リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Fission yeast Stn1 maintains stability of repetitive DNA at subtelomere and ribosomal DNA regions

Yamamoto, Io Nakaoka, Hidenori Takikawa, Masahiro Tashiro, Sanki Kanoh, Junko Miyoshi, Tomoichiro Ishikawa, Fuyuki 京都大学 DOI:10.1093/nar/gkab767

2021.10.11

概要

Telomere binding protein Stn1 forms the CST (Cdc13/CTC1-STN1-TEN1) complex in budding yeast and mammals. Likewise, fission yeast Stn1 and Ten1 form a complex indispensable for telomere protection. We have previously reported that stn1-1, a high-temperature sensitive mutant, rapidly loses telomere DNA at the restrictive temperature due to frequent failure of replication fork progression at telomeres and subtelomeres, both containing repetitive sequences. It is unclear, however, whether Stn1 is required for maintaining other repetitive DNAs such as ribosomal DNA. In this study, we have demonstrated that stn1-1 cells, even when grown at the permissive temperature, exhibited dynamic rearrangements in the telomere-proximal regions of subtelomere and ribosomal DNA repeats. Furthermore, Rad52 and γH2A accumulation was observed at ribosomal DNA repeats in the stn1-1 mutant. The phenotypes exhibited by the stn1-1 allele were largely suppressed in the absence of Reb1, a replication fork barrier-forming protein, suggesting that Stn1 is involved in the maintenance of the arrested replication forks. Collectively, we propose that Stn1 maintains the stability of repetitive DNAs at subtelomeres and rDNA regions.

この論文で使われている画像

参考文献

1. Gadaleta,M.C. and Noguchi,E. (2017) Regulation of DNA

replication through natural impediments in the eukaryotic genome.

Genes (Basel)., 8, 98.

2. Brewer,B.J. and Fangman,W.L. (1988) A replication fork barrier at

the 3 end of yeast ribosomal RNA genes. Cell, 55, 637–643.

3. Sanchez,J.A., Kim,S.M. and Huberman,J.a. (1998) Ribosomal DNA

replication in the fission yeast, Schizosaccharomyces pombe. Exp. Cell

Res., 238, 220–230.

4. Kobayashi,T. and Horiuchi,T. (1996) A yeast gene product, Fob1

protein, required for both replication fork blocking and

recombinational hotspot activities. Genes Cells, 1, 465–474.

5. Sanchez-Gorostiaga,A., Lopez-Estrano,C., Krimer,D.B.,

Schvartzman,J.B. and Hernandez,P. (2004) Transcription termination

factor reb1p causes two replication fork barriers at its cognate sites in

fission yeast ribosomal DNA in vivo. Mol. Cell. Biol., 24, 398–406.

6. Krings,G. and Bastia,D. (2005) Sap1p binds to Ter1 at the ribosomal

DNA of Schizosaccharomyces pombe and causes polar replication

fork arrest. J. Biol. Chem., 280, 39135–39142.

7. Weitao,T., Budd,M., Hoopes,L.L.M. and Campbell,J.L. (2003) Dna2

helicase/nuclease causes replicative fork stalling and double-strand

breaks in the ribosomal DNA of Saccharomyces cerevisiae. J. Biol.

Chem., 278, 22513–22522.

8. Kobayashi,T., Heck,D.J., Nomura,M. and Horiuchi,T. (1998)

Expansion and contraction of ribosomal DNA repeats in (Fob1)

protein and the role of RNA polymerase I Expansion and

contraction of ribosomal DNA repeats in Saccharomyces cerevisiae:

requirement of replication fork blocking (Fob1) protein and the role.

Genes Dev., 12, 3821–3830.

9. Sasaki,M. and Kobayashi,T. (2017) Ctf4 prevents genome

rearrangements by suppressing DNA double-strand break formation

and its end resection at arrested replication forks. Mol. Cell, 66,

533–545.

10. Hiraoka,Y., Henderson,E. and Blackburn,E.H. (1998) Not so

peculiar: fission yeast telomere repeats. Trends Biochem. Sci., 23, 126.

11. Ishikawa,F. (2013) Portrait of replication stress viewed from

telomeres. Cancer Sci., 104, 790–794.

12. Griffith,J.D., Comeau,L., Rosenfield,S., Stansel,R.M., Bianchi,A.,

Moss,H. and De Lange,T. (1999) Mammalian telomeres end in a

large duplex loop. Cell, 97, 503–514.

13. Parkinson,G.N., Lee,M.P.H. and Neidle,S. (2002) Crystal structure of

parallel quadruplexes from human telomeric DNA. Nature, 417,

876–880.

14. Garvik,B., Carson,M. and Hartwell,L. (1995) Single-stranded DNA

arising at telomeres in cdc13 mutants may constitute a specific signal

for the RAD9 checkpoint. Mol. Cell. Biol., 15, 6128–6138.

15. Grandin,N., Reed,S.I. and Charbonneau,M. (1997) Stn1, a new

Saccharomyces cerevisiae protein, is implicated in telomere size

regulation in association with Cdc13. Genes Dev., 11, 512–527.

16. Grandin,N., Damon,C. and Charbonneau,M. (2001) Ten1 functions

in telomere end protection and length regulation in association with

Stn1 and Cdc13. EMBO J., 20, 1173–1183.

Downloaded from https://academic.oup.com/nar/article/49/18/10465/6370253 by Kyoto Daigaku Johogakukenkyuka Tosho user on 25 May 2022

We thank M. Tamura and Y. Watanabe for technical assistance, and A. Katayama, A. Shirabuchi, E. Yamazaki,

S. Fukumura, N. Hayashi, T. Tsuda and Y. Hirata for excellent secretarial work, and J. Hejna for critically reading

the manuscript. This study was conducted through the Joint

Usage/Research Center Program of the Radiation Biology

Center, Kyoto University.

17. Miyake,Y., Nakamura,M., Nabetani,A., Shimamura,S., Tamura,M.,

Yonehara,S., Saito,M. and Ishikawa,F. (2009) RPA-like mammalian

Ctc1-Stn1-Ten1 complex binds to single-stranded DNA and protects

telomeres independently of the Pot1 pathway. Mol. Cell, 36, 193–206.

18. De Lange,T. (2005) Shelterin: the protein complex that shapes and

safeguards human telomeres. Genes Dev., 19, 2100–2110.

19. Miyoshi,T., Kanoh,J., Saito,M. and Ishikawa,F. (2008) Fission yeast

Pot1-Tpp1 protects telomeres and regulates telomere length. Science,

320, 1341–1344.

20. Mart´ın,V., Du,L.-L., Rozenzhak,S. and Russell,P. (2007) Protection

of telomeres by a conserved Stn1-Ten1 complex. Proc. Natl. Acad.

Sci. U.S.A., 104, 14038–14043.

21. Takikawa,M., Tarumoto,Y. and Ishikawa,F. (2017) Fission yeast Stn1

is crucial for semi-conservative replication at telomeres and

subtelomeres. Nucleic Acids Res., 45, 1255–1269.

22. Matmati,S., Vaurs,M., Escandell,J.M., Maestroni,L.,

Nakamura,T.M., Ferreira,M.G., G´eli,V. and Coulon,S. (2018) The

fission yeast Stn1-Ten1 complex limits telomerase activity via its

SUMO-interacting motif and promotes telomeres replication. Sci.

Adv., 4, eaar2740.

23. Miller,K.M., Rog,O. and Cooper,J.P. (2006) Semi-conservative DNA

replication through telomeres requires Taz1. Nature, 440, 824–828.

24. Oizumi,Y., Kaji,T., Tashiro,S., Takeshita,Y., Date,Y. and Kanoh,J.

(2021) Complete sequences of Schizosaccharomyces pombe

subtelomeres reveal multiple patterns of genome variation. Nat.

Commun., 12, 3–8.

25. Waga,S. and Stillman,B. (1994) Anatomy of a DNA replication fork

revealed by reconstitution of SV40 DNA replication in vitro. Nature,

369, 207–212.

26. Grossi,S., Puglisi,A., Dmitriev,P. V, Lopes,M. and Shore,D. (2004)

Pol12, the B subunit of DNA polymerase alpha, functions in both

telomere capping and length regulation. Genes Dev., 18, 992–1006.

27. Escandell,J.M., Carvalho,E.S., Gallo-Fernandez,M., Reis,C.C.,

Matmati,S., Lu´ıs,I.M., Abreu,I.A., Coulon,S. and Ferreira,M.G.

(2019) Ssu72 phosphatase is a conserved telomere replication

terminator. EMBO J., 38, e100476.

28. Ganduri,S. and Lue,N.F. (2017) STN1-POLA2 interaction provides a

basis for primase-pol ␣ stimulation by human STN1. Nucleic Acids

Res., 45, 9455–9466.

29. Lue,N.F., Chan,J., Wright,W.E. and Hurwitz,J. (2014) The

CDC13-STN1-TEN1 complex stimulates Pol ␣ activity by promoting

RNA priming and primase-to-polymerase switch. Nat. Commun., 5,

5762.

30. Nakaoka,H., Nishiyama,A., Saito,M. and Ishikawa,F. (2012)

Xenopus laevis Ctc1-Stn1-Ten1 (xCST) protein complex is involved in

priming DNA synthesis on single-stranded DNA template in Xenopus

egg extract. J. Biol. Chem., 287, 619–627.

31. Casteel,D.E., Zhuang,S., Zeng,Y., Perrino,F.W., Boss,G.R.,

Goulian,M. and Pilz,R.B. (2009) A DNA polymerase-␣·primase

cofactor with homology to replication protein A-32 regulates DNA

replication in mammalian cells. J. Biol. Chem., 284, 5807–5818.

32. Stewart,J., Wang,F., Chaiken,M.F., Kasbek,C., Chastain,P.D.,

Wright,W.E. and Price,C.M. (2012) Human CST promotes telomere

duplex replication and general replication restart after fork stalling.

EMBO J., 31, 3537–3549.

33. Chastain,M., Zhou,Q., Shiva,O., Whitmore,L., Jia,P., Dai,X.,

Huang,C., Fadri-Moskwik,M., Ye,P. and Chai,W. (2016) Human CST

facilitates genome-wide RAD51 recruitment to GC-rich repetitive

sequences in response to replication stress. Cell Rep., 16, 1300–1314.

34. Alfa,C., Fantes,P., Hyams,J., McLeod,M. and Warbrick,E. (1993) In:

Experiments with Fission Yeast: A Laboratory Course Manual. Cold

Spring Harbor Laboratory Press, NY

35. Sutani,T., Sakata,T., Nakato,R., Masuda,K., Ishibashi,M.,

Yamashita,D., Suzuki,Y., Hirano,T., Bando,M. and Shirahige,K.

(2015) Condensin targets and reduces unwound DNA structures

associated with transcription in mitotic chromosome condensation.

Nat. Commun., 6, 7815.

36. Miyoshi,T., Kanoh,J. and Ishikawa,F. (2009) Fission yeast Ku protein

is required for recovery from DNA replication stress. Genes Cells, 14,

1091–1103.

37. Kaiser,C., Michaelis,S. and Mitchell,A. (1994) In: Methods in Yeast

Genetics: A Cold Spring Harbor Laboratory Course Manual. Cold

Spring Harbor Laboratory Press, NY.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10476 Nucleic Acids Research, 2021, Vol. 49, No. 18

56. Noguchi,E., Noguchi,C., McDonald,W.H., Yates,J.R. and Russell,P.

(2004) Swi1 and Swi3 are components of a replication fork protection

complex in fission yeast. Mol. Cell. Biol., 24, 8342–8355.

57. Noguchi,E., Noguchi,C., Du,L.-L. and Russell,P. (2003) Swi1

prevents replication fork collapse and controls checkpoint kinase

Cds1. Mol. Cell. Biol., 23, 7861–7874.

58. Gadaleta,M.C., Das,M.M., Tanizawa,H., Chang,Y.-T., Noma,K.,

Nakamura,T.M. and Noguchi,E. (2016) Swi1Timeless prevents repeat

instability at fission yeast telomeres. PLoS Genet., 12, e1005943.

59. Cooper,J.P., Nimmo,E.R., Allshire,R.C. and Cech,T.R. (1997)

Regulation of telomere length and function by a Myb-domain protein

in fission yeast. Nature, 385, 744–747.

60. Kanoh,J., Sadaie,M., Urano,T. and Ishikawa,F. (2005) Telomere

binding protein Taz1 establishes Swi6 heterochromatin independently

of RNAi at telomeres. Curr. Biol., 15, 1808–1819.

61. Wang,Y. and Chai,W. (2018) Pathogenic CTC1 mutations cause

global genome instabilities under replication stress. Nucleic Acids

Res., 46, 3981–3992.

62. Durkin,S.G. and Glover,T.W. (2007) Chromosome fragile sites. Annu.

Rev. Genet., 41, 169–192.

63. Ide,S., Miyazaki,T., Maki,H. and Kobayashi,T. (2010) Abundance of

ribosomal RNA gene copies maintains genome integrity. Science,

327, 693–696.

64. Houseley,J. and Tollervey,D. (2011) Repeat expansion in the budding

yeast ribosomal DNA can occur independently of the canonical

homologous recombination machinery. Nucleic Acids Res., 39,

8778–8791.

65. Ganley,A.R.D., Ide,S., Saka,K. and Kobayashi,T. (2009) The effect

of replication initiation on gene amplification in the rDNA and its

relationship to aging. Mol. Cell, 35, 683–693.

66. Rustchenko,E.P., Curran,T.M. and Sherman,F. (1993) Variations in

the number of ribosomal DNA units in morphological mutants and

normal strains of Candida albicans and in normal strains of

Saccharomyces cerevisiae. J. Bacteriol., 175, 7189–7199.

67. Bentsen,I.B., Nielsen,I., Lisby,M., Nielsen,H.B., Gupta,S. Sen,

Mundbjerg,K., Andersen,A.H. and Bjergbaek,L. (2013) MRX

protects fork integrity at protein-DNA barriers, and its absence

causes checkpoint activation dependent on chromatin context.

Nucleic Acids Res., 41, 3173–3189.

68. Carneiro,T., Khair,L., Reis,C.C., Borges,V., Moser,B.,

Nakamura,T.M. and Ferreira,M.G. (2010) Telomeres avoid end

detection by severing the checkpoint signal transduction pathway.

Nature, 467, 228–232.

69. Audry,J., Wang,J., Eisenstatt,J.R., Berkner,K.L. and Runge,K.W.

(2018) The inhibition of checkpoint activation by telomeres does not

involve exclusion of dimethylation of histone h4 lysine 20

(H4k20me2). F1000Research, 7, 1027.

70. Wang,Y., Brady,K.S., Caiello,B.P., Ackerson,S.M. and Stewart,J.A.

(2019) Human CST suppresses origin licensing and promotes

AND-1/Ctf4 chromatin association. Life Sci. Alliance, 2, e201800270.

71. Tanaka,H., Katou,Y., Yagura,M., Saitoh,K., Itoh,T., Araki,H.,

Bando,M. and Shirahige,K. (2009) Ctf4 coordinates the progression

of helicase and DNA polymerase ␣. Genes Cells, 14, 807–820.

72. Berthiau,A.S., Yankulov,K., Bah,A., Revardel,E., Luciano,P.,

Wellinger,R.J., G´eli,V. and Gilson,E. (2006) Subtelomeric proteins

negatively regulate telomere elongation in budding yeast. EMBO J.,

25, 846–856.

73. Pasquier,E. and Wellinger,R.J. (2020) In vivo chromatin organization

on native yeast telomeric regions is independent of a cis-telomere

loopback conformation. Epigenetics Chromatin, 13, 23.

Downloaded from https://academic.oup.com/nar/article/49/18/10465/6370253 by Kyoto Daigaku Johogakukenkyuka Tosho user on 25 May 2022

38. Sugawara,N.F. (1988) DNA Sequences at the Telomeres of the

Fission Yeast S. Pombe. Ph.D. dissertation. Harvard University,

Cambridge, MA.

39. Skoog,L. and Nordenskjold,B.

(1971) Effects of hydroxyurea and

1-beta-D-arabinofuranosyl-cytosine on deoxyribonucleotide pools in

mouse embryo cells. Eur. J. Biochem., 19, 81–89.

40. Naito,T., Matsuura,a and Ishikawa,F. (1998) Circular chromosome

formation in a fission yeast mutant defective in two ATM

homologues. Nat. Genet., 20, 203–206.

41. Nakamura,T.M., Cooper,J.P. and Cech,T.R. (1998) Two modes of

survival of fission yeast without telomerase. Science, 282, 493–496.

42. Sadaie,M., Naito,T. and Ishikawa,F. (2003) Stable inheritance of

telomere chromatin structure and function in the absence of telomeric

repeats. Genes Dev., 17, 2271–2282.

43. Jain,D., Hebden,A.K., Nakamura,T.M., Miller,K.M. and Cooper,J.P.

(2010) HAATI survivors replace canonical telomeres with blocks of

generic heterochromatin. Nature, 467, 223–227.

44. Tashiro,S., Nishihara,Y., Kugou,K., Ohta,K. and Kanoh,J. (2017)

NAR breakthrough article: subtelomeres constitute a safeguard for

gene expression and chromosome homeostasis. Nucleic Acids Res.,

45, 10333–10349.

45. Toda,T., Nakaseko,Y., Niwa,O. and Yanagida,M. (1984) Mapping of

rRNA genes by integration of hybrid plasmids in

Schizosaccharomyces pombe. Curr. Genet., 8, 93–97.

46. Maleszka,R. and Clark-Walker,G.D. (1993) Yeasts have a four-fold

variation in ribosomal DNA copy number. Yeast, 9, 53–58.

47. Krings,G. and Bastia,D. (2004) swi1- and swi3-dependent and

independent replication fork arrest at the ribosomal DNA of

Schizosaccharomyces pombe. Proc. Natl. Acad. Sci. U.S.A., 101,

14085–14090.

48. Hayashi,M., Katou,Y., Itoh,T., Tazumi,A., Tazumi,M., Yamada,Y.,

Takahashi,T., Nakagawa,T., Shirahige,K. and Masukata,H. (2007)

Genome-wide localization of pre-RC sites and identification of

replication origins in fission yeast. EMBO J., 26, 1327–1339.

49. Fan,J., Grothues,D. and Smith,C.L. (1991) Alignment of Sfi I sites

with the Not I restriction map of Schizosaccharomyces pombe

genome. Nucleic Acids Res., 19, 6289–6294.

50. Lisby,M., Mortensen,U.H. and Rothstein,R. (2003) Colocalization of

multiple DNA double-strand breaks at a single Rad52 repair center.

Nat. Cell Biol., 5, 572–577.

51. Nakamura,T.M., Du,L., Redon,C. and Russell,P. (2004) Histone

H2A phosphorylation controls Crb2 recruitment at DNA breaks,

maintains checkpoint arrest, and influences DNA repair in fission

yeast. Mol. Cell. Biol., 24, 7820–7820.

52. Rogakou,E.P., Pilch,D.R., Orr,A.H., Ivanova,V.S. and Bonner,W.M.

(1998) Double-stranded breaks induce histone H2AX

phosphorylation on serine 139. J. Biol. Chem., 273, 5858–5868.

53. Rozenzhak,S., Mej´ıa-Ram´ırez,E., Williams,J.S., Schaffer,L.,

Hammond,J., Head,S.R. and Russell,P. (2010) Rad3 decorates critical

chromosomal domains with gammaH2A to protect genome integrity

during S-Phase in fission yeast. PLoS Genet., 6, e1001032.

54. Boddy,M.N., Gaillard,P.H.L., McDonald,W.H., Shanahan,P.,

Yates,J.R. and Russell,P. (2001) Mus81-Eme1 are essential

components of a Holliday junction resolvase. Cell, 107, 537–548.

55. Ii,M., Ii,T. and Brill,S.J. (2007) Mus81 functions in the quality

control of replication forks at the rDNA and is involved in the

maintenance of rDNA repeat number in Saccharomyces cerevisiae.

Mutat. Res. - Fundam. Mol. Mech. Mutagen., 625, 1–19.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る