リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Avoidance of ant chemical traces by spider mites and its interpretation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Avoidance of ant chemical traces by spider mites and its interpretation

Yano, Shuichi Konishi, Mayu Akino, Toshiharu 京都大学 DOI:10.1007/s10493-022-00752-5

2022.10

概要

Spider mites become easy prey for ants when they leave their protective webs; therefore, the ability to avoid traces of ongoing ant activity should confer a selective advantage to mites. We examined avoidance of ant traces by the spider mites Tetranychus kanzawai and Tetranychus urticae. Both mite species avoided host plant leaves with active traces of Pristomyrmex punctatus or Formica japonica ants. Pristomyrmex punctatus trace avoidance by T. kanzawai lasted for more than 1 h, but not more than 3 h. Tetranychus kanzawai also avoided P. punctatus traces on plant stems, along which the mites access leaves. Moreover, T. kanzawai avoided hexane extracts of P. punctatus or F. japonica applied to a filter paper pathway. This study represents the first demonstration of a repellent effect of ant chemical traces on spider mites. Considering the substantial abundance and global distribution of ants in nature, such repellent effects may help to answer the long-standing question of why only a small fraction of available plant resources is used by herbivores. Although spider mites have developed resistance against many synthetic pesticides, natural compounds that simulate ant chemical traces may repel spider mites from agricultural crops.

この論文で使われている画像

参考文献

Adachi M, Yano S (2017) Ant-mediated indirect negative effects of aphids on spider mites living on the same plant. Exp Appl Acarol 72:15–21. https://doi.org/10.1007/s10493-017-0136-8

Attygalle AB, Morgan ED (1985) Ant trail pheromones. Adv Insect Physiol 18:1–30. https://doi.org/10.1016/s0065-2806(08)60038-7

Bernstein C (1984) Prey and predator emigration responses in the acarine system Tetranychus urticae-Phy- toseiulus persimilis. Oecologia 61:134–142. https://doi.org/10.1007/BF00379099

Bolker B, Holyoak M, Křivan V, Rowe L, Schmitz O (2003) Connecting theoretical and empirical stud- ies of trait-mediated interactions. Ecology 84:1101–1114. https://doi.org/10.1890/0012-9658(2003) 084[1101:CTAESO]2.0.co;2

Bowler DE, Yano S, Amano H (2013) The non-consumptive effects of a predator on spider mites depend on predator density. J Zool 289:52–59. https://doi.org/10.1111/j.1469-7998.2012.00961.x

Brandenburg RL, Kennedy GG (1982) Intercrop relationships and spider mite dispersal in a corn/peanut agroecosystem. Entomol Exp Appl 32:269–276. https://doi.org/10.1111/j.1570-7458.1982.tb03217.x

Creel S, Christianson D (2008) Relationships between direct predation and risk effects. Trends Ecol Evol 23:194–201. https://doi.org/10.1016/j.tree.2007.12.004

Downes S (2001) Trading heat and food for safety: costs of predator avoidance in a lizard. Ecology 82:2870– 2881. https://doi.org/10.1890/0012-9658(2001)082[2870:THAFFS]2.0.CO;2

Edmunds M, Brunner D (1999) 13. Ethology of defenses against predators. In: Prete FR, Wells H, Wells PH, Hurd LE (eds) The praying Mantids. The Johns Hopkins University Press, Baltimore, Maryland and London, pp 276–299

Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton Grostal P, Dicke M (1999) Direct and indirect cues of predation risk influence behavior and reproduction of prey: a case for acarine interactions. Behav Ecol 10:422–427. https://doi.org/10.1093/beheco/10.4.422 Grostal P, Dicke M (2000) Recognising one’s enemies: a functional approach to risk assessment by prey. Behav Ecol Sociobiol 47:258–264. https://doi.org/10.1007/s002650050663

Hairston NG, Smith FE, Slobdkin LB (1960) Community structure, population control, and competition. Am Nat 94:421–425. https://doi.org/10.3390/insects3020573

Haney PB, Luck RF, Moreno DS (1987) Increases in densities of the citrus red mite, Panonychus citri (Aca- rina: Tetranychidae), in association with the argentine ant, Iridomyrmex humilis (Hymenoptera: For- micidae), in southern California citrus. Entomophaga 32:49–57. https://doi.org/10.1007/BF02390931

Helanterä H, Sundström L (2004) Worker reproduction in the ant Formica fusca. J Evol Biol 18:162–171. https://doi.org/10.1111/j.1420-9101.2004.00777.x(2004)

Helanterä H, Sundström L (2007) Worker reproduction in Formica ants. Am Nat. https://doi.org/10.1086/ 518185

Helle W, Sabelis MW (eds) (1985) Spider mites: their biology, natural enemies and control (vol 1A). Else- vier, Amsterdam

Hirayama H, Kasuya E (2014) Potential costs of selecting good sites for offspring: increased risk of drown- ing and negative effects on egg production. Ethology 120:1228–1236. https://doi.org/10.1111/eth. 12296

Hölldobler B, Wilson EO (1990) The Ants. Belknap Press of Harvard University Press, Cambridge Hölldobler B, Wilson EO (1994) Journey to the ants: a story of scientific exploration. Belknap Press of Har-vard University Press, Cambridge

Jeppson LR, Keifer HH, Baker TW (1975) Mites injurious to economic plants. University of California Press, Berkeley

Johnson WT, Lyon HH (1988) Insects that feed on trees and shrubs, 2nd edn. Comstock Publishing Associates, Ithaca, New York

Kennedy GG, Smitley DR (1985) Dispersal. In: Helle W, Sabelis MW (eds) Spider mites: their biology, natural enemies and control. Elsevier, Amsterdam, pp 233–251

Kiesecker JM, Chivers DP, Blaustein AR (1996) The use of chemical cues in predator recognition by western toad tadpoles. Anim Behav 52:1237–1245. https://doi.org/10.1006/anbe.1996.0271

Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48:25–34. https://doi.org/10.2307/1313225

Losey JE, Denno RF (1998) Positive predator–predator interactions: enhanced predation rates and syn- ergistic suppression of aphid populations. Ecology 79:2143–2152. https://doi.org/10.1890/0012- 9658(1998)079[2143:PPPIEP]2.0.CO;2

Mayank C (2020) Recent trends in insect pest management. 2 Chief Editor.

Mizutani A (1980) Preliminary report on worker reproduction in the ant Pristomyrmex punctatus Mayr. Kontyu 48:327–332

Morrison L (1999) Indirect effects of phorid fly parasitoids on the mechanisms of interspecific competi- tion among ants. Oecologia 121:113–122. https://doi.org/10.1007/s004420050912

Offenberg J, Nielsen MG, Havanon MDJS, Aksornkoae S (2004) Evidence that insect herbivores are deterred by ant pheromones. Proc R Soc Lond B (suppl) 271:S433–S435. https://doi.org/10.1098/ rsbl.2004.0210

Okada S, Yano S (2021) Oviposition-site shift in phytophagous mites reflects a trade-off between preda- tor avoidance and rainstorm resistance. Biol Lett 17:20200669. https://doi.org/10.1098/rsbl.2020. 0669

Oku K, Yano S (2006) Host plant acceptance of the phytophagous mite Tetranychus kanzawai Kishida is affected by availability of refuge on the leaf surface. Ecol Res 21:446–452. https://doi.org/10.1007/ s11284-005-0141-y

Oku K, Yano S, Takafuji A (2004) Nonlethal indirect effects of a native predatory mite, Amblyseius womersleyi Schicha (Acari: Phytoseiidae), on the phytophagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae). J Ethol 22:109–112. https://doi.org/10.1007/s10164-003-0102-2

Oliver TH, Jones J, Cook JM, Leather SR (2008) Avoidance responses of aphidophagous ladybird, Ada- lia bipunctata, to aphid-tending ants. Ecol Entomol 33:523–528. https://doi.org/10.1111/j.1365- 2311.2008.01009.x

Osborne LS, Pena JE, Oi DH (1995) Predation by Tapinoma melanocephalum (Hymenoptera: Formi- cidae) on twospotted spider mites (Acari: Tetranychidae) in Florida greenhouses. Fla Entomol 78:565–570

Otsuki H, Yano S (2014a) Functionally different predators break down antipredator defenses of spider mites. Entomol Exp Appl 151:27–33. https://doi.org/10.1111/eea.12164

Otsuki H, Yano S (2014b) Potential lethal and non-lethal effects of predators on dispersal of spider mites. Exp Appl Acarol 64:265–275. https://doi.org/10.1007/s10493-014-9824-9

Petranka JW, Kats LB, Sih A (1987) Predator-prey interactions among fish and larval amphibians: use of chemical cues to detect predatory fish. Anim Behav 35:420–425. https://doi.org/10.1016/S0003- 3472(87)80266-X

Preisser EL, Bolnick DL, Benard MF (2005) Scared to death? The effects of intimidation and consump- tion in predator–prey interactions. Ecology 86:501–509. https://doi.org/10.1890/04-0719

R Core Team (2015) R: A language and environment for statistical computing (v.3.2.2). R Foundation for Statistical Computing, Vienna

Saito Y (1983) The concept of “life types” in Tetranychinae. An attempt to classify the spinning behav- iour of Tetranychinae. Acarologia 24:377–391

Sih A, Englund G, Wooster D (1998) Emergent impacts of multiple predators on prey. Trends Ecol Evol 13:350–355. https://doi.org/10.1016/S0169-5347(98)01437-2

Škaloudová B, Zemek R, Křivan V (2007) The effect of predation risk on an acarine system. Anim Behav 74:813–821. https://doi.org/10.1016/j.anbehav.2007.02.005

Strong DR, Lawton JH, Southwood TRE (1984) Insects on plants. Community patterns and mechanism. Blackwell Scientific Publications, Oxford

Van Mele P, Vayssieres J, Adandonon A, Shinzogan A (2009) Ant cues affect the oviposition behavior of fruit flies (Diptera: Tephritidae) in Africa. Physiol Entomol 34:256–261. https://doi.org/10.1111/j. 1365-3032.2009.00685.x

Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communi- ties. Ecology 84:1083–1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2

Yano S, Wakabayashi M, Takabayashi J, Takafuji A (1998) Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): a method for quantifying host plant acceptance. Exp Appl Acarol 22:595–601. https://doi.org/10.1023/A:1006138527904

Yano S, Kanaya M, Takafuji A (2003) Genetic basis of color variation in leaf scars induced by the Kanzawa spider mite. Entomol Exp Appl 106:37–44. https://doi.org/10.1046/j.1570-7458.2003.00005.x

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る