リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「microRNA-875-5pは歯の発生において上皮―間葉相互作用における間葉細胞の凝集に重要な役割を果たす」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

microRNA-875-5pは歯の発生において上皮―間葉相互作用における間葉細胞の凝集に重要な役割を果たす

鮒田, 啓太 FUNADA, Keita フナダ, ケイタ 九州大学

2020.09.25

概要

上皮−間葉相互作用は、肺、腎臓、毛、唾液腺および歯といった様々な器官の発生に重要であり、これらの器官は、上皮の肥厚および間葉細胞の凝集という共通のイベントを経て、様々なシグナル経路により発生制御が行われている。歯においては、神経堤細胞から分化した歯原性間葉細胞の凝集に PDGF シグナルが関与することが知られているがその詳細は不明である。今回我々は、歯における上皮−間葉相互作用の分子メカニズムを解明するため、 cap analysis of gene expression (CAGE) 解析を用いて歯に特異的に発現している転写開始点を網羅的に検索した。その結果、クロモソーム 15qD1 領域に、歯に特異的な転写開始点を発見し、同部位から microRNA-875 (miR875)が転写されている可能性を見出した。そこで、胎生 11 日齢 (E11)から生後 7 日齢マウス歯胚より total RNA を抽出し、発現解析を行ったところ miR875-5p は発生初期の歯胚間葉細胞に発現していることが判明した。さらに、Luciferase assay にて歯胚の形態形成に関与している Prrx1/2 が mir875 のプロモーター領域に結合し転写を促進している可能性を示した。次に、miR875-5p の歯胚間葉細胞における機能を解析するため、マウス歯原性間葉細胞株(mouse dental pulp cell : mDP cell)に mimic miR875-5p を遺伝子導入したところ、歯胚上皮細胞への遊走がみられ、PDGF 添加により相乗的に遊走能が亢進することを発見した。さらに、miR875 がPDGF シグナルに抑制的に作用する PTEN、および細胞遊走に影響を与えていることが知られる Stat1の発現を抑制していることを解明した。これらの結果から、miR875 は歯の発生初期に特異的に発現し、PDGF シグナル経路を活性化し、間葉細胞の凝集を誘導することで、上皮−間葉相互作用を制御している可能性が示唆された。

この論文で使われている画像

参考文献

1. Lumsden, A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development (Cambridge, England) 103(Suppl), 155–169 (1988).

2. Thesleff, I. & Hurmerinta, K. Tissue interactions in tooth development. Differentiation; research in biological diversity 18, 75–88 (1981).

3. Thesleff, I. & Sharpe, P. Signalling networks regulating dental development. Mechanisms of development 67, 111–123 (1997).

4. Kollar, E. J. & Baird, G. R. Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. Journal of embryology and experimental morphology 24, 159–171 (1970).

5. Le Lievre, C. S. & Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. Journal of embryology and experimental morphology 34, 125–154 (1975).

6. Hunt, P. et al. A distinct Hox code for the branchial region of the vertebrate head. Nature 353, 861–864, https://doi.org/10.1038/353861a0 (1991).

7. Hall, B. K. The neural crest and neural crest cells: discovery and significance for theories of embryonic organization. Journal of biosciences 33, 781–793 (2008).

8. Noden, D. M. Cell movements and control of patterned tissue assembly during craniofacial development. Journal of craniofacial genetics and developmental biology 11, 192–213 (1991).

9. Le Douarin, N. M. & Dupin, E. Multipotentiality of the neural crest. Current opinion in genetics & development 13, 529–536 (2003).

10. Feiner, L. et al. Targeted disruption of semaphorin 3C leads to persistent truncus arteriosus and aortic arch interruption. Development (Cambridge, England) 128, 3061–3070 (2001).

11. Miyagawa-Tomita, S., Waldo, K., Tomita, H. & Kirby, M. L. Temporospatial study of the migration and distribution of cardiac neural crest in quail-chick chimeras. The American journal of anatomy 192, 79–88, https://doi.org/10.1002/aja.1001920109 (1991).

12. Van de Putte, T., Francis, A., Nelles, L., van Grunsven, L. A. & Huylebroeck, D. Neural crest-specific removal of Zfhx1b in mouse leads to a wide range of neurocristopathies reminiscent of Mowat-Wilson syndrome. Human molecular genetics 16, 1423–1436, https://doi.org/10.1093/hmg/ddm093 (2007).

13. Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nature reviews. Molecular cell biology 9, 557–568, https://doi.org/10.1038/nrm2428 (2008).

14. Minoux, M. & Rijli, F. M. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development (Cambridge, England) 137, 2605–2621, https://doi.org/10.1242/dev.040048 (2010).

15. Stuhlmiller, T. J. & Garcia-Castro, M. I. Current perspectives of the signaling pathways directing neural crest induction. Cellular and molecular life sciences: CMLS 69, 3715–3737, https://doi.org/10.1007/s00018-012-0991-8 (2012).

16. Shao, M. et al. FGF8 signaling sustains progenitor status and multipotency of cranial neural crest-derived mesenchymal cells in vivo and in vitro. Journal of molecular cell biology 7, 441–454, https://doi.org/10.1093/jmcb/mjv052 (2015).

17. Eberhart, J. K. et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis. Nature genetics 40, 290–298, https://doi. org/10.1038/ng.82 (2008).

18. He, F. & Soriano, P. A critical role for PDGFRalpha signaling in medial nasal process development. PLoS genetics 9, e1003851, https://doi.org/10.1371/journal.pgen.1003851 (2013).

19. Smith, C. L. & Tallquist, M. D. PDGF function in diverse neural crest cell populations. Cell adhesion & migration 4, 561–566, https:// doi.org/10.4161/cam.4.4.12829 (2010).

20. Ho, L., Symes, K., Yordan, C., Gudas, L. J. & Mercola, M. Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells. Mechanisms of development 48, 165–174 (1994).

21. Schatteman, G. C., Morrison-Graham, K., van Koppen, A., Weston, J. A. & Bowen-Pope, D. F. Regulation and role of PDGF receptor alpha-subunit expression during embryogenesis. Development (Cambridge, England) 115, 123–131 (1992).

22. Orr-Urtreger, A., Bedford, M. T., Do, M. S., Eisenbach, L. & Lonai, P. Developmental expression of the alpha receptor for platelet- derived growth factor, which is deleted in the embryonic lethal Patch mutation. Development (Cambridge, England) 115, 289–303 (1992).

23. Kanamori-Katayama, M. et al. Unamplified cap analysis of gene expression on a single-molecule sequencer. Genome research 21, 1150–1159, https://doi.org/10.1101/gr.115469.110 (2011).

24. Forrest, A. R. et al. A promoter-level mammalian expression atlas. Nature 507, 462–470, https://doi.org/10.1038/nature13182 (2014).

25. Severin, J. et al. Interactive visualization and analysis of large-scale sequencing datasets using ZENBU. Nature biotechnology 32, 217–219, https://doi.org/10.1038/nbt.2840 (2014).

26. Opstelten, D. J. et al. The mouse homeobox gene, S8, is expressed during embryogenesis predominantly in mesenchyme. Mechanisms of development 34, 29–41 (1991).

27. Cserjesi, P. et al. MHox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development (Cambridge, England) 115, 1087–1101 (1992).

28. ten Berge, D., Brouwer, A., Korving, J., Martin, J. F. & Meijlink, F. Prx1 and Prx2 in skeletogenesis: roles in the craniofacial region, inner ear and limbs. Development (Cambridge, England) 125, 3831–3842 (1998).

29. Mitchell, J. M. et al. The Prx1 homeobox gene is critical for molar tooth morphogenesis. Journal of dental research 85, 888–893, https://doi.org/10.1177/154405910608501003 (2006).

30. Espina, J. A., Marchant, C. L., De Ferrari, G. V. & Reyes, A. E. Pdgf1aa regulates zebrafish neural crest cells migration through Hif-1 in an oxygen-independent manner. Mechanisms of development, https://doi.org/10.1016/j.mod.2018.07.007 (2018).

31. Bahm, I. et al. PDGF controls contact inhibition of locomotion by regulating N-cadherin during neural crest migration. Development (Cambridge, England) 144, 2456–2468, https://doi.org/10.1242/dev.147926 (2017).

32. Xie, B. et al. Focal adhesion kinase activates Stat1 in integrin-mediated cell migration and adhesion. The Journal of biological chemistry 276, 19512–19523, https://doi.org/10.1074/jbc.M009063200 (2001).

33. Zhuang, G. et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. The EMBO journal 31, 3513–3523, https://doi.org/10.1038/emboj.2012.183 (2012).

34. Shiraki, T. et al. Cap analysis gene expression for high-throughput analysis of transcriptional starting point and identification of promoter usage. Proceedings of the National Academy of Sciences of the United States of America 100, 15776–15781, https://doi. org/10.1073/pnas.2136655100 (2003).

35. Takahashi, H., Lassmann, T., Murata, M. & Carninci, P. 5′ end-centered expression profiling using cap-analysis gene expression and next-generation sequencing. Nature protocols 7, 542–561, https://doi.org/10.1038/nprot.2012.005 (2012).

36. Chesterman, E. S., Gainey, G. D., Varn, A. C., Peterson, R. E. Jr. & Kern, M. J. Investigation of Prx1 protein expression provides evidence for conservation of cardiac-specific posttranscriptional regulation in vertebrates. Developmental dynamics: an official publication of the American Association of Anatomists 222, 459–470, https://doi.org/10.1002/dvdy.1198 (2001).

37. El Bezawy, R. et al. miR-875-5p counteracts epithelial-to-mesenchymal transition and enhances radiation response in prostate cancer through repression of the EGFR-ZEB1 axis. Cancer letters 395, 53–62, https://doi.org/10.1016/j.canlet.2017.02.033 (2017).

38. Wang, J. et al. The miR-875-5p inhibits SATB2 to promote the invasion of lung cancer cells. Gene 644, 13–19, https://doi. org/10.1016/j.gene.2017.11.066 (2018).

39. Zhang, T. et al. Hsa-miR-875-5p exerts tumor suppressor function through down-regulation of EGFR in colorectal carcinoma (CRC). Oncotarget 7, 42225–42240, https://doi.org/10.18632/oncotarget.9944 (2016).

40. Wu, N. et al. PDGFs regulate tooth germ proliferation and ameloblast differentiation. Archives of oral biology 55, 426–434, https:// doi.org/10.1016/j.archoralbio.2010.03.011 (2010).

41. Yamamoto, S. et al. Platelet-derived growth factor receptor regulates salivary gland morphogenesis via fibroblast growth factor expression. The Journal of biological chemistry 283, 23139–23149, https://doi.org/10.1074/jbc.M710308200 (2008).

42. Xu, X., Bringas, P. Jr., Soriano, P. & Chai, Y. PDGFR-alpha signaling is critical for tooth cusp and palate morphogenesis. Developmental dynamics: an official publication of the American Association of Anatomists 232, 75–84, https://doi.org/10.1002/dvdy.20197 (2005).

43. Clement, D. L. et al. PDGFRalpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. Journal of cell science 126, 953–965, https://doi.org/10.1242/jcs.116426 (2013).

44. Ma, J. et al. PTEN Gene Induces Cell Invasion and Migration via Regulating AKT/GSK-3beta/beta-Catenin Signaling Pathway in Human Gastric Cancer. Digestive diseases and sciences 62, 3415–3425, https://doi.org/10.1007/s10620-017-4764-y (2017).

45. Li, J. et al. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain. breast, and prostate cancer. Science (New York, N.Y.) 275, 1943–1947 (1997).

46. Endersby, R. & Baker, S. J. PTEN signaling in brain: neuropathology and tumorigenesis. Oncogene 27, 5416–5430, https://doi.org/10.1038/onc.2008.239 (2008).

47. Hollander, M. C., Blumenthal, G. M. & Dennis, P. A. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nature reviews. Cancer 11, 289–301, https://doi.org/10.1038/nrc3037 (2011).

48. Simon, A. R. et al. Regulation of STAT3 by direct binding to the Rac1 GTPase. Science (New York, N.Y.) 290, 144–147 (2000).

49. Al-Shami, A. & Naccache, P. H. Granulocyte-macrophage colony-stimulating factor-activated signaling pathways in human neutrophils. Involvement of Jak2 in the stimulation of phosphatidylinositol 3-kinase. The Journal of biological chemistry 274, 5333–5338 (1999).

50. Decker, T. & Kovarik, P. Serine phosphorylation of STATs. Oncogene 19, 2628–2637, https://doi.org/10.1038/sj.onc.1203481 (2000).

51. Hasegawa, A., Daub, C., Carninci, P., Hayashizaki, Y. & Lassmann, T. MOIRAI: a compact workflow system for CAGE analysis. BMC bioinformatics 15, 144, https://doi.org/10.1186/1471-2105-15-144 (2014).

52. Arakaki, M. et al. Role of epithelial-stem cell interactions during dental cell differentiation. The Journal of biological chemistry 287, 10590–10601, https://doi.org/10.1074/jbc.M111.285874 (2012).

参考文献をもっと見る