リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Characterization of Citrus natsudaidai peel and its application as a natural food additive」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Characterization of Citrus natsudaidai peel and its application as a natural food additive

松尾, 悠 東京大学 DOI:10.15083/0002006900

2023.03.24

概要





















松尾



食品廃棄物の削減は地球規模の課題であり、持続可能な開発目標(SDGs)の
12.3 において 2030 年までに小売・消費段階における 1 人当たりの世界の食品
廃棄量を半分にすることが目標として設定されている。柑橘類は果物として消
費されるだけでなく飲料やゼリーなどの食品生産にも利用されているが、一般
に柑橘類の皮は食品加工廃棄物として廃棄されている。一方、柑橘類の皮には
副産物として利用可能な化合物が一般に果肉部より多く含まれていることが数
多くの先行研究において指摘されている。しかしながら、ナツミカン(Citrus
Natsudaidai)の皮に含まれる化合物に着目した研究例は数少ない現状にある。
本研究の目的は、従来は廃棄されていたナツミカンの皮に含まれる栄養成分お
よび健康増進効果が期待される成分を抽出するとともに、それらの天然添加物
としての利用可能性を評価することにある。
本研究は、研究の背景と目的を示した第 1 章を含む全 6 章から構成される。
第 2 章では、千葉県で無農薬栽培されたナツミカン 3 品種を供試材料とし、試
料の皮の表面色、水分量、タンパク質含量、脂質含量、炭水化物含量および灰
分値を測定するとともに、から得られた抽出物に含まれる遊離アミノ酸、脂肪
酸、ミネラルおよび香気成分の組成を測定しており、ナツミカンの皮は炭水化
物およびカリウムを多く含むこと、遊離アミノ酸含量は抽出物の味に影響を及
ぼすのに十分ではないこと、柑橘類に典型的な香気成分が含まれていることな
どを確認している。
第 3 章では、食品への利用を想定して簡易かつ安価な方法により健康増進効
果が期待される成分を抽出すること、および異なる極性をもつ抽出物の総フェ
ノール含有量および抗酸化活性を過大評価することなく検討することを目的と
しており、第 2 章で用いたナツミカン 3 品種の皮から 5 種類の異なる可溶性画
分を水-エタノールおよびヘキサン-エタノール混合溶液で抽出している。その結
果、水溶性画分において最大の総フェノール含有量および抗酸化活性が、ヘキ
サン可溶性画分で最も低い総フェノール含有量および抗酸化活性がそれぞれ観
察されている。加えて、総フェノール含有量と抗酸化活性の間に正の相関が見

られることを確認している。
第 4 章では、HPLC により分離された化合物が正のピーククロマトグラムで、
またそれぞれの化合物の抗酸化活性が ABTS ラジカル反応の結果として負のピ
ークで表示されるオンライン HPLC-ABTS アッセイによりナツミカンの皮に含
まれるフェノール化合物を分析している。その結果、柑橘類の皮に含まれる典
型的なフラボノイドのいくつかについてナツミカンの皮から同定されたものの、
それらの抗酸化特性が ABTS アッセイにより検出されなかったことを確認して
いる。さらに、オンライン HPLC-ABTS の精度を向上させるための分析条件に
ついて検討している。
第 5 章では、ナツミカンの皮から得られるフラボノイド、水溶性ペクチンお
よび皮のエッセンスの有用性を評価するために、水溶性ペクチンの粘度を測定
するとともにオリジナルフレーバーの水を調製し、E-nose、味覚センサーおよ
びパネリストによる官能分析を実施している。ナツミカンの皮に含まれる主な
フラボノイドはナリンギンとネオヘスペリジンであり、水溶性ペクチンの見か
けの粘度は市販のペクチン粉末よりも低い値を示すことを確認している。また、
E-nose 分析の結果からオリジナルフレーバー水はフルーツジュースを含む市販
の飲料と類似の匂いを示すこと、パネリストによる官能分析の結果からオリジ
ナルフレーバー水は市販のフレーバーウォーター(パネリスト)よりもかなり
好まれることをそれぞれ確認している。なお、味覚センサー分析の結果からオ
リジナルフレーバー水は、後味で苦味と渋味を示すものの、嗜好総合評価に関
して市販のフレーバー水との有意差は見られないことを確認している。
第 6 章では結論と今後の展望を述べており、従来は廃棄されていたナツミカ
ンの皮に含まれる栄養成分および健康増進効果が期待される成分が天然添加物
として利用可能であると結論付けるとともに、食品への利用を想定した簡易か
つ安価な抽出方法を用いることの利点について言及している。また、抽出後に
残存する不溶性食物繊維の有効利用やナツミカンの皮に含まれるカロテノイド
等の色素の天然食品着色料としての有効利用、オンライン HPLC-ABTS システ
ムのさらなる改善が今後の課題であると述べている。
これらの研究成果は、学術上応用上寄与するところが少なくない。よって、
審査委員一同は本論文が博士(農学)の学位論文として価値あるものと認めた。

この論文で使われている画像

参考文献

Aboelhadid, S. M., Mahrous, L. N., Hashem, S. A., Abdel-Kafy, E. M., & Miller, R. J. (2016). In

vitro and in vivo effect of Citrus limon essential oil against sarcoptic mange in rabbits.

Parasitology Research, 115(8), 3013–3020.

Amić, D., & Lučić, B. (2010). Reliability of bond dissociation enthalpy calculated by the PM6

method and experimental TEAC values in antiradical QSAR of flavonoids. Bioorganic

and Medicinal Chemistry, 18(1), 28–35.

AOAC Official Method. (2005). AOAC Official Method 968.06 Protein (Crude) in Animal Feed

Dumas Method.

AOAC Official Method. (2002). AOAC Official Method 2001.11 Protein (Crude) in Animal Feed,

Forage (Plant Tissue), Grain, and Oilseeds Block Digestion Method Using Copper

Catalyst and Steam Distillation into Boric Acid.

Assefa, A. D., Saini, R. K., & Keum, Y. S. (2017). Fatty acids, tocopherols, phenolic and

antioxidant properties of six citrus fruit species: a comparative study. Journal of Food

Measurement and Characterization, 11(4), 1665–1675.

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul,

M.H.A., Ghafoor, K., Norulaini, N.A.N., Omar, A. K. M. (2013). Techniques for extraction

of bioactive compounds from plant materials: A review. Journal of Food Engineering,

117(4), 426–436.

Barbouchi, M., Elamrani, K., El Idrissi, M., & Choukrad, M. (2020). A comparative study on

phytochemical screening, quantification of phenolic contents and antioxidant properties

53

of different solvent extracts from various parts of Pistacia lentiscus L. Journal of King

Saud University - Science, 32(1), 302–306.

Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification.

Canadian Journal of Biochemistry and Physiology, 37, 911–917.

Briggs, A. P. (1924). Some applications of calorimetric phosphate method. Journal of

Biological Chemistry, 59, 255–265.

Çelik, S. E., Özyürek, M., Güçlü, K., & Apak, R. (2010). Solvent effects on the antioxidant

capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC,

ABTS/persulphate and FRAP methods. Talanta, 81(4–5), 1300–1309.

Chaidedgumjorn, A., Sotanaphun, U., Kitcharoen, N., Asavapichayont, P., Satiraphan, M., &

Sriamornsak, P. (2009). Pectins from Citrus maxima. Pharmaceutical Biology, 47(6),

521–526.

Chan, S. W., Lee, C. Y., Yap, C. F., Wan Aida, W. M., & Ho, C. W. (2009). Optimisation of

extraction conditions for phenolic compounds from limau purut (Citrus hystrix) peels.

International Food Research Journal, 16(2), 203–213.

Cheong, M. W., Chong, Z. S., Liu, S. Q., Zhou, W., Curran, P., & Yu, B. (2012).

Characterisation of calamansi (Citrus microcarpa). Part I: Volatiles, aromatic profiles and

phenolic acids in the peel. Food Chemistry, 134(2), 686–695.

Colodel, C., Vriesmann, L. C., Teófilo, R. F., & de Oliveira Petkowicz, C. L. (2018). Extraction

of pectin from ponkan (Citrus reticulata Blanco cv. Ponkan) peel: Optimization and

structural characterization. International Journal of Biological Macromolecules, 117,

385–391.

54

Cuevas, F. J., Moreno-rojas, J. M., & Ruiz-moreno, M. J. (2017a). Assessing a traceability

technique in fresh oranges ( Citrus sinensis L . Osbeck ) with an HS-SPME-GC-MS

method . Towards a volatile characterisation of organic oranges. Food Chemistry, 221,

1930–1938.

Cuevas, F. J., Pereira-caro, G., Moreno-rojas, J. M., Munoz-Redondo, J. M., & Ruiz-Moreno,

M. J. (2017b). Assessment of premium organic orange juices authenticity using

HPLC-HR-MS and HS-SPME-GC-MS combining data fusion and chemometrics. Food

Control, 82, 203–211.

de Moraes Barros, H. R., de Castro Ferreira, T. A. P., & Genovese, M. I. (2012). Antioxidant

capacity and mineral content of pulp and peel from commercial cultivars of citrus from

Brazil. Food Chemistry, 134(4), 1892–1898.

Di Majo, D., Giammanco, M., La Guardia, M., Tripoli, E., Giammanco, S., & Finotti, E. (2005).

Flavanones in Citrus fruit: Structure-antioxidant activity relationships. Food Research

International, 38(10), 1161–1166.

El-desoky, A. H., Abdel-Rahman, R. F., Ahmed, O. K., El-Beltagi, H. S., & Hattori, M. (2018).

Anti-inflammatory and antioxidant activities of naringin isolated from Carissa carandas

L.: In vitro and in vivo evidence. Phytomedicine, 42, 126–134.

Emam, O., & El-bassyouni, G. (2015). Effect of natural antioxidants of orange peel on

sunflower oil during storage. Journal of Food and Dairy Sciences, 6(3), 205–213.

FAO. (2019). The State of Food and Agriculture 2019. Moving forward on food loss and waste

reduction. Rome. Licence: CC BY-NC-SA 3.0 IGO. Available online at:

http://www.fao.org/3/ca6030en/ca6030en.pdf (Accessed 14 December 2020)

55

Food and Drug Administration (FDA), generally recognized as safe (GRAS) 21 CFR

184-Substances Affirmed as GRAS in Food. Available online at:

https://www.ecfr.gov/cgi-bin/text-idx?SID=e956d645a8b4e6b3e34e4e5d1b690209&mc=

true&node=pt21.3.184&rgn=div5 (Accessed 14 December 2020)

Frydman, A., Liberman, R., Huhman, D. V., Carmeli-Weissberg, M., Sapir-Mir, M., Ophir, R.,

Sumner, L.W., Eyal, Y. (2013). The molecular and enzymatic basis of bitter/non-bitter

flavor of citrus fruit: Evolution of branch-forming rhamnosyltransferases under

domestication. Plant Journal, 73(1),

Gorinstein, S., Huang, D., Leontowicz, H., Leontowicz, M., Yamamoto, K., Soliva-Fortuny, R.,

Belloso, O.M., Martinez Ayala, A.L., Trakhtenberg, S. (2006). Determination of naringin

and hesperidin in citrus fruit by high-performance liquid chromatography. The antioxidant

potential of citrus fruit. Acta Chromatographica, 17(17), 108–124.

Gorinstein, S., Martín-Belloso, O., Park, Y. S., Haruenkit, R., Lojek, A., Ĉıž́ , M., Caspi, A.,

Libman, I & Trakhtenberg, S. (2001). Comparison of some biochemical characteristics of

different citrus fruits. Food Chemistry, 74(3), 309–315.

Güzel, M., & Akpınar, Ö. (2019). Valorisation of fruit by-products: Production characterization

of pectins from fruit peels. Food and Bioproducts Processing, 115, 126–133.

Hegazy, A. E., & Ibrahium, M. I. (2012). Antioxidant activities of orange peel extracts. World

Applied Sciences Journal, 18(5), 684–688.

Högnadóttir, Á., & Rouseff, R. L. (2003). Identification of aroma active compounds in orange

essence oil using gas chromatography-olfactometry and gas chromatography-mass

spectrometry. Journal of Chromatography A, 998(1–2), 201–211.

56

Hou, H. S., Bonku, E. M., Zhai, R., Zeng, R., Hou, Y. L., Yang, Z. H., & Quan, C. (2019).

Extraction of essential oil from Citrus reticulate Blanco peel and its antibacterial activity

against Cutibacterium acnes (formerly Propionibacterium acnes). Heliyon, 5(12),

e02947.

Jandrić, Z., & Cannavan, A. (2017). An investigative study on differentiation of citrus fruit/fruit

juices by UPLC-QToF MS and chemometrics. Food Control, 72, 173–180.

Jayaprakasha, G. K., Girennavar, B., & Patil, B. S. (2008). Antioxidant capacity of pummelo

and navel oranges: Extraction efficiency of solvents in sequence. LWT - Food Science

and Technology, 41(3), 376–384.

Kesen, S., Kelebek, H., Sen, K., Ulas, M., & Selli, S. (2013). GC – MS – olfactometric

characterization of the key aroma compounds in Turkish olive oils by application of the

aroma extract dilution analysis. Food Research International, 54(2), 1987–1994.

Kobayashi, F., Sasaki, Y., Fujii, S., Orihara, H., & Nagaya, T. (2020). Negative viscosity of

liquid crystals in the presence of turbulence: Conductivity dependence, phase diagram,

and self-oscillation. Physical Review E, 101(2), 1–9.

Koleva, I. I., Niederländer, H. A. G., & Van Beek, T. A. (2001). Application of ABTS radical

cation for selective on-line detection of radical scavengers in HPLC eluates. Analytical

Chemistry, 73(14),

Kong, Y. T. (2017). Measurement of sugar concentration in Korean commercial coffee drinks

using portable saccharimeters. International Journal of Applied Engineering Research,

12(24), 14299–14306.

Kozłowska, A., & Szostak-Wegierek, D. (2014). Flavonoids- Food sources and health benefits.

Roczniki Państwowego Zakładu Higieny, 65(2), 79–85.

57

Lagha-Benamrouche, S., & Madani, K. (2013). Phenolic contents and antioxidant activity of

orange varieties (Citrus sinensis L. and Citrus aurantium L.) cultivated in Algeria: Peels

and leaves. Industrial Crops and Products, 50, 723–730.

Laurens, L. M. L., Quinn, M., Van Wychen, S., Templeton, D. W., & Wolfrum, E. J. (2012).

Accurate and reliable quantification of total microalgal fuel potential as fatty acid methyl

esters by in situ transesterification. Analytical and Bioanalytical Chemistry, 403(1), 167–

178.

Le Grandois, J., Guffond, D., Hamon, E., Marchioni, E., & Werner, D. (2017). Combined

microplate-ABTS and HPLC-ABTS analysis of tomato and pepper extracts reveals

synergetic and antagonist effects of their lipophilic antioxidative components. Food

Chemistry, 223, 62–71.

Lemańska, K., Szymusiak, H., Tyrakowska, B., Zieliński, R., Soffers, A. E. M. F., & Rietjens, I.

M. C. M. (2001). The influence of pH on antioxidant properties and the mechanism of

antioxidant action of hydroxyflavones. Free Radical Biology and Medicine, 31(7), 869–

881.

Li, B. B., Smith, B., & Hossain, M. (2006). Extraction of phenolics from citrus peels I . Solvent

extraction method. Separation and Purificaation Technology, 48, 182–188.

Li, L. J., Tan, W. S., Li, W. J., Zhu, Y. B., Cheng, Y. S., & Ni, H. (2019). Citrus taste

modification potentials by genetic engineering. International Journal of Molecular

Sciences, 20(24).

Liu, C., Hotta, Y., Santo, A., Hengesbaugh, M., Watabe, A., Totoki, Y., Allen, D., Bengtsson,

M. (2016). Food waste in Japan: Trends, current practices and key challenges. Journal

of Cleaner Production, 133(2016), 557–564.

58

Liu, Y., Shi, J., & Langrish, T. A. G. (2006). Water-based extraction of pectin from flavedo and

albedo of orange peels. Chemical Engineering Journal, 120, 203–209.

Lou, S. N., Hsu, Y. S., & Ho, C. T. (2014). Flavonoid compositions and antioxidant activity of

calamondin extracts prepared using different solvents. Journal of Food and Drug

Analysis, 22(3), 290–295.

Mao, Y., Tian, S., Qin, Y., & Han, J. (2019). A new sensory sweetness definition and

sweetness conversion method of five natural sugars, based on the Weber-Fechner Law.

Food Chemistry, 281(November 2018), 78–84.

Marathe, S. A., Rajalakshmi, V., Jamdar, S. N., & Sharma, A. (2011). Comparative study on

antioxidant activity of different varieties of commonly consumed legumes in India. Food

and Chemical Toxicology, 49(9), 2005–2012.

Matsuo, Y., Miura, L. A., Araki, T., Riffault-Valois, L., & Yoshie-Stark, Y. (2020). Comparison

of antioxidant properties of different crude extracts from Citrus natsudaidai peel. Food

Science and Technology Research, 26(6), 837–846.

Matsuo, Y., Miura, L. A., Araki, T., & Yoshie-Stark, Y. (2019). Proximate composition and

profiles of free amino acids, fatty acids, minerals and aroma compounds in Citrus

natsudaidai peel. Food Chemistry, 279(November 2018), 356–363.

Methacanon, P., Krongsin, J., & Gamonpilas, C. (2014). Pomelo (Citrus maxima) pectin:

Effects of extraction parameters andits properties. Food Hydrocolloids, 35, 383–391.

M’hiri, N., Ioannou, I., & Ghoul, M. (2015a). Proximate chemical composition of orange peel

and variation of phenols and antioxidant activity during convective air drying. Journal of

New Science, 9, 881–890.

59

M’hiri, N., Ioannou, I., Mihoubi Boudhrioua, N., & Ghoul, M. (2015b). Effect of different

operating conditions on the extraction of phenolic compounds in orange peel. Food and

Bioproducts Processing, 96, 161–170.

Ministry of Agriculture, Forestry and Fisheries (MAFF), (2020). Website on Food loss (in

Japanese). Available online at:

https://www.maff.go.jp/j/press/shokusan/kankyoi/attach/pdf/200414-1.pdf (Accessed 14

December 2020)

Ministry of Agriculture, Forestry and Fishery (MAFF), (2017). Tokusan Kaju Seisan Dōkōtō

chōsa (Statistical Survey on Trends in Specialty Fruit Production). (in Japanese).

Available online at: https://www.maff.go.jp/j/tokei/kouhyou/tokusan_kazyu/index.html

(Accessed 1 March 2021)

Ministry of Education, Culture, Sports, Science and Technology (MEXT), The seventh edition

of the Japanese Standard Tables of Food Composition 2015. (in Japanese). Available

online at: https://fooddb.mext.go.jp/index.pl (Accessed 9 February 2018)

Ministry of Health, Labour and Welfare (MHLW) (2015). Overview of Dietary Reference

Intakes for Japanese (2015). Available online at:

https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Overview.pdf

(Accessed 14 December 2020)

Ministry of the Environment (MOE). Website on Food waste and food loss. Available online at:

https://www.env.go.jp/press/107969.html (Accessed 14 December 2020)

Ministry of Foreign Affairs of Japan (MOFA). Website on Japan SDGs action platform.

Available online at: https://www.mofa.go.jp/policy/oda/sdgs/index.html (Accessed 14

December 2020)

60

Mohamadi, S., Zhao, M., Amrani, A., Marchioni, E., Zama, D., Benayache, F., & Benayache,

S. (2015). On-line screening and identification of antioxidant phenolic compounds of

Saccocalyx satureioides Coss. et Dur. Industrial Crops and Products, 76, 910–919.

Mokrzychi, W. S., & Tatol, M. (2012). Color difference Delta E - A survey. Machine Graphics

and Vision.

Molaveisi, M., Beigbabaei, A., Akbari, E., Noghabi, M. S., & Mohamadi, M. (2019). Kinetics of

temperature effect on antioxidant activity, phenolic compounds and color of Iranian

jujube honey. Heliyon, 5(1), e01129.

Molina-calle, M., Priego-capote, F., Luque, M. D., & Castro, D. (2015). Talanta

Ultrasound-assisted emulsi fi cation – extraction of orange peel metabo- lites prior to

tentative identi fi cation by LC – QTOF MS / MS. Talanta, 141, 150–157.

Nair S, A., SR, R. K., Nair, A. S., & Baby, S. (2018). Citrus peels prevent cancer.

Phytomedicine, 50, 231–237.

Pannala, A. S., Chan, T. S., O’Brien, P. J., & Rice-Evans, C. A. (2001). Flavonoid B-ring

chemistry and antioxidant activity: Fast reaction kinetics. Biochemical and Biophysical

Research Communications, 282(5), 1161–1168.

Park, J. H., Lee, M., & Park, E. (2014). Antioxidant activity of orange flesh and peel extracted

with various solvents. Preventive Nutrition and Food Science, 19(4), 291–298.

Procházková, D., Boušová, I., & Wilhelmová, N. (2011). Antioxidant and prooxidant properties

of flavonoids. Fitoterapia, 82(4), 513–523.

Rahman, N. F. A., Shamsudin, R., Ismail, A., Shah, N. N. A. K., & Varith, J. (2018). Effects of

drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus

61

grandis (L.) Osbeck) peels. Innovative Food Science and Emerging Technologies,

50(November 2017), 217–225.

Ramful, D., Bahorun, T., Bourdon, E., Tarnus, E., & Aruoma, O. I. (2010). Bioactive phenolics

and antioxidant propensity of flavedo extracts of Mauritian citrus fruits : Potential

prophylactic ingredients for functional foods application. Toxicology, 278(1), 75–87.

Rekha, S. S., & Bhaskar, M. (2013). In Vitro screening and identification of antioxidant

activities of orange (citrus sinensis) peel extract in different solvents. International

Journal of Pharma and Bio Sciences, 4(4), 405–412.

Sahreen, S., Khan, M. R., & Khan, R. A. (2010). Evaluation of antioxidant activities of various

solvent extracts of Carissa opaca fruits. Food Chemistry, 122(4), 1205–1211.

Said, A. A., El Gendy, M. A. M., Abdel Raoof, G. F., Omer, E. A., Fouad, R., Abd EL-Kader, A.

E., & Weinfeld, M. (2019). Cytotoxic activity and volatile components of peel oil of Citrus

volkameriana. South African Journal of Botany, 127, 201–207.

Salerno, R., Casale, F., Calandruccio, C., & Procopio, A. (2016). Characterization of

flavonoids in Citrus bergamia (Bergamot) polyphenolic fraction by liquid

chromatography–high resolution mass spectrometry (LC/HRMS). PharmaNutrition, 4,

S1–S7.

Schiffman, S. S., Sennewald, K., & Gagnon, J. (1981). Comparison of taste qualities and

thresholds of D- and L-amino acids. Physiology and Behavior, 27(1), 51–59.

Sharma, K., Mahato, N., Lee, Y. R. (2018). Extraction, characterization and biological activity

of citrus flavonoids. Reviews in Chemical Engineering

62

Sheikh, T. Z. ., Yong, C. L., & Lian, M. S. (2009). In vitro Antioxidant Activity of the Hexane

and Methaolic Extracts of argassum baccularia and Cladophora patentiramea. Journal of

Applied Sciences, 9(13), 2490–2493.

Stewart, A. J., Mullen, W., & Crozier, A. (2005). On-line high-performance liquid

chromatography analysis of the antioxidant activity of phenolic compounds in green and

black tea. Molecular Nutrition & Food Research, 49(1), 52–60.

Takebayashi, J., Oki, T., Watanabe, J., Yamasaki, K., Chen, J., Sato-furukawa, M.,

Tsubota-Utsugi, M., Taku, K., Goto, K., Matsumoto, T., Ishimi, Y., (2013). Hydrophilic

antioxidant capacities of vegetables and fruits commonly consumed in Japan and

estimated average daily intake of hydrophilic antioxidants from these foods. Journal of

Food Composition and Analysis, 29(1), 25–31.

Ting, S. V., & Deszyck, E. J. (1961). The Carbohydrates in the Peel of Oranges and

Grapefruit. Journal of Food Science, 26(2), 146–152.

Tuan, N. T., Dang, L. N., Huong, B. T. C., & Danh, L. T. (2019). One step extraction of

essential oils and pectin from pomelo (Citrus grandis) peels. Chemical Engineering and

Processing - Process Intensification, 142, 107550.

United Nations Department of Economic and Social Affairs. Website on Sustainable

Development Goals. Available online at: https://sdgs.un.org/goals (Accessed 14

December 2020)

Van Der Werf, R., Dal, S., Le Grandois, J., Aoude-Werner, D., Digel, F., Ennahar, S., Sigrist,

s., Marchioni, E. (2015). Determination of active radical scavenging compounds in polar

fruit and vegetable extracts by an on-line HPLC method. LWT - Food Science and

Technology, 62(1),

63

Wang, Y. C., Chuang, Y. C., & Hsu, H. W. (2008). The flavonoid, carotenoid and pectin

content in peels of citrus cultivated in Taiwan. Food Chemistry, 106(1), 277–284.

World Health Organization (WHO), Food and Agriculture Organization of the United Nations

(FAO), United Nations University (UNU) (2007). Protein and amino acid requirements in

human nutrition. WHO Technical Report Series (Vol. 935). Available online at:

http://apps.who.int/iris/bitstream/handle/10665/43411/WHO_TRS_935_eng.pdf?ua=1

Accessed 31 October 2018

Wusigale, Liang, L., & Luo, Y. (2020). Casein and pectin: Structures, interactions, and

applications. Trends in Food Science and Technology, 97(January), 391–403.

Yang, G., Tan, H., Li, S., Zhang, M., Che, J., Li, K., Chen, W., & Yin, H. (2020). Application of

engineered yeast strain fermentation for oligogalacturonides production from pectin-rich

waste biomass. Bioresource Technology, 300, 122645.

Yao, L. H., Jiang, Y. M., Shi, J., Tomas-Barberan, F. a, Datta, N., Singanusong, R., & Chen, S.

S. (2004). Flavonoids in food and their health benefits. Plant Foods for Human Nutrition

(Dordrecht, Netherlands), 59(3), 113–122.

Zema, D. A., Calabrò, P. S., Folino, A., Tamburino, V., Zappia, G., & Zimbone, S. M. (2018).

Valorisation of citrus processing waste: A review. Waste Management, 80, 252–273.

Zhang, H., Xie, Y., Liu, C., Chen, S., Hu, S., Xie, Z., Deng, X., Xu, J. (2017). Comprehensive

comparative analysis of volatile compounds in citrus fruits of different species. Food

Chemistry, 230, 316–326.

Zhang, H., & Tsao, R. (2016). Dietary polyphenols, oxidative stress and antioxidant and

anti-inflammatory effects. Current Opinion in Food Science, 8, 33–42.

64

Zhang, J., Sun, C., Yan, Y., Chen, Q., Luo, F., Zhu, X., Li, X., & Chen, K. (2012). Purification

of naringin and neohesperidin from Huyou (Citrus changshanensis) fruit and their effects

on glucose consumption in human HepG2 cells. Food Chemistry, 135(3), 1471–1478.

Zhang, M., Duan, C., Zang, Y., Huang, Z., & Liu, G. (2011). The flavonoid composition of

flavedo and juice from the pummelo cultivar (Citrus grandis (L.) Osbeck) and the

grapefruit cultivar (Citrus paradisi) from China. Food Chemistry, 129(4), 1530–1536.

Zhang, Y., Sun, Y., Xi, W., Shen, Y., Qiao, L., Zhong, L., Ye, X., Zhou, Z. (2014). Phenolic

compositions and antioxidant capacities of Chinese wild mandarin (Citrus reticulata

Blanco) fruits. Food Chemistry, 145, 674–680.

Zhou, J., Xia, L., & Zhang, Y. (2019). Naringin inhibits thyroid cancer cell proliferation and

induces cell apoptosis through repressing PI3K/AKT pathway. Pathology Research and

Practice, 215(12), 152707.

Zou, Z., Xi, W., Hu, Y., Nie, C., & Zhou, Z. (2016). Antioxidant activity of Citrus fruits. Food

Chemistry, 196, 885–896.

65

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る