リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spider mites avoid caterpillar traces to prevent intraguild predation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spider mites avoid caterpillar traces to prevent intraguild predation

Kinto, Shiori Akino, Toshiharu Yano, Shuichi 京都大学 DOI:10.1038/s41598-023-28861-0

2023

概要

The phytophagous spider mites Tetranychus kanzawai and Tetranychus urticae can be as small as < 0.5 mm; thus, they are often incidentally consumed along with food plant leaves by voracious lepidopteran larvae (hereafter, ‘caterpillars’). Therefore, the ability to avoid such intraguild predation should confer a selective advantage to mites. We experimentally demonstrated that adult females of both mite species avoided settling on food plant leaves with traces of all tested caterpillar species (Bombyx mori, Papilio xuthus, Spodoptera litura and Theretra oldenlandiae). We examined additional interactions using B. mori and T. kanzawai and found that B. mori trace avoidance by T. kanzawai lasted for more than 48 h. Tetranychus kanzawai also avoided B. mori traces on plant stems, along which mites access leaves. Moreover, T. kanzawai avoided acetone extracts of B. mori traces applied to filter paper, indicating that chemical substances of caterpillar traces are responsible for the avoidance. This study is the first demonstration of a repellent effect of herbivore trace chemicals on heterospecific herbivores. Although spider mites have developed resistance against many synthetic pesticides, these results predict that natural compounds simulating caterpillar traces may repel spider mites from agricultural crops.

この論文で使われている画像

参考文献

1. Polis, G. A., Myers, C. A. & Holt, R. D. Te ecology and evolution of intraguild predation: Potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330 (1989).

2. Fukuse, K. & Yano, S. Delayed mite hatching in response to mechanical stimuli simulating egg predation attempts. Sci. Rep. 9, 13395 (2019).

3. Sergio, F. & Hiraldo, F. Intraguild predation in raptor assemblages: A review. Ibis 150, 132–145 (2008).

4. Schausberger, P. Cannibalism among phytoseiid mites: A review. Exp. Appl. Acarol. 29, 173–191 (2003).

5. Gish, M., Dafni, A. & Inbar, M. Mammalian herbivore breath alerts aphids to fee host plant. Curr. Biol. 20, R628–R629 (2010).

6. Shirotsuka, K. & Yano, S. Coincidental intraguild predation by caterpillars on spider mites. Exp. Appl. Acarol. 56, 355–364 (2012).

7. Gish, M., Ben-Ari, M. & Inbar, M. Direct consumptive interactions between mammalian herbivores and plant-dwelling invertebrates: Prevalence, signifcance, and prospectus. Oecologia 183, 347–352 (2017).

8. Jeppson, L. R., Keifer, H. H. & Baker, E. W. Mites Injurious to Economic Plants (University of California Press, 1975).

9. Takafuji, A., Ozawa, A., Nemoto, H. & Gotoh, T. Spider mites of Japan: Teir biology and control. Exp. Appl. Acarol. 24, 319–335 (2000).

10. van de Vrie, M., McMurtry, J. & Hufaker, C. Ecology of tetranychid mites and their natural enemies: A review: III. Biology, ecology, and pest status, and host-plant relations of tetranychids. Hilgardia 41, 343–432 (1972).

11. Gerson, U. Silk production in Tetranychus (acari: tetranychidae). In Recent Advances in Acarology (ed. Rodriguez, J. G.) 177–188 (Academic Press, 1979). https://doi.org/10.1016/B978-0-12-592201-2.50029-4.

12. Saito, Y. Te concept of life types in Tetranychinae. An attempt to classify the spinning behaviour of Tetranychinae. Acarologia 24, 377–391 (1983).

13. Fukuda, H. et al. Te life histories of butterfies in Japan, vol. 3. Hoikusha Osaka Jpn. Engl. Summ. (1982).

14. Gerson, U. Acarine pests of citrus: overview and non-chemical control. Syst. Appl. Acarol. 8, 3–12 (2003).

15. Mutuura, A. & Issiki, S. Early stages of Japanese moths in colour 1. 1. (Hoikusha, 1965).

16. Oku, K., Yano, S. & Takafuji, A. Host plant acceptance by the phytophagous mite Tetranychus kanzawai Kishida is afected by the availability of a refuge on the leaf surface. Ecol. Res. 21, 446–452 (2006).

17. Yano, S., Wakabayashi, M., Takabayashi, J. & Takafuji, A. Factors determining the host plant range of the phytophagous mite, Tetranychus urticae (Acari: Tetranychidae): A method for quantifying host plant acceptance. Exp. Appl. Acarol. 22, 595–601 (1998).

18. Bowler, D. E., Yano, S. & Amano, H. Te non-consumptive efects of a predator on spider mites depend on predator density. J. Zool. 289, 52–59 (2013).

19. Grostal, P. & Dicke, M. Direct and indirect cues of predation risk infuence behavior and reproduction of prey: A case for acarine interactions. Behav. Ecol. 10, 422–427 (1999).

20. Škaloudová, B., Zemek, R. & Křivan, V. Te efect of predation risk on an acarine system. Anim. Behav. 74, 813–821 (2007).

21. Yano, S., Konishi, M. & Akino, T. Avoidance of ant chemical traces by spider mites and its interpretation. Exp. Appl. Acarol. 88, 153–163 (2022).

22. Shekhawat, S., Shafq, M. & Basri, R. Efect of Host Plants on Life Table Parameters of Spodoptera litura. 324–332 (2018).

23. Xue, M., Pang, Y.-H., Wang, H.-T., Li, Q.-L. & Liu, T.-X. Efects of four host plants on biology and food utilization of the cutworm, Spodoptera litura. J. Insect Sci. 10, 22 (2010).

24. Mittal, A., Kansal, R., Kalia, V., Tripathi, M. & Gupta, V. K. A kidney bean trypsin inhibitor with an insecticidal potential against Helicoverpa armigera and Spodoptera litura. Acta Physiol. Plant. 36, 525–539 (2014).

25. Ikegami, Y., Yano, S., Takabayashi, J. & Takafuji, A. Function of quiescence of Tetranychus kanzawai (Acari: Tetranychidae), as a defense mechanism against rain. Appl. Entomol. Zool. 35, 339–343 (2000).

26. Agrawal, A. A. Host-range evolution: Adaptation and trade-ofs in ftness of mites on alternative hosts. Ecology 81, 500–508 (2000).

27. Gotoh, T., Gomi, K. & Nagata, T. Incompatibility and host plant diferences among populations of Tetranychus kanzawai Kishida (Acari : Tetranychidae). Appl. Entomol. Zool. 34, 551–561 (1999).

28. McMurtry, J., Hufaker, C. & van de Vrie, M. Ecology of tetranychid mites and their natural enemies: A review: I. Tetranychid enemies: Teir biological characters and the impact of spray practices. Hilgardia 40, 331–390 (1970).

29. Otsuki, H. & Yano, S. Functionally diferent predators break down antipredator defenses of spider mites. Entomol. Exp. Appl. 151, 27–33 (2014).

30. Sabelis, M. W. & Bakker, F. M. How predatory mites cope with the web of their tetranychid prey: A functional view on dorsal chaetotaxy in the Phytoseiidae. Exp. Appl. Acarol. 16, 203–225 (1992).

31. Yano, S. Cooperative web sharing against predators promotes group living in spider mites. Behav. Ecol. Sociobiol. 66, 845–853 (2012).

32. Bernstein, C. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia 61, 134–142 (1984).

33. Otsuki, H. & Yano, S. Te stealthiness of predatory mites as spider mite biological control agents. Biol. Control 136, 104010 (2019).

34. Lemos, F. et al. Spider mite web mediates anti-predator behaviour. Exp. Appl. Acarol. 52, 1–10 (2010).

35. Murase, A., Fujita, K. & Yano, S. Behavioural fexibility in spider mites: Oviposition site shifs based on past and present stimuli from conspecifcs and predators. R. Soc. Open Sci. 4, 170328 (2017).

36. Oku, K., Yano, S. & Takafuji, A. Spider mite’s use of a refuge during the quiescent stage in the presence of a predator. Entomol. Exp. Appl. 108, 71–74 (2003).

37. Oku, K. & Yano, S. Spider mites (Acari: Tetranychidae) deform their host plant leaves: An investigation from the viewpoint of predator avoidance. Ann. Entomol. Soc. Am. 100, 69–72 (2007).

38. Otsuki, H. & Yano, S. Within-patch oviposition site shifs by spider mites in response to prior predation risks decrease predator patch exploitation. Ethology 123, 453–459 (2017).

39. Ashihara, W., N, S. & T, H. Experimental studies on the prey consumption and ovipositional rate of Phytoseiulus persimilis AthiasHenriot as a predator of Tetranychus kanzawai Kishida (Acarina: Phytoseiidae). Bull. Fruit Tree Res. Stn. Ser. E Akitsu (1976).

40. Hairston, N. G., Smith, F. E. & Slobodkin, L. B. Community structure, population control, and competition. Am. Nat. 94, 421–425 (1960).

41. Strong, D. R., Lawton, J. H. & Southwood, R. Insects on Plants: Community Patterns and Mechanisms (Harvard University Press, 1984).

42. G. Alberti, A. R. C. Internal anatomy. In Spider Mites: Teir Biology, Natural Enemies and Control World Crop Pests 1A (eds Helle, W. & Sabelis, M. W.) 29–62 (Elsevier Publications, 1985).

43. Attia, S. et al. A review of the major biological approaches to control the worldwide pest Tetranychus urticae (Acari: Tetranychidae) with special reference to natural pesticides: Biological approaches to control Tetranychus urticae. J. Pest Sci. 86, 361–386 (2013).

44. Van Leeuwen, T., Vontas, J., Tsagkarakou, A., Dermauw, W. & Tirry, L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: A review. Insect Biochem. Mol. Biol. 40, 563–572 (2010).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る