duke-NUS

Medical School), Jae Kyoung Kim (Korea Advanced Institute of Science and

Technology).

I would like to thank all the former and current members of Fukada

laboratory, especially Dr. Yohey Ogawa, for beneficial discussion and for

inspiring me.

I am grateful to Drs. Atsu Aiba and Harumi Nakao (The University of

Tokyo) for their help with mouse embryo freezing and the embryo transfer. I

also thank Drs. Jun-ichiro Inoue (The Institute of Medical Science, The

University of Tokyo) and Shigetsugu Hatakeyama (Hokkaido University) for

kindly giving me E2 (DN) expression plasmids and TRIM25 expression plasmid,

respectively.

Finally, I would like to a lot of thanks to my parents to allow and help me to

decide the way.

41

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る