リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「上皮特異的p130Casの欠損はエナメル質形成過程の成熟期に異常を引き起こす」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

上皮特異的p130Casの欠損はエナメル質形成過程の成熟期に異常を引き起こす

井上, 茜 INOUE, Akane イノウエ, アカネ 九州大学

2022.03.23

概要

エナメル質形成は、分泌期、移行期、成熟期、および成熟期後期の段階で構成されている。それぞれの時期でのエナメル芽細胞の形態学的変化は、それらの機能と密接に関連している。p130Casは、細胞接着、細胞骨格の維持、細胞極性などの重要な細胞プロセスを調節する。生後2週間のマウスの下顎切歯をp130Casの抗体で免疫染色したところ、エナメル芽細胞の分泌期から成熟期まで発現していた。また、成熟エナメル芽細胞は、波状縁をもつ細胞と持たない細胞が周期的に現れるが、我々は以前に骨吸収時に破骨細胞が波状縁を形成する際に、p130Casが必須の因子であることを報告した。そこで、エナメル芽細胞におけるp130Casの生理的役割を明らかにするために、上皮細胞特異的p130Cas欠損マウス(cKOマウス)を作製した。若いcKOマウスでは、切歯のチョーク様白濁が観察され、マイクロCT解析において、エナメル質の低ミネラル化が認められた。また、老齢のcKOマウスの大臼歯では、咬頭の著明な咬耗が観察された。ビッカース硬さ試験により、cKOマウスの下顎切歯は、野生型マウスの下顎切歯と比べて硬さが低かった。走査型電子顕微鏡およびEDX解析により、cKOマウスの切歯は、エナメル小柱構造の乱れとCaおよびP含有量が低下していた。また、下顎切歯の組織学的解析を行ったところ、cKOマウスでは、ヘマトキシリン・エオジン染色で成熟期および成熟期後期で局所的なエナメル芽細胞の配置の乱れを観察した。さらに、免疫染色を行ったところ、分泌期におけるアメロゲニンやアメロブラスチンなどのエナメルマトリックスタンパク質の発現量の低下、成熟期におけるアルカリホスファターゼやカリウム依存性ナトリウム-カルシウム交換体の発現量も低下していた。これらの知見から、p130Casがエナメル質形成において重要な役割を果たすことが示唆された。

参考文献

[1] C.E.L. Smith, J.A. Poulter, A. Antanaviciute, J. Kirkham, S.J. Brookes, C. F. Inglehearn, A.J. Mighell, Amelogenesis imperfecta; genes, proteins, and pathways, Front. Physiol. 435 (8) (2017) 35, https://doi.org/10.3389/ fphys.2017.00435.

[2] I. Thesleff, From understanding tooth development to bioengineering of teeth, Eur. J. Oral Sci. 126 (1) (2018) 67–71, https://doi.org/10.1111/eos.12421.

[3] Bei M Molecular genetics of ameloblast cell lineage, J. Exp. Zool. B Mol. Dev. Evol. 312B (5) (2009) 437–444, https://doi.org/10.1002/jez.b.21261.

[4] M. Lagerstro¨m, N. Dahl, Y. Nakahori, Y. Nakagome, B. Ba¨ckman, U. Landegren, U. Pettersson, A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1), Genomics. 10 (4) (1991) 971–975, https://doi. org/10.1016/0888-7543(91)90187-j.

[5] J.R. Lichtenstein, R.W. Warson, Syndrome of dental anomalies, curly hair and sclerotic bones, Birth Defects Orig. Artic. Ser. 7 (7) (1971) 308–311.

[6] J.A. Price, J.T. Wright, K. Kula, D.W. Bowden, T.C. Hart, A common DLX3 gene mutation is responsible for tricho-dento-osseous syndrome in Virginia and North Carolina families, J. Med. Genet. 35 (10) (1998) 825–828, https://doi.org/ 10.1136/jmg.35.10.825.

[7] J.A. Poulter, G. Murillo, S.J. Brookes, C.E. Smith, D.A. Parry, S. Silva, J. Kirkham, C.F. Inglehearn, A.J. Mighell, Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta, Hum. Mol. Genet. 23 (20) (2014) 5317–5324, https:// doi.org/10.1093/hmg/ddu247 (Epub 2014 May 23).

[8] M.K. Prasad, V. Geoffroy, S. Vicaire, B. Jost, M. Dumas, S. Le Gras, M. Switala, B. Gasse, V. Laugel-Haushalter, M. Paschaki, B. Leheup, D. Droz, A. Dalstein, A. Loing, B. Grollemund, M. Muller-Bolla, S. Lopez-Cazaux, M. Minoux, S. Jung, F. Obry, V. Vogt, J.L. Davideau, T. Davit-Beal, A.S. Kaiser, U. Moog, B. Richard, J. J. Morrier, J.P. Duprez, S. Odent, I. Bailleul-Forestier, M.M. Rousset, L. Merametdijan, A. Toutain, C. Joseph, F. Giuliano, J.C. Dahlet, A. Courval, M. El Alloussi, S. Laouina, S. Soskin, N. Guffon, A. Dieux, B. Doray, S. Feierabend, E. Ginglinger, B. Fournier, M. de la Dure Molla, Y. Alembik, C. Tardieu, F. Clauss, A. Berdal, C. Stoetzel, M.C. Mani`ere, H. Dollfus, A. Bloch-Zupan, A targeted next- generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement, J. Med. Genet. 53 (2) (2016) 98–110, https://doi.org/ 10.1136/jmedgenet-2015-103302.

[9] S. Fukumoto, T. Kiba, B. Hall, N. Iehara, T. Nakamura, G. Longenecker, P. H. Krebsbach, A. Nanci, A.B. Kulkarni, Y. Yamada, Ameloblastin is a cell adhesion molecule required for maintaining the differentiation state of ameloblasts, J. Cell Biol. 167 (5) (2004) 973–983, https://doi.org/10.1083/jcb.200409077.

[10] M.H. Rajpar, K. Harley, C. Laing, R.M. Davies, M.J. Dixon, Mutation of the gene encoding the enamel-specific protein, enamelin, causes autosomal-dominant amelogenesis imperfecta, Hum. Mol. Genet. 10 (16) (2001) 1673–1677, https:// doi.org/10.1093/hmg/10.16.1673.

[11] D. Ozdemir, P.S. Hart, E. Firatli, G. Aren, O.H. Ryu, T.C. Hart, Phenotype of ENAM mutations is dosage-dependent, J. Dent. Res. 84 (11) (2005) 1036–1041, https:// doi.org/10.1177/154405910508401113.

[12] J.C. Hu, Y. Hu, C.E. Smith, M.D. McKee, J.T. Wright, Y. Yamakoshi, P. Papagerakis, G.K. Hunter, J.Q. Feng, F. Yamakoshi, J.P. Simmer, Enamel defects and ameloblast- specific expression in Enam knock-out/lacz knock-in mice, J. Biol. Chem. 283 (16) (2008) 10858–10871, https://doi.org/10.1074/jbc.M710565200.

[13] J.W. Kim, J.P. Simmer, T.C. Hart, P.S. Hart, M.D. Ramaswami, J.D. Bartlett, J. C. Hu, MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta, J. Med. Genet. 42 (3) (2005) 271–275, https://doi.org/ 10.1136/jmg.2004.024505.

[14] J.J. Caterina, Z. Skobe, J. Shi, Y.L. Ding, J.P. Simmer, H. Birkedal-Hansen, J. D. Bartlett, Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype, J. Biol. Chem. 277 (5) (2002) 49598–49604, https://doi.org/10.1074/jbc.M209100200.

[15] P.S. Hart, T.C. Hart, M.D. Michalec, O.H. Ryu, D. Simmons, S. Hong, J.T. Wright, Mutation in kallikrein 4 causes autosomal recessive hypomaturation amelogenesis imperfecta, J. Med. Genet. 41 (7) (2004) 545–549, https://doi.org/10.1136/ jmg.2003.017657.

[16] J.P. Simmer, Y. Hu, R. Lertlam, Y. Yamakoshi, J.C. Hu, Hypomaturation enamel defects in Klk4 knockout/LacZ knockin mice, J. Biol. Chem. 284 (17) (2009) 19110–19121.

[17] C.E. Smith, G. Murillo, S.J. Brookes, J.A. Poulter, S. Silva, J. Kirkham, C. F. Inglehearn, A.J. Mighell, Deletion of amelotin exons 3-6 is associated with amelogenesis imperfecta, Hum. Mol. Genet. 25 (16) (2016) 3578–3587, https:// doi.org/10.1093/hmg/ddw203.

[18] R.S. Lacruz, Y. Nakayama, J. Holcroft, V. Nguyen, E. Somogyi-Ganss, M.L. Snead, S. N. White, M.L. Paine, B. Ganss, Targeted overexpression of amelotin disrupts the microstructure of dental enamel, PLoS One 7 (4) (2012), e35200, https://doi.org/ 10.1371/journal.pone.0035200.

[19] Y. Nakayama, J. Holcroft, B. Ganss, Enamel hypomineralization and structural defects in amelotin-deficient mice, J. Dent. Res. 94 (5) (2015) 697–705, https:// doi.org/10.1177/0022034514566214.

[20] G. Mendoza, T.J. Pemberton, K. Lee, R. Scarel-Caminaga, R. Mehrian-Shai, C. Gonzalez-Quevedo, V. Ninis, J. Hartiala, H. Allayee, M.L. Snead, S.M. Leal, S. R. Line, P.I. Patel, A new locus for autosomal dominant amelogenesis imperfecta on chromosome 8q24.3, Hum. Genet. 120 (5) (2007) 653–662, https://doi.org/ 10.1007/s00439-006-0246-6.

[21] J.W. Kim, S.K. Lee, Z.H. Lee, J.C. Park, K.E. Lee, M.H. Lee, J.T. Park, B.M. Seo, J. C. Hu, J.P. Simmer, FAM83H mutations in families with autosomal-dominant hypocalcified amelogenesis imperfecta, Am. J. Hum. Genet. 82 (2) (2008) 489–494, https://doi.org/10.1016/j.ajhg.2007.09.020.

[22] Y.S. Kweon, K.E. Lee, J. Ko, J.C. Hu, J.P. Simmer, J.W. Kim, Effects of Fam83h overexpression on enamel and dentine formation, Arch. Oral Biol. 58 (9) (2013) 1148–1154, https://doi.org/10.1016/j.archoralbio.2013.03.001.

[23] W. El-Sayed, D.A. Parry, R.C. Shore, M. Ahmed, H. Jafri, Y. Rashid, S. Al-Bahlani, S. Al Harasi, J. Kirkham, C.F. Inglehearn, A.J. Mighell, Mutations in the beta propeller WDR72 cause autosomal-recessive hypomaturation amelogenesis imperfecta, Am. J. Hum. Genet. 85 (5) (2009) 699–705, https://doi.org/10.1016/j. ajhg.2009.09.014.

[24] S.K. Wang, Y. Hu, J. Yang, C.E. Smith, S.M. Nunez, A.S. Richardson, S. Pal, A. C. Samann, J.C. Hu, J.P. Simmer, Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation, Mol. Genet. Genomic Med. 3 (4) (2015) 302–319, https://doi.org/10.1002/mgg3.143.

[25] A.L. Bronckers, D. Lyaruu, R. Jalali, J.F. Medina, B. Zandieh-Doulabi, P. K. DenBesten, Ameloblast modulation and transport of Cl—, Na+, and K+ during amelogenesis, J. Dent. Res. 94 (12) (2015) 1740–1747, https://doi.org/10.1177/ 0022034515606900.

[26] D.A. Parry, J.A. Poulter, C.V. Logan, S.J. Brookes, H. Jafri, C.H. Ferguson, B. M. Anwari, Y. Rashid, H. Zhao, C.A. Johnson, C.F. Inglehearn, A.J. Mighell, Identification of mutations in SLC24A4, encoding a potassium-dependent sodium/ calcium exchanger, as a cause of amelogenesis imperfecta, Am. J. Hum. Genet. 92 (2) (2013) 307–312, https://doi.org/10.1016/j.ajhg.2013.01.003.

[27] S. Wang, M. Choi, A.S. Richardson, B.M. Reid, F. Seymen, M. Yildirim, E. Tuna, K. Gençay, J.P. Simmer, J.C. Hu, STIM1 and SLC24A4 are critical for enamel maturation, J. Dent. Res. 93 (7) (2014) 94S–100S, https://doi.org/10.1177/ 0022034514527971.

[28] A.B. Stephan, S. Tobochnik, M. Dibattista, C.M. Wall, J. Reisert, H. Zhao, The Na+/ Ca2+ exchanger NCKX4 governs termination and adaptation of the mammalian olfactory response, Nat. Neurosci. 15 (1) (2011) 131–137, https://doi.org/ 10.1038/nn.2943.

[29] H. Matsui, I. Harada, Y. Sawada, Src, p130Cas, and mechanotransduction in cancer cells, Genes Cancer 3 (5–6) (2012) 394–401, https://doi.org/10.1177/ 1947601912461443.

[30] P. Camacho Leal Mdel, M. Sciortino, G. Tornillo, S. Colombo, P. Defilippi, S. Cabodi, p130Cas/BCAR1 scaffold protein in tissue homeostasis and pathogenesis, Gene 562 (1) (2015) 1–7, https://doi.org/10.1016/j. gene.2015.02.027.

[31] I. Nakamura, N. Takahashi, E. Jimi, N. Udagawa, T. Suda, Regulation of osteoclast function, Mod, Rheumatol. 22 (2) (2012) 167–177, https://doi.org/10.1007/ s10165-011-0530-8.

[32] S. Uehara, N. Udagawa, Y. Kobayashi, Non-canonical Wnt signals regulate cytoskeletal remodeling in osteoclasts, cell Mol, Life Sci. 75 (20) (2018) 3683–3692, https://doi.org/10.1007/s00018-018-2881-1.

[33] Y. Nagai, K. Osawa, H. Fukushima, Y. Tamura, K. Aoki, K. Ohya, H. Yasuda, H. Hikiji, M. Takahashi, Y. Seta, S. Seo, M. Kurokawa, S. Kato, H. Honda, I. Nakamura, K. Maki, E. Jimi, p130Cas, Crk-associated substrate, plays important roles in osteoclastic bone resorption, J. Bone Miner. Res. 28 (12) (2013) 2449–2462, https://doi.org/10.1002/jbmr.1936.

[34] M. Nakatomi, H. Ida-Yonemochi, C. Nakatomi, K. Saito, S. Kenmotsu, R.L. Maas, H. Ohshima, Msx2 prevents stratified squamous epithelium formation in the enamel organ, J. Dent. Res. 97 (12) (2018) 1355–1364, https://doi.org/10.1177/ 0022034518777746.

[35] H. Honda, H. Oda, T. Nakamoto, Z. Honda, R. Sakai, T. Suzuki, T. Saito, K. Nakamura, K. Nakao, T. Ishikawa, M. Katsuki, Y. Yazaki, H. Hirai H, Cardiovascular anomaly, impaired actin bundling and resistance to Src-induced transformation in mice lacking p130Cas, Nat. Genet. 28 (12) (1998) 361–365, https://doi.org/10.1038/1246.

[36] M. Osawa, S. Kenmotsu, T. Masuyama, K. Taniguchi, T. Uchida, C. Saito, H. Ohshima, Rat wct mutation prevents differentiation of maturation-stage ameloblasts resulting in hypo-mineralization in incisor teeth, Histochem. Cell Biol. 128 (3) (2007) 183–193, https://doi.org/10.1007/s00418-007-0297-3.

[37] S.J. Heasman, A.J. Ridley, Mammalian Rho GTPases: new insights into their functions from in vivo studies, Nat. Rev. Mol. Cell Biol. 9 (9) (2008) 690–701, https://doi.org/10.1038/nrm2476.

[38] J. Hatakeyama, S. Fukumoto, T. Nakamura, N. Haruyama, S. SuzukiS, Y. Hatakeyama, L. Shum, C.W. Gibson, Y. Yamada, A.B. Kulkarni, Synergistic roles of amelogenin and ameloblastin, J. Dent. Res. 88 (4) (2009) 318–322, https://doi. org/10.1177/0022034509334749.

[39] H. Xue, Y. Li, E.T. Everett, K. Ryan, L. Peng, R. Porecha, Y. Yan, A.M. Lucchese, M. A. Kuehl, M.K. Pugach, J. Bouchard, C.W. Gibson, Ameloblasts require active RhoA to generate normal dental enamel, Eur. J. Oral Sci. 121 (4) (2013) 293–302, https://doi.org/10.1111/eos.12059.

[40] Z. Tian, X. Lv, M. Zhang, X. Wang, Y. Chen, P. Tang, P. Xu, L. Zhang, B. Wu, L. Zhang, Deletion of epithelial cell-specific Cdc42 leads to enamel hypermaturation in a conditional knockout mouse model, Biochim. Biophys. Acta Mol. basis Dis. 1864 (8) (2018) 2623–2632, https://doi.org/10.1016/j. bbadis.2018.04.015.

[41] Z. Huang, J. Kim, R.S. Lacruz, P. Bringas Jr., M. Glogauer, T.G. Bromage, V. M. Kaartinen, M.L. Snead, Epithelial-specific knockout of the Rac1 gene leads to enamel defects, Eur. J. Oral Sci. 119 1 (1) (2011) 168–176, https://doi.org/ 10.1111/j.1600-0722.2011.00904.x.

[42] M.D. McKee, M.C. Yadav, B.L. Foster, M.J. Somerman, C. Farquharson, J.L. Milla´n, Compounded PHOSPHO1/ALPL deficiencies reduce dentin mineralization, J. Dent. Res. 92 (8) (2013) 721–727, https://doi.org/10.1177/0022034513490958.

[43] K.C. Gasque, B.L. Foster, P. Kuss, M.C. Yadav, J. Liu, T. Kiffer-Moreira, A. van Elsas, N. Hatch, M.J. Somerman, J.L. Mill´an, Tissue-nonspecific alkaline phosphatase deficiency causes abnormal craniofacial bone development in the Alpl(—/—) mouse model of infantile hypophosphatasia, Bone 67 (2014) 81–94, https://doi.org/ 10.1016/j.bone.2014.06.040.

[44] M.C. Yadav, R.C. de Oliveira, B.L. Foster, H. Fong, E. Cory, S. Narisawa, R.L. Sah, M. Somerman, M.P. Whyte, J.L. Milla´n, Enzyme replacement prevents enamel defects in hypophosphatasia mice, J. Bone Miner. Res. 27 (8) (2012) 1722–1734, https://doi.org/10.1002/jbmr.1619.

[45] A. Linglart, M. Biosse-Duplan, Hypophosphatasia, Curr. Osteoporos. Rep. 14 (3) (2016) 95–105, https://doi.org/10.1007/s11914-016-0309-0.

[46] T. Yaginuma, J. Gao, K. Nagata, R. Muroya, F. Huang, H. Nagano, S. Chishaki, T. Matsubara, S. Kokabu, K. Matsuo, T. Kiyoshima, I. Yoshioka, E. Jimi, p130Cas induces bone invasion by oral squamous cell carcinoma by regulating tumor epithelial-mesenchymal transition and cell proliferation, Carcinogenesis. 41 (8) (2020) 1038–1048, https://doi.org/10.1093/carcin/bgaa007.

[47] A. Machiya, S. Tsukamoto, S. Ohte, M. Kuratani, N. Suda, Katagiri T, Smad4- dependent transforming growth factor-β family signaling regulates the differentiation of dental epithelial cells in adult mouse incisors. Bone. 137(2020), pp. 115456. doi: https://doi.org/10.1016/j.bone.2020.115456.

[48] W. Song, Y. Wang, Q. Chu, C. Qi, Y. Gao, Y. Gao, L. Xiang, X. Zhenzhen, Y. Gao, Loss of transforming growth factor-β1 in epithelium cells affects enamelformation in mice, Arch. Oral Biol. 96 (2018) 146–154, https://doi.org/10.1016/j. archoralbio.2018.09.003.

[49] T. Yanagawa, K. Itoh, J. Uwayama, Y. Shibata, A. Yamaguchi, T. Sano, T. Ishii, H. Yoshida, M. Yamamoto, Nrf2 deficiency causes tooth decolourization due to iron transport disorder in enamel organ, Genes Cells 9 (7) (2004) 641–651, https:// doi.org/10.1111/j.1356-9597.2004.00753.x.

[50] H. Yoshioka, Y. Yoshiko, T. Minamizaki, S. Suzuki, Y. Koma, A. Nobukiyo, Y. Sotomaru, A. Suzuki, M. Itoh, N. Maeda, Incisor enamel formation is impaired in transgenic rats overexpressing the type III NaPi transporter Slc20a1, Calcif. Tissue Int. 89 (3) (2011) 192–202, https://doi.org/10.1007/s00223-011-9506-0.

[51] C.E. Smith, Cellular and chemical events during enamel maturation, Crit. Rev. Oral Biol. Med. 9 (2) (1998) 128–161, https://doi.org/10.1177/ 10454411980090020101.

[52] C.W. Gibson, Z.A. Yuan, B. Hall, G. Longenecker, E. Chen, T. Thyagarajan, T. Sreenath, J.T. Wright, S. Decker, R. Piddington, G. Harrison, A.B. Kulkarni, Amelogenin-deficient mice display an amelogenesis imperfecta phenotype, J. Biol. Chem. 276 (34) (2001) 31871–31875, https://doi.org/10.1074/jbc.M104624200.

[53] P.S. Hart, T.C. Hart, J.P. Simmer, J.T. Wright, A nomenclature for X-linked amelogenesis imperfecta, Arch. Oral Biol. 47 (4) (2002) 255–260, https://doi.org/ 10.1016/s0003-9969(02)00005-5.

[54] M.J. Barron, S.J. Brookes, J. Kirkham, R.C. Shore, C. Hunt, A. Mironov, N. J. Kingswell, J. Maycock, C.A. Shuttleworth, M.J. Dixon, A mutation in the mouse Amelx tri-tyrosyl domain results in impaired secretion of amelogenin and phenocopies human X-linked amelogenesis imperfecta, Hum. Mol. Genet. 19 (7) (2010) 1230–1247, https://doi.org/10.1093/hmg/ddq001.

[55] J. Lytton, Na+/Ca2+ exchangers: three mammalian gene families control Ca2+ transport, Biochem. J. 406 (3) (2007) 365–382, https://doi.org/10.1042/ BJ20070619.

[56] P. Hu, R.S. Lacruz, C.E. Smith, S.M. Smith, I. Kurtz, M.L. Paine, Expression of the sodium/calcium/potassium exchanger, NCKX4, in ameloblasts, Cells Tissues Organs 196 (6) (2012) 501–509, https://doi.org/10.1159/000337493.

[57] M.D.P. Camacho Leal, A. Costamagna, B. Tassone, S. Saoncella, M. Simoni, D. Natalini, A. Dadone, M. Sciortino, E. Turco, P. Defilippi, E. Calautti, S. Cabodi, Conditional ablation of p130Cas/BCAR1 adaptor protein impairs epidermal homeostasis by altering cell adhesion and differentiation, Cell Commun, Signal. 16 (1) (2018) 73, https://doi.org/10.1186/s12964-018-0289-z.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る