リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Experimental study on spectroscopy of laser-produced plasma for laboratory astrophysics and soft X-ray lithography application」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Experimental study on spectroscopy of laser-produced plasma for laboratory astrophysics and soft X-ray lithography application

劉, 暢 大阪大学 DOI:10.18910/81884

2020.12.18

概要

Laboratory spectroscopy is widely used both in basic science and industrial applications. With the developing of the advanced spectroscopy technology, it is possible to observe high resolution spectrum data in full-wave band. In this research we are trying to apply the spectroscopy technology to Laser-plasma experiment. Here we applied the spectroscopy technology in two experiments: Zeeman splitting measurement in High-energy-density magnetized plasma and Plasma parameters / H radical (H*) population measurement in EUV-induced hydrogen plasma.

Generating a strong magnetic field with laser driven capacitor-coil target makes it possible to achieve a strength of 102-103 T on the Earth. 102-103 T is close to the surface of a compact star like a white dwarf. Magnetic field strength is one of the most important parameters for understanding the structure of the compact stars and the strength is inferred from the Zeeman effect seen in the spectra observed with the telescope. However, the Zeeman effect has never been successfully observed in the high energy density laser plasma experiment. Laboratory experiments on the Zeeman effect will give astrophysicists valuable information to deepen the understanding of the universe. Traditional astronomical research relies heavily on observation, modeling, and numerical simulation. High power laser can be a novel astronomical tool that makes it possible to generate magnetic fields strong enough to cause Zeeman effect in the laboratory under controlled conditions. We provide the experimental design and numerical simulations in this study.

Spectrum measurement provides the key parameters in a plasma. Here we trying to explore the atomic process of EUV-induced plasma. An Optical Emission Spectroscopy (OES) system was used to observe the atomic processing in the H2 / EUV interaction. The hydrogen Balmer line profiles and absolute photon number are measured with the spectrometer which gives a possibility to estimate the key plasma parameter and calculate the hydrogen radical yield. The experimental results are also compared with the theoretical calculation.

The first Chapter is the introduction of the thesis, In the second Chapter we intro- duce the laser systems and experiment conditions in Institute of Laser Engineering, Osaka University, and the principles of spectroscopy diagnostics. In the third Chapter we discuss the physics behind the experiment phenomena, including the mechanism of generating a strong magnetic with high-power-laser, plasma radiation transmission and atomic procession in NLTE plasmas. In the fourth Chapter we talk about the first application of EUV spectroscopy, the experimental design and modeling result of the Zeeman splitting measurement and some data from the experiment. The fifth Chapter discusses the second application of EUV project which focuses on the EUV-induce hydrogen plasma properties and diagnostics, and potential application in industry. In the last section we summary the results and discuss about the future researches.

この論文で使われている画像

参考文献

[1] Hans R Griem. High-density corrections in plasma spectroscopy. Physical Review, 128(3):997, 1962.

[2] John Cooper. Plasma spectroscopy. Reports on Progress in Physics, 29(1):35, 1966.

[3] Hans R Griem. Principles of plasma spectroscopy, volume 2. Cambridge University Press, 2005.

[4] Takashi Fujimoto. Plasma spectroscopy. In Plasma Polarization Spectroscopy, pages 29–49. Springer, 2008.

[5] Chang Liu, Kazuki Matsuo, Sandrine Ferri, Hyun-Kyung Chung, Seungho Lee, Shohei Sakata, King Fai Farley Law, Hiroki Morita, Bradley Pollock, John Moody, et al. Design of zeeman spectroscopy experiment with magnetized silicon plasma generated in the laboratory. High Energy Density Physics, 33:100710, 2019.

[6] Shinsuke Fujioka, Zhe Zhang, Kazuhiro Ishihara, Keisuke Shigemori, Youichiro Hironaka, Tomoyuki Johzaki, Atsushi Sunahara, Naoji Yamamoto, Hideki Nakashima, Tsuguhiro Watanabe, Hiroyuki Shiraga, Hiroaki Nishimura, and Hiroshi Azechi. Kilotesla magnetic field due to a capacitor-coil target driven by high power laser. Scientific Reports, 2013.

[7] K. F.F. Law, M. Bailly-Grandvaux, A. Morace, S. Sakata, K. Matsuo, S. Kojima, S. Lee, X. Vaisseau, Y. Arikawa, A. Yogo, K. Kondo, Z. Zhang, C. Bellei, J. J. Santos, S. Fujioka, and H. Azechi. Direct measurement of kilo-tesla level magnetic field generated with laser-driven capacitor-coil target by proton deflectometry. Applied Physics Letters, 108(9):1–6, 2016.

[8] G Hinshaw, N Jarosik, a Kogut, M Limon, S S Meyer, L Page, G S Tucker, J L Weiland, E Wollack, and E L Wright. The American Astronomical Society. All rights reserved. Printed in U.S.A. Analysis, 5:175–194, 2003.

[9] Karen M Vanlandingham, Gary D Schmidt, Daniel J Eisenstein, Hugh C Harris, Scott F Anderson, Patrick B Hall, James Liebert, Donald P Schneider, Nicole M Silvestri, Gregory S Stinson, and Michael a Wolfe. Magnetic White Dwarfs from the SDSS. II. The Second and Third Data Releases. The Astronomical Journal, 130:734–741, 2005.

[10] D. T. Wickramasinghe and Lilia Ferrario. The origin of the magnetic fields in white dwarfs. Monthly Notices of the Royal Astronomical Society, 356(4):1576– 1582, 2005.

[11] Bradley W Carroll and Dale A Ostlie. An introduction to modern astrophysics. Cambridge University Press, 2017.

[12] Thanu Padmanabhan. Theoretical Astrophysics: Volume 1, Astrophysical Processes. Cambridge University Press, 2000.

[13] Hannu Karttunen, Pekka Kröger, Heikki Oja, Markku Poutanen, and Karl Johan Donner. Fundamental astronomy. Springer, 2016.

[14] S Laustsen, C Madsen, and RM West. Astronomy and astrophysics library.

[15] K. Croswell. The alchemy of the heavens. Oxford University Press, Oxford (UK), 1996.

[16] R M Van Der Horst, J Beckers, E A Osorio, D I Astakhov, W J Goedheer, C J Lee, V V Ivanov, V M Krivtsum, K N Koshelev, D V Lopaev, F Bijkerk, and V Y Banine. Exploring the electron density in plasma induced by EUV radiation : I . Experimental study in hydrogen.

[17] J Beckers, T H M Van De Ven, C A De Meijere, R M Van Der Horst, Van Kampen, and V Y Banine. Energy distribution functions for ions from pulsed EUV-induced plasmas in low pressure N 2 -diluted H 2 gas. pages 1–9.

[18] Osaka University Institute of Laser Engineering. GEKKO XII. https:// www.ile.osaka-u.ac.jp/eng/facilities/gxii/index.html Accessed April 4, 2019.

[19] Osaka University Institute of Laser Engineering. LFEX. https://www.ile. osaka-u.ac.jp/eng/facilities/lfex/index.html,Accessed April 4, 2019.

[20] Eugene P Bertin. Principles and practice of X-ray spectrometric analysis. Springer Science & Business Media, 2012.

[21] Douglas A Skoog, F James Holler, and Stanley R Crouch. Principles of instrumental analysis. Cengage learning, 2017.

[22] NIST Digital Library of Mathematical Functions. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.

[23] Nozomi Tanaka, Nao Wada, Yasuyuki Kageyama, and Hiroaki Nishimura. Mitigation of debris from a laser plasma euv source and from focusing optics for thin film deposition by intense euv radiation. High Energy Density Physics, page 100865, 2020.

[24] Princeton Instruments. SP-2500i. http://ridl.cfd.rit.edu/products/ manuals/Acton/new/SP-2500i.pdf,Accessed January 4, 2007.

[25] Princeton Instruments. PI-MAX4 1024f. https://www. princetoninstruments.com/wp-content/uploads/2020/04/PIMAX4_1024f_ datasheet.pdf, Accessed March 17, 2020.

[26] Princeton Instruments. Light Field. https://www.princetoninstruments. com/wp-content/uploads/2020/04/LightField-Users-Manual-Issue-4. 5-4411-0125.pdf, Accessed March 17, 2020.

[27] Masashi Shimomura. Laser plasma EUV light source debris control. Master’s thesis, Graduate School of Engineering, Osaka University, Japan, 2008.

[28] W Schwanda, K Eidmann, and MC Richardson. Characterization of a flat-field grazing-incidence xuv spectrometer. Journal of X-ray science and technology, 4(1):8–17, 1993.

[29] R Paul Drake. High-energy-density physics: foundation of inertial fusion and experimental astrophysics. Springer, 2018.

[30] Bruce A. Remington. High energy density laboratory astrophysics. Plasma Physics and Controlled Fusion, 47(5 A), 2005.

[31] Eugene G Gamaly. The physics of ultra-short laser interaction with solids at non-relativistic intensities. Physics Reports, 508(4-5):91–243, 2011.

[32] H Daido, F Miki, K Mima, M Fujita, K Sawai, H Fujita, Y Kitagawa, S Nakai, and C Yamanaka. Generation of a strong magnetic field by an intense co 2 laser pulse. Physical review letters, 56(8):846, 1986.

[33] Ph Korneev, E d’Humières, and V Tikhonchuk. Gigagauss-scale quasistatic magnetic field generation in a snail-shaped target. Physical Review E, 91(4):043107, 2015.

[34] King Fai Farley Law, Yuki Abe, Philipp Korneev, Joao Santos, and Shinsuke Fujioka. Laser-driven magnetic reconnection and particle acceleration by snailshaped target irradiation. APS, 2018:YP11–031, 2018.

[35] Francis F Chen. Introduction to plasma physics. Springer Science & Business Media, 2012

[36] Francis F Chen et al. Introduction to plasma physics and controlled fusion, volume 1. Springer, 1984.

[37] José A Bittencourt. Fundamentals of plasma physics. Springer Science & Business Media, 2013.

[38] Dirk Wünderlich, S Dietrich, and Ursel Fantz. Application of a collisional radiative model to atomic hydrogen for diagnostic purposes. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(1-2):62–71, 2009.

[39] Gabriele Cristoforetti, Alessandro De Giacomo, M Dell’Aglio, Stefano Legnaioli, Elisabetta Tognoni, Vincenzo Palleschi, and Nicolo Omenetto. Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the mcwhirter criterion. Spectrochimica Acta Part B: Atomic Spectroscopy, 65(1):86– 95, 2010.

[40] Da-Zhi Jin, Zhong-Hai Yang, Ping-Ying Tang, Kun-xiang Xiao, and Jing-yi Dai. Hydrogen plasma diagnosis in penning ion source by optical emission spectroscopy. Vacuum, 83(2):451–453, 2008.

[41] RWP McWhirter, RH Huddlestone, and SL Leonard. Spectral intensities in plasma diagnostic techniques. eq, 10:206, 1965.

[42] T Fujimoto, S Miyachi, and K Sawada. New density diagnostic method based on emission line intensity ratio of neutral hydrogen in an ionizing phase plasma. Nuclear fusion, 28(7):1255, 1988.

[43] N Konjević, M Ivković, and N Sakan. Hydrogen balmer lines for low electron number density plasma diagnostics. Spectrochimica Acta Part B: Atomic Spectroscopy, 76:16–26, 2012.

[44] Shivani Bhandari, Elaine M Sadler, J Xavier Prochaska, Sunil Simha, Stuart D Ryder, Lachlan Marnoch, Keith W Bannister, Jean-Pierre Macquart, Chris Flynn, Ryan M Shannon, et al. The host galaxies and progenitors of fast radio bursts localized with the australian square kilometre array pathfinder. The Astrophysical Journal Letters, 895(2):L37, 2020.

[45] PMS Blackett. Xi. the magnetic field of massive rotating bodies. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 40(301):125–150, 1949.

[46] Andreas Reisenegger. Origin and evolution of neutron star magnetic fields. arXiv preprint astro-ph/0307133, 2003.

[47] Gary D. Schmidt, Hugh C. Harris, James Liebert, Daniel J. Eisenstein, Scott F. Anderson, J. Brinkmann, Patrick B. Hall, Michael Harvanek, Suzanne Hawley, S. J. Kleinman, Gillian R. Knapp, Jurek Krzesinski, Don Q. Lamb, Dan Long, Jeffrey A. Munn, Eric H. Neilsen, Peter R. Newman, Atsuko Nitta, David J. Schlegel, Donald P. Schneider, Nicole M. Silvestri, J. Allyn Smith, Stephanie A. Snedden, Paula Szkody, and Dan Vanden Berk. Magnetic white dwarfs from the sloan digital sky survey: the first data release. The Astrophysical Journal, 595:1101–1113, 2003.

[48] Jonathan Tennyson. Astronomical spectroscopy: an introduction to the atomic and molecular physics of astronomical spectra, volume 2. World Scientific, 2010.

[49] J. E. Barnes, Kenneth Wood, Alex S. Hill, and L. M. Haffner. Photoionization and heating of a supernova-driven turbulent interstellar medium. Monthly Notices of the Royal Astronomical Society, 440(4):3027–3035, 2013.

[50] DR Farley, K Shigemori, and H Azechi. Laser-produced blast wave and numerical simulation using the flash code. Laser and Particle Beams, 23(4):513, 2005.

[51] Fang Qian, Pui Ching Lan, Megan C. Freyman, Wen Chen, Tianyi Kou, Tammy Y. Olson, Cheng Zhu, Marcus A. Worsley, Eric B. Duoss, Christopher M. Spadaccini, Ted Baumann, and T. Yong Jin Han. Ultralight Conductive Silver Nanowire Aerogels. Nano Letters, 17(12):7171–7176, 2017.

[52] S Eliezer. The interaction of high-power lasers with plasmas. Plasma Physics and Controlled Fusion, 45(2):181, 2003.

[53] I. I. Sobelman. Theory of Atomic Spectra. Alpha Science International Ltd, 2006.

[54] F. Paschen and E. Back. Normale und anomale zeemaneffekte. Annalen der Physik, 344(15):897–932, 1912.

[55] Paul A Tipler and Ralph Llewellyn. Modern physics. Macmillan, 2003.

[56] S. S. Harilal, C. V. Bindhu, Riju C. Issac, V. P. N. Nampoori, and C. P. G. Vallabhan. Electron density and temperature measurements in a laser produced carbon plasma. Journal of Applied Physics, 82(5):2140–2146, 1997.

[57] Hans R Griem. Plasma spectroscopy. New York : McGraw-Hill, 1964.

[58] H.-K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, and R.W. Lee. FLYCHK: Generalized population kinetics and spectral model for rapid spectroscopic analysis for all elements. High Energy Density Physics, 1(1):3 – 12, 2005.

[59] S. Ferri, A. Calisti, C. Mossé, L. Mouret, B. Talin, M. A. Gigosos, M. A. González, and V. Lisitsa. Frequency-fluctuation model applied to stark-zeeman spectral line shapes in plasmas. Phys. Rev. E, 84:026407, Aug 2011.

[60] E. Stambulchik, K. Tsigutkin, and Y. Maron. Spectroscopic method for measuring plasma magnetic fields having arbitrary distributions of direction and amplitude. Physical Review Letters, 98(22):1–4, 2007.

[61] S. Ferri, A. Calisti, C. Mossé, L. Mouret, B. Talin, M. A. Gigosos, M. A. González, and V. Lisitsa. Frequency-fluctuation model applied to Stark-Zeeman spectral line shapes in plasmas. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 84(2):1–6, 2011.

[62] V. T. Tikhonchuk, M. Bailly-Grandvaux, J. J. Santos, and A. Poyé. Quasistationary magnetic field generation with a laser-driven capacitor-coil assembly. Physical Review E, 96(2):1–10, 2017.

[63] RL Hibbard and MJ Bono. An overview of the target fabrication operations at lawrence livermore national laboratory. Proc. ASPE Spring Topl. Mtg, pages 18–19, 2005.

[64] Apple.Inc. A14 Bionic. https://www.apple.com/iphone-12/, Accessed October 14, 2020.

[65] H Kossmann, O Schwarzkopf, B Kammerling, W Braun, and V Schmidt. Photoionisation cross section of h2. Journal of Physics B: Atomic, Molecular and Optical Physics, 22(14):L411, 1989.

[66] YM Chung, E-M Lee, T Masuoka, and James AR Samson. Dissociative photoionization of h2 from 18 to 124 ev. The Journal of chemical physics, 99(2):885–889, 1993.

[67] MMJW Van Herpen, DJW Klunder, WA Soer, R Moors, and V Banine. Sn etching with hydrogen radicals to clean euv optics. Chemical Physics Letters, 484(4-6):197–199, 2010.

[68] D Ugur, AJ Storm, R Verberk, JC Brouwer, and WG Sloof. Decomposition of snh4 molecules on metal and metal–oxide surfaces. Applied surface science, 288:673–676, 2014.

[69] Hans R Griem, Alan C Kolb, and KY Shen. Stark broadening of hydrogen lines in a plasma. Physical Review, 116(1):4, 1959.

[70] WL Wiese, DR Paquette, and JE Solarski. Profiles of stark-broadened balmer lines in a hydrogen plasma. Physical review, 129(3):1225, 1963.

[71] CS Lee, DM Camm, and GH Copley. Van der waals broadening of argon absorption lines. Journal of Quantitative Spectroscopy and Radiative Transfer, 15(3):211–216, 1975.

[72] F Sánchez-Bajo and FL Cumbrera. The use of the pseudo-voigt function in the variance method of x-ray line-broadening analysis. Journal of Applied Crystallography, 30(4):427–430, 1997.

[73] GK Wertheim, MA Butler, KW West, and DNE Buchanan. Determination of the gaussian and lorentzian content of experimental line shapes. Review of Scientific Instruments, 45(11):1369–1371, 1974.

[74] RM Van Der Horst, J Beckers, EA Osorio, and VY Banine. Exploring the electron density in plasmas induced by extreme ultraviolet radiation in argon. Journal of Physics D: Applied Physics, 48(28):285203, 2015.

[75] HA Lorentz. The absorption and emission lines of gaseous bodies. In Knaw, Proceedings, volume 8, pages 1905–1906, 1906.

[76] U Frisch and A Brissaud. Theory of stark broadeningâĂŤi soluble scalar model as a test. Journal of Quantitative Spectroscopy and Radiative Transfer, 11(12):1753– 1766, 1971.

[77] Earl W Smith, J Cooper, and CR Vidal. Unified classical-path treatment of stark broadening in plasmas. Physical Review, 185(1):140, 1969.

[78] Marco A Gigosos and Valentín Cardeñoso. New plasma diagnosis tables of hydrogen stark broadening including ion dynamics. Journal of Physics B: Atomic, Molecular and Optical Physics, 29(20):4795, 1996.

[79] JM Palomares, S Hübner, EAD Carbone, N De Vries, EM Van Veldhuizen, A Sola, A Gamero, and JJAM Van Der Mullen. H𝛽 stark broadening in cold plasmas with low electron densities calibrated with thomson scattering. Spectrochimica Acta Part B: Atomic Spectroscopy, 73:39–47, 2012.

[80] OriginLab. OriginPro. https://www.originlab.com, Accessed October 19, 2018.

[81] H. Kossmann, O. Schwarzkopf, B. Kammerling, W. Braun, and V. Schmidt. Photoionisation cross section of H 2. Journal of Physics B: Atomic, Molecular and Optical Physics, 22(14), 1989.

[82] Takashi Fujimoto. Kinetics of ionization-recombination of a plasma and population density of excited ions. ii. ionizing plasma. Journal of the physical society of Japan, 47(1):273–281, 1979.

[83] Takashi Fujimoto. Kinetics of ionization-recombination of a plasma and population density of excited ions. iv. recombining plasma–low-temperature case. Journal of the physical society of Japan, 49(4):1569–1576, 1980.

[84] Takashi Fujimoto. Kinetics of ionization-recombination of a plasma and population density of excited ions. v. ionization-recombination and equilibrium plasma. Journal of the physical society of Japan, 54(8):2905–2914, 1985.

[85] Motoshi Goto and Shigeru Morita. Ionization balance in the rotating radiation belt accompanying complete divertor detachment in lhd. Plasma and Fusion Research, 3:S1042–S1042, 2008.

[86] Motoshi Goto, Keiji Sawada, and Takashi Fujimoto. Relations between the ionization or recombination flux and the emission radiation for hydrogen and helium in plasma. Physics of Plasmas, 9(10):4316–4324, 2002.

[87] W. M. Haynes. CRC Handbook of Chemistry and Physics. CRC Press, 97th editi edition.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る