リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ライフサイエンスを指向した植物エキスライブラリーの構築とその活用についての研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ライフサイエンスを指向した植物エキスライブラリーの構築とその活用についての研究

河上, 仁美 大阪大学 DOI:10.18910/82191

2021.03.24

概要

植物を含む天然物を使用した様々な生物活性スクリーニングに関する報告件数は年々増加しており、スクリーニングに使用されるライブラリーの重要性は増していると考えられる。世界には維管束植物のみでも23万種が生育するとされるが、海外産資源の使用は年々厳しくなる方向にある。一方、日本には7,500を超える植物種が生育しているとされているが、その中には未利用の種も多く含まれており、創薬を含めたライフサイエンス分野の新たな素材探索において非常に魅力的な天然研究資源であると言える。そこで、これら植物資源からの新たな有用種の発掘等を目的に、大規模な植物エキスライブラリーの構築及びスクリーニングへの応用を試みた。

①植物エキスライブラリーの構築
植物サンプルの収集及びエキスサンプルの調製原料となる植物サンプルの収集はライブラリーの方向性を決める重要な段階である。本ライブラリーは①同一植物種の複数回の採取、②シダ植物の積極的な採取、③生薬エキスの使用等により植物種及び成分的な多様性を内包した内容になっている。エキスは植物の部位ごとに熱メタノールで抽出し、溶媒を溜去後にDMSOに40mg/mLの濃度で溶解させ、ストックソリューションとした。2021年現在、植物種は2,419種、エキス数は合計で14,649点となった。

食薬区分及び食経験情報の付加
新たな植物資源を活用しようとする場合、食品と医薬品との区分を示す食薬区分は法的に重要な情報であり、また食経験情報も非常に有益な情報となる。そこで厚生労働省より通知されている「専ら医薬品として使用される成分本質(原材料)リスト(専医)」、「医薬品的効能効果を標榜しない限り医薬品と判断しない成分本質(原材料)リスト(非医)」及び各種書籍の情報を収集し、エキスライブラリーの原料植物に対し情報の付加を試みた。その結果、専医に10.8%及び非医に16.4%が該当し、更に全体の39.2%のサンプルに食経験情報が確認された。現在、この情報をもとにしたエキスサンプルの運用が実施されている。

エンドトキシン活性情報の付加
エンドトキシン(ET)はグラム陰性菌の菌体表面に由来するリポ多糖であるが、生体に対する発熱反応を始め多彩な生物活性を持つことが知られている。その為ETによるサンプルの汚染は細胞等を使用した生物活性試験に影響を及ぼす可能性が考えられる。そこで、地下部を使用したエキスについて、ET測定法として広く使用されるリムルス法(マイクロプレートリーダーを使用したカイネティック比色法)を用いET活性を測定した。測定の結果、野外採取サンプルの48.3%(139点)、生薬の4.0%(5点)からDMSO溶解エキス換算で0.05EU/mL以上のET活性が検出された。ET活性は0.05EU/mL未満から50EU/mL以上までサンプルによるばらつきが非常に大きかったものの、その活性は文献調査から細胞等への影響は少ないと考えられることが判明した。また、200以上のサンプルで測定時に反応曲線の変形や回収率の異常値等が認められた。そこで影響の認められた植物エキスに対し、ETを不活化するポリミキシンBの添加及びポリフェノールを吸着する働きを持つポリビニルポリピロリドン(PVPP)による処理を実施した。その結果、PVPPでエキスを処理した場合に測定への影響が消失したことから、エキス中のポリフェノール化合物が測定に影響を与えていることが判明した。更に低分子ポリフェノール化合物16点を添加して測定を実施したところ、フェルラ酸や没食子酸メチル等のcaffeic acid誘導体やgallic acid誘導体化合物が回収率や反応曲線の形状へ影響を及ぼすことが判明した。

②植物エキスライブラリーのスクリーニングへの応用
次に、構築したエキスライブラリーを使用してHyaluronidase(HAase)阻害活性物質のスクリーニングを実施した。HAaseはヒアルロン酸を加水分解する酵素であるが、炎症やアレルギー反応等免疫にも関連しているとされている。HAase阻害活性試験はpH5.0の酢酸緩衝液中にて比濁法で実施し、主として水溶性の低い成分に由来するfalse positiveを減少させるため、系にポリオキシエチレン(10)オクチルフェニルエーテル(以下POE)を0.01%添加した。被子植物とは異なる成分の含有が期待できるシダ植物のエキスを対象にエキス濃度0.4mg/mLでスクリーニングを実施したところ、6.2% (24点)のエキスで阻害活性が確認された。スクリーニングの結果及び材料の入手のし易さ等を勘案し、コシダの地上部及びヒリュウシダの根茎のエキスを対象として成分探索を実施した。

各種クロマトグラムを用いて2種の植物エキスを分離精製した結果、コシダの地上部からは2種、ヒリュウシダの根茎からは合計14種の化合物が単離された。化合物の構造解析はNMR、MS、OR、CDを使用して実施した。単離された化合物はcinnamtannin B1、aesculitannin B、brainicin、protocatechuic acid、3-O, 4-O, 5-Ocaffeoylshikimic acid、trans-melilotoside 、7-epiblechnic acid、brainic acid、blechninc acid、methyl gallate及び新規化合物である2-O-(β-D-glucopyranosyl)-2,3-dihydroxycinnamic acidと7″-methyl 7-epibrainateの14種であった。2-O-(β-D-glucopyranosyl)-2,3-dihydroxycinnamic acidは母核となっている2,3-dihydroxycinnamic acidの植物からの単離例が2例しかない珍しい化合物であった。一方、7″-methyl 7-epibrainateはepiblechnic acidのシキミ酸エステル体として初の単離報告であると同時に、ヒリュウシダから単離された初の7-epiblechnic acid骨格を持つ化合物でもあった。

単離化合物及びその関連化合物19点についてHAase阻害活性試験を実施したところ、タンニン類、brainicin、blechnic及びepiblechnic acid骨格を持つ化合物等にHAase阻害活性が認められ、そのIC50は0.078 mMから1.9 mMを示した。タンニン類、brainicin、7″-methyl 7-epibrainate, 7-epiblechnic acidはポジティブコントロールであるグリチルリチン酸2KのIC50 0.64 mMよりも強いHAase阻害活性を示した。cinnamtannin B1及びbrainic acidについてHAaseに対する阻害様式を検討したところ、cinnamtannin B1は拮抗阻害剤、brainic acidは混合阻害剤として作用することが判明した。それぞれの阻害定数はcinnamtannin B1で0.12 mM、brainic acid で1.3 mMと推定され、cinnamtannin B1の方がHAaseに対し強い親和性を示した。今回blechnic 及びepiblechnic acid骨格の化合物群に明確な構造活性相関は認められなかったものの、同様の骨格の化合物が広くHAase阻害活性を持つ可能性があることから、更なる試験が必要と考えられた。また、0.01% POE非添加・添加条件におけるIC50の値を比較したところ、いずれの化合物も0.01% POE添加条件で阻害活性は40%~60%に低下していたものの、活性は保持されていた。今回単離された化合物はある程度の水溶性も示すと考えられることから、これらの化合物の阻害活性の主たるメカニズムは化合物の凝集ではないことが推定された。ただし、その阻害メカニズムについては、今後の詳細な検討が必要であると考えられた。

今回HAase阻害活性を示したblechnic acid類はヒリュウシダの地上部にも含まれていることが報告されており、cinntamtannin B1もコシダ中に比較的多く含まれていた。コシダ及びヒリュウシダはいずれも成長が早く、植物資源としても有望である可能性が示された。

本研究で構築されたエキスライブラリーは、研究所内の資源としてのみではなく、公共性の高い側面を持ち、実社会にも応用されている。その点で植物の可能性を様々な分野へ生かすことのできる非常に稀有なエキスライブラリーであると言える。今後更にサンプル及び情報の追加が予定されており、社会に貢献し続けるライブラリーとして運用されていく予定である。

この論文で使われている画像

参考文献

1. Newman DJ. Natural products as leads to potential drugs: An old process or the new hope for drug discovery? J Med Chem. 51(9), 2589-2599 (2008).

2. 東京大学創薬機構<https://www.ddi.u-tokyo.ac.jp/> accessed 11. August. 2020

3. 理化学研 究所環境資源科学研 究センター <http://www.cbrg.riken.jp/npdepo/ja/> accessed 11. August. 2020

4. 一 般 社団法人バイオ産業情報化コンソーシアム<https://www.jbic.or.jp/> accessed 11. August. 2020

5. Fuchino H, Kawakami H, Yoneyama T, Kawahara N. Recent Research Progress of Research Center for Medical Plant Resources, National Institutes of Biomedical Innovation, Health and Nutrition (Part 3) - Research Project on Medical Plant Resources for Drug Discovery-. PMDRS, 47, 787–791 (2016).

6. Judd WS. Plant Systematics: A Phylogenetic Approach, Scond Ed. 2002 Synauer, Massachusetts U.S.A(2002).

7. 加藤 雅啓、海老原淳.日本の固有植物.東海大学出版会; 2011.

8. Ratnoglik SL, Aoki C, Sudarmono P, Komoto M, Deng L, Shoji I, Fuchino H, Kawahara N, Hotta H. Antiviral activity of extracts from Morinda citrifolia leaves and chlorophyll catabolites, pheophorbide a and pyropheophorbide a, against hepatitis C virus. Microbiol Immunol. 58(3), 188-194 (2014).

9. Yahara Y, Takemori H, Okada M, Kosai A, Yamashita A, Kobayashi T, Fujita K, Itoh Y, Nakamura M, Fuchino H, Kawahara N, Fukui N, Watanabe A, Kimura T, Tsumaki N. Pterosin B prevents chondrocyte hypertrophy and osteoarthritis in mice by inhibiting Sik3. Nat Commun. 7, 10959 (2016).

10. Murakami T. Tanaka N. Occurrence, Structure and Taxonomic Implications of Fern Constituents, Progress in the Chemistry of Organic Natural Products, 1988 SpringerVerlag.

11. 渕野裕之,河上仁美, 米山達朗,杉村康司,川原信夫. 薬用植物スクリーニングプロジェクトにおける植物エキスライブラリーの基盤構築とその多様性について,日本生薬学会64回年会,千葉, 2017年9月

12. 津田喜典.溶媒抽出.分析化学. 22 ,934–942 (1973).

13. Ina K, Nobukuni M, Sano A, Kishima I. Stability of Allyl Isothiocyanate (Studies on the Volatile Components of Wasabi and Horse Radish Part III). Nippon shokuhin Kogyo Gakkaishi, 28, 627-631, 1981.

14. Johansen HN, Glitsø V, Bach Knudsen KE. Influence of extraction solvent and temperature on the quantitative determination of oligosaccharides from plant materials by high-performance liquid chromatography. J Agric Food Chem., 44, 470–474 (1996).

15. Warwick RM, Clarke KR. New biodiversity mesures reveal a decrease in taxonomic distinctness with increasing stress. MEPS, 129, 301–305(1995).

16. Simpson EH. Measurement of Diversity, Nature, 163, 688 (1949).

17. Jost L. Entropy and Diversity, Oikos, 113, 363-375 (2012).

18. 海老原淳著.日本産シダ植標準図鑑.学研プラス; 2017.

19. Willis, K.J. (ed.) State of the World’s Plants 2017. Report. Royal Botanic Gardens, Kew. (2017) < https://stateoftheworldsplants.org/2017/report/SOTWP_2017.pdf> accessed 12. October. 2020

20. 厚生労働省医薬・生活衛生局監視指導・麻薬対策課長通知: 食薬区分における成分本質(原材料)の取扱いの例示 (令和2年7月9日一部改正), 薬生監麻発 0331 第 9号,令和2年3月31日<https://www.mhlw.go.jp/web/t_doc?dataId=00tc4935&dataType=1>, accessed 13. October. 2020

21. 米倉浩司・梶田忠(2003-) 「BG Plants和名-学名インデックス」(YList)、 <http://ylist.info>、accessed 29. September. 2020

22. 関田節子、大濱宏文、池田秀子.学名で引く食薬区分リスト. 薬事日報社; 2014.

23. 佐竹元吉、黒柳正典、正山征洋、和仁皓明.健康・機能性食品の基原植物辞典. 中央法規; 2016.

24. 星川清親、千原光男. 食用植物図説.女子栄養大学出版部; 1991.

25. 高野昭人.新版おいしく食べる山菜・野草. 世界文化社; 2014.

26. 大海淳.今すぐ使える山菜取りナビ図鑑.大泉書店; 2009.

27. 岡田恭子. 食べる野草図鑑.日東書院本社 ; 2017.

28 渡邊高志. 高知県有用植物ガイドブック. 高知工科大学; 2016.

29. 橋本郁三. 食べられる野生植物大辞典草木・木本・シダ新装版.柏書房; 2007.

30. 今井國勝、今井万岐子.よくわかる山菜大図鑑.永岡書店; 2017.

31. 橋本郁三. 野生植物食用図鑑南九州-琉球の草木.南方新社; 2012.

32. 厚生労働省医薬食品局食品安全部長: 食品衛生法第 4条の2 第 2 項の規定に基づく「サウロパス・アンドロジナス(別名アマメシバ)」を含む粉末剤、錠剤等の剤形の加工食品」の販売禁止について, 食安発第 0912001号,平成15年9月12日

33. 医薬・生活衛生局食品監視安全課輸入食品安全対策室:シアン化合物を含有する食品の取扱いについて, 事務連絡,平成29年11月6日

34. Tanamoto K. Endotoxin and the quality control of medicine. Bull. Natl. Inst. Health Sci., 126, 19–33 (2008).

35. 土谷正和.改訂第 2 版エンドトキシン. 試験情報機構; 2015.

36. Kirikae T, Kirikae F, Uemura Y, Nakano M. Endotoxin contamination in fetal bovine serum and its influence on tumor necrosis factor production by macrophage-like cells J774.1 cultured in the presence of the serum. Int. J. Immunopharmacol., 19, 255–262 (1997).

37. Gao B, Tsan MF. Induction of cytokines by heat shock proteins and endotoxin in murine macrophages. Biochem Biophys Res Commun. 317, 1149-1154 (2004).

38. Khan SM, Coulibaly S, Abe M, Furukawa N, Kubo Y, Nakaoji Y, Kawase Y, Matsumoto T, Hasei T, Deguchi Y, Nagaoka H, Yamagishi N, Watanabe M, Honda N, Wakabayashi K, Watanabe T. Seasonal fluctuation of endotoxin and protein, concentrations in outdoor air in Sasebo, Japan. Biol. Pharm. Bull., 41, 115–122 (2018).

39. Ohnishi T. Detection of endotoxin in Japanese mineral water for microbiological assessment of the water source and the factories. J. Food Microbiol., 27, 141–145 (2010).

40. Brooks JP, Maxwell SL, Rensing C, Gerba CP, Pepper IL. Occurrence of antibioticresistant bacteria and endotoxin associated with the land application of biosolids. Can. J. Microbiol., 53, 616–622 (2007).

41. Kandra L, Gyémánt G, Zajácz Á, and Batta G. Inhibitory effects of tannin on human salivary α-amylase. Biochem Biophys Res Commun., 139, 1265-1271 (2004).

42. Park DH, Park SJ, Kim JM, Jung WY, Ryu JH. Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia., 81, 644-648 (2010).

43. Niwa M, Milner KC, Ribi E, Rudbach JA. Alteration of physical, chemical, and biological properties of endotoxin by treatment with mild alkali. J. Bacteriol., 97, 1069–1077 (1969).

44. Fujita N, Saito Y, Nitto Y, Ito T, Mizuguchi H, Endo M, Ogata T. Folin-Chiocalteu colorimetric analysis using a scanner for rapid determination of total polyphenol content in many test samples. Stud. Sci. Technol., 1, 139–144 (2012).

45. World Health Organization. “WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants”: <https://apps.who.int/iris/bitstream/handle/10665/42783/9241546271.pdf>, accessed 8 May, 2020.

46. Inagawa H, Nishizawa T, Tsukioka D, Suda T, Chiba Y, Okutomi, Morikawa A, Soma G, Mizuno D. Homeostasis regulated by activated macrophage. Ⅱ. LPS of origin other than wheat flour and their concomitant bacteria. Chem. Pharm. Bull., 40, 994–997 (1992).

47. Hsu YH, Fu SL. Detection of endotoxin contamination in Chinese herbs by NF-κB activity-based reporter assays. J. Food Drug Anal., 12, 34–39 (2004).

48. Guo C, Yuan L, Wang J, Wang F, Yang X, Zhang F, Song J, Ma X Cheng Q, Song G. Lipopolysaccharide (LPS) induces the apoptosis and inhibits osteoblast differentiation through JNK pathway in MC3T3-E1 cells. Inflammation., 37, 621–631 (2014).

49. Zhang G, Han J, Welch EJ, Ye RD, Voyno-Yasenetskaya TA, Malik AB, Du X, Li Z. Lipopolysaccharide stimulate platelet secretion and potentiates platelet aggregation via TLR4/MyD88 and the cGMP-dependent protein kinase pathway. J. Immunol., 182, 7997–8004 (2009).

50. Yang H, Kaneko M, He C, Hughes MA, Cherry GW. Effect of a lipopolysaccharide from E. coli on the proliferation of fibroblasts and keratinocytes in vitro. Phytother. Res., 16, 43–47 (2002).

51. Goodier MR, Londei M. Lipopolysaccharide stimulates the proliferation of human CD56+CD3− NK Cells: A regulatory role of monocytes and IL-10. J. Immunol., 165, 139–147 (2000).

52. Hwa CH, Bae YC, Jung JS. Role of toll-like receptors on human adipose-derived stromal cells. Stem Cells., 24, 2744–2752 (2006).

53. Ohkouchi Y, Ishikawa S, Takahashi K, Itoh S. Factors associated with endotoxin fluctuation in aquatic environment and characterization of endotoxin removal in water treatment process. Environ. Eng. Res., 44, 247–254 (2007).

54. Ribi E, Anacker RL, Brown R, Haskins WT, Malmgren B, Milner KC, Rudbach JA. Reaction of endotoxin and surfactants. J. Bacteriol., 92, 1493–1509 (1966).

55. Fujita Y, Nabetani T. Iron sulfate inhibits Limulus activity by induction of structural and qualitative changes in lipid A. J. Appl. Microbiol., 116, 89–99 (2014).

56. Hurley JC. Endotoxemia: methods of detection and clinical correlates. Clin. Microbiol. Rev., 8, 268–292 (1995).

57. He Q, Lv Y, Yao K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem., 101, 1178–1182 (2007).

58. Pohjala L, Tammela P. Aggregating behavior of phenolic compounds - A source of false bioassay results? Molecules, 17, 10774–10790 (2012).

59. Granica S, Piwowarski JP, Czerwińska ME, Kiss AK. Phytochemistry, pharmacology and traditional uses of different Epilobium species (Onagraceae): A review. J Ethnopharmacol., 156, 316-346 (2014).

60. Granica S, Czerwińska ME, Piwowarski JP, Ziaja M, Kiss AK. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation. J Agric Food Chem., 6, 801-810 (2013).

61. Srećković N, Stanković JSK, Matić S, Mihailović NR, Imbimbo P, Monti DM, Mihailović V. Lythrum salicaria L. (Lythraceae) as a promising source of phenolic compounds in the modulation of oxidative stress: Comparison between aerial parts and root extracts. Ind Crops Prod., 155, 112781 (2020).

62. Mohamed IH, Giorgio C, Bruni R, Flammini L, Barocelli E, Rossi D, Domenichini G, Poli F, Tognolini M. Polyphenol rich botanicals used as food supplements interfere with EphA2-ephrinA1 system. Pharmacol Res., 64, 464-470 (2011).

63. Morrison DC, Jacobs DM. Binding of polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry, 13, 813–818 (1976).

64. Tsuchiya M, Oishi H, Takaoka A, Fusamoto M, Matsuura S. Discrimination between endotoxin and (1 → 3)-β-D-glucan using turbidimetric kinetic assay with Limulus amebocyte lysate. Chem. Pharma. Bull., 38, 2523–2526 (1990).

65. 吉田隆志,有井雅幸.植物ポリフェノール含有素材の開発その機能性と安全性.シーエムシー出版; 2007.

66. Su XD, Guo RH, Li HX, Ma JY, Kim YR, Kim YH, Yang SY. Anti-allergic inflammatory components from Sanguisorba officinalis L. Bioorg. Med. Chem. Lett., 28, 2210–2216 (2018).

67. Ahmad A, Ali M, Tandon S. New oenotheralanosterol A and B constituents from the Oenothera biennis roots. Chin. J. Chem., 28, 2474–2478 (2010).

68. Rauha JP, Wolfender JL, Salminen JP, Pihlaja K, Hostettmann K, Vuorela H. Characterization of the polyphenolic composition of Purple Loosestrife (Lythrum salicaria). Z. Naturforsch. C. J. Biosci., 56, 13–20 (2001).

69. 厚生科学審議会疾病対策部会リウマチ・アレルギー対策委員会:リウマチ・アレルギー対策委員会報告書(2011) < https://www.mhlw.go.jp/stf/shingi/2r98520 00001nes4-att/2r9852000001newa.pdf > accessed 13. September. 2020.

70. Stern R, Asari AA, Sugahara KN. Hyaluronan fragments: an information-rich system. Eur J Cell Biol., 85, 699-715(2006).

71. Kohi S, Sato N, Koga A, Hirata K, Harunari E, Igarashi Y. Hyaluromycin, a Novel Hyaluronidase Inhibitor, Attenuates Pancreatic Cancer Cell Migration and Proliferation. J Oncol., 2016, 9063087 (2016).

72. Girish KS, Kemparaju K, Nagaraju S, Vishwanath BS. Hyaluronidase inhibitors: a biological and therapeutic perspective. Curr Med Chem., 16 (18), 2261-2288 (2009).

73. Kakegawa H, Matsumoto H, Endo K, Ssatoh T, Nonaka G, Nishioka I. Inhibitory Effects of Tannins on Hyaluronidase Activation and on the Degranulation from Rat Mesentery Mast Cells. Chem. Pharm. Bull., 33 (11), 5079-5082 (1985).

74. Jadhav A, Ferreira RS, Klumpp C, Mott BT, Austin CP, Inglese J, et al. Quantitative analyses of aggregation, autofluorescence, and reactivity artifacts in a screen for inhibitors of a thiol protease. J Med Chem. 53,37–51 (2010).

75. Kumagai K. Chemical library screening in academia How to avoid false positives. Exp Med., 32(2), 6-43 (2014).

76. Auld DS, Inglese J, Dahlin JL. (2017) Assay Interference by Aggregation. In: Markossian S, Sittampalam GS, Grossman A, et al., (eds) Assay Guidance Manual, [Internet]. Bethesda (MD): Eli Lilly & Company and the National Center for Advancing Translational Sciences. <https://www.ncbi.nlm.nih.gov/books/NBK442297/> accessed 28. October. 2020

77. McGovern SL, Helfand BT, Feng B, Shoichet BK. A specific mechanism of nonspecific inhibition. J Med Chem., 46(20), 4265-4272 (2003).

78. Di Ferrante N. Turbidimetric measurement of acid mucopolysaccaharides and Hyaluronidase Activity. J Biol Chem., 1, 303-306 (1956).

79. 長野哲雄.創薬化学―メディシナルケミストへの道―.東京化学同人; 2018.

80. 上海科学技出版社. 中薬大事典第四巻.小学館; 1985.

81. Raja DP, Manickam VS, Britto AJ, Gopalakrishnan S, Ushioda T, Satoh M, Tanimura A, Fuchino H, Tanaka N. Chemical and Chemotaxonomical Studies on Dicranopteris Species. Chem. Pharm. Bull., 43(10), 1800-1803 (1995).

82. Li X, Yang L, Zhao Y, Wang R, Xu G, Zheng Y, Tu L, Peng L, Cheng X, Qin-Shi Zhao Q. Tetranorclerodanes and Clerodane-Type Diterpene Glycosides from Dicranopteris dichotoma. J. Nat. Prod., 70, 265-268 (2007).

83. Pang C, Ma XK, Lo JP, Hung TT, Hau BC. Vegetation succession on landslides in Hong Kong: Plant regeneration, survivorship and constraints to restoration. Glob Ecol Conserv., 15, e00428 (2008).

84. 朝日新聞社.植物の世界 12.朝日新聞社; 1997.

85. 上海科学技出版社. 中薬大事典第三巻.小学館; 1985.

86. Wada H, Kida T, Tanaka N, Murakami T, Saik Y, Chen CM. Chemical and Chemotaxonomical Studies of Ferns. LXXXI. Characteristic Lignans of Blechnaceous Ferns. Chem. Pharm. Bull., 40(8), 2099-2101(1992).

87. Lai HY, Lim YY, Kim KH. Isolation and characterization of a proanthocyanidin with antioxidative, antibacterial and anti-cancer properties from fern Blechnum orientale. Pharmacogn Mag., 13(49), 31-37 (2017).

88. Chiu PL, Patterson WG, Salt TA. Sterol Composition of Pteridophytes. Phytochemistry, 27(3), 819-822 (1988).

89. Bohm AB. Phenolic compounds in ferns—III: An examination of some ferns for caffeic acid derivatives. Phytochemistry., 7(10), 1825-1830 (1986).

90. Hesse M., Meier H., Zeeh B.,著. 野村正勝監訳.有機化学のためのスペクトル解析法[第 2 版].化学同人; 2017.

91. Jang DS. Lee GY. Lee YM. Kim YS. Sun H. Kim D. Kim JS, Flavan-3-ols having a γ-lactam from the root of Actinidia arguta inhibit the formation of advanced glycation end products in vitro. Chem. Pharma. Bull. 57. 397-400 (2009).

92. Hemingway RW, Tobiason FL, McGraw GW, Steynberg JP. Conformation and complexation of tannins: NMR spectra and molecular search modeling of flavan-3ols. Magn Reson Chem. 34, 424-433 (1996).

93. Kamiya K, Watanabe C, Endang H, Umar M, Satake T. Studies on the constituents of bark of Parameria laevigata Moldenke. Chem. Pharm. Bull., 49, 551-557 (2001).

94. Nonaka, G, Morimoto S, Nishioka I. Tannins and related compounds. Part 13. Isolation and structures of trimeric, tetrameric, and pentameric proanthicyanidins from cinnamon. J. Chem. Soc., Perkin Trans. 1, 2139-2145 (1983).

95. Morimoto S, Nonaka G, Nishioka I. Tannins and Related Compounds. LIX. Aesculitannins, Novel Proanthocyanidins with Doubly-Bonded Structures from Aesculus hippocastanum L. Chem Pharm Bull., 35(12), 4717-4729 (1987).

96. Virtbauera J, Krenna L, Kählig H, Hüfnerc A, Donatha O, Mariand B. Chemical and Pharmacological Investigations of Metaxya rostrata. Z. Naturforsch. 63c, 469-475 (2008).

97. Kashiwada Y, Morita M, Nonaka G, Nishioka I. Tannins and Related Compounds. XCI. Isolation and Characterization of Proanthocyanidins with an Intramolecularly Doubly-Linked Unit from the Fern, Dicranopteris pedata HOUTT. Chem Pharm Bull., 38(4), 856-860 (1990).

98. López JJ, Jardín I, Salido GM, Rosado JA. Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci., 82(19-20), 977-982 (2008).

99. Fujita K, Kuge K, Ozawa N, Sahara S, Zaiki K, Nakaoji K, Hamada K, Takenaka Y, Tanahashi T, Tamai K, Kaneda Y, Maeda A. Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice. PLOS ONE, 10(12), e0144166 (2015).

100. Wang K, Li MM, Chen XQ, Peng LY, Cheng X, Li Y, Zhao QS. Phenolic constituents from Brainea insignis. Chem. Pharm. Bull., 58, 868-871 (2010). Brainicin

101. Qian W, Wu W, Kang Y, Wang Y, Yang P, Deng Y, Ni C, Huang J. Comprehensive identification of minor components and bioassay-guided isolation of an unusual antioxidant from Azolla imbricata using ultra-high performance liquid chromatography—quadrupole time-of-flight mass spectrometry combined with multicomponent knockout and bioactivity evaluation. J Chromatogr A., 1609, 460435 (2020).

102. Saito T, Yamane H, Murofushi N, Takahashi N, Phinney BO. 4-O-Caffeoylshikimic and 4-O-(p-Coumaroyl) shikimic Acids from the Dwarf Tree Fern, Dicksonia antarctica. Biosci Biotechnol Biochem., 61(8), 1397–1398 (1997).

103. Fukuoka M. Chemical and Toxicolgical Studies on Bracken Fern, Pteridium aquilium var. latiusculum. Ⅵ. Isolation of 5-O-Caffeoylshikimid acid as an Antithiamine Factor. Chem. Pharma. Bull., 30, 3219-3224 (1982).

104. Hur JM, Park JG, Yang KH, Park JC, Park JR, Chun SS, Choi JS, Choi JW. Effect of Methanol Extract of Zanthoxylum piperitum Leaves and of Its Compound, Protocatechuic Acid, on Hepatic Drug Metabolizing Enzymes and Lipid Peroxidation in Rats. Biosci Biotechnol Biochem., 67(5), 945–50 (2003).

105. Canuto KM, Silveira ER, Bezerra AME. Phytochemical analysis of cultivated specimens of cumaru (Amburana cearensis A. C. Smith.). Quim. Nova., 33(3), 662666 (2010).

106. Manangeeswaran M, Ramalingam VV, Kumar K, Mohan N. Degradation of indulin, a kraft pine lignin, by Serratia marcescens, J. Environ. Sci. Health B, 42(3), 321-327 (2007).

107. Herisset A, Chaumont JP, Paris RR. Roman camomile (Anthemis nobilis) polyphenols, Plantes Medicinales et Phytotherapie. 4(3), 189-200 (1970).

108. Zhao M, Chen JY, Xu LJ, Goedecke T, Zhang XQ, Duan JA, Che CT. cis-aconitic anhydride ethyl ester and phenolic compounds from the seeds of Alisma orientale. Nat Prod Commun., 7(6), 785-787 (2012).

109. Murata T, Oyama K, Fujiyama M, Oobayashi B, Umehara K, Miyase T, Yoshizaki F. Diastereomers of lithospermic acid and lithospermic acid B from Monarda fistulosa and Lithospermum erythrorhizon. Fitoterapia., 91, 51-59 (2013).

110. Choi HG, Tran PT, Lee JH, Min BS, Kim JA. Anti-inflammatory activity of caffeic acid derivatives isolated from the roots of Salvia miltiorrhiza Bunge. Arch Pharm Res., 41(1), 64-70 (2018).

111. Si Y, Li N, Tong L, Lin B, Wang W, Xing Y, Liu X, Yue H, Xu J, Ju A. Bioactive minor components of the total salvianolic acids injection prepared from Salvia miltiorrhiza Bge. Bioorganic Med Chem Lett., 26(1) 82-86 (2016).

112. Tian S, Li N, Wang L, Wang K. Chemical Constituents from Pteridium aquilinum var. latiusculum. Chin. Pharm. J., 46(16), 1238-1241 (2011).

113. Hwang JL, Hyun SK, Kyung DL, Sang HN, Ki HP, Min SY. Comparison of Tyrosinase Inhibitory Effect of the Natural Antioxidants from Cedrela sinensis. Agric Chem Biotechnol., 48(3), 144–7 (2005).

114. Kuppusamy UR, Khoo HE, Das NP. Structure-activity of flavonoids as inhibitors of hyaluronidase. Biochem Pharmac, 40(2), 397-401(1990).

115. Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem. 53, 2719–40 (2010).

116. Tomohara K, Ito T, Onikata S, Furusawa K, Kato A, Adachi I. Interpreting the behavior of concentration-response curves of hyaluronidase inhibitors under DMSOperturbed assay conditions. Bioorganic Med Chem Lett. 26, 3153–3157 (2016).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る