リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Studies on zoonotic viruses isolated from wild animals with an optimal isolation method for protease-dependent viruses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Studies on zoonotic viruses isolated from wild animals with an optimal isolation method for protease-dependent viruses

岸本, 麻衣 北海道大学

2023.03.23

概要

Coronavirus disease 2019 (COVID-19) has emerged as a pandemic and poses a
significant public health threat despite its often low morbidity and mortality rate in
certain geographic locations. To date, > 640,000,000 people have been infected,
resulting in > 6,600,000 deaths globally (https://coronavirus.jhu.edu/map.html, accessed
on 28th November 2022). Infection is caused by a novel SARS-CoV-2, which is closely
related to SARS-CoV-1 28,29. As with SARS-CoV-1, SARS-CoV-2 mainly infects the
respiratory tract and is primarily transmitted via the respiratory route, causing
respiratory illness that can partially progress to severe pneumonia 30. In addition,
gastrointestinal illness—possibly via a fecal-oral transmission route—was also observed
in SARS-CoV-2 patients 31–33. Moreover, it has been pointed out that the central
nervous system can be involved in SARS-CoV-2 infection, and this may also contribute
to respiratory failure 34,35. However, the specific cellular and tissue tropisms and
pathology of SARS-CoV-2 remains to be further clarified.
Host cell factors involved in the viral entry steps are major determinants of
coronavirus tropism and efficiency of cellular entry. SARS-CoV-2 enters into cells in
the following steps: i) Virion of SARS-CoV-2 attaches to the target cell by interaction
between the S1 subunit of the spike (S) protein and its cognate receptor, angiotensinconverting enzyme 2 (ACE2), ii) the binding of the S protein to ACE2 provokes
conformational change of the S protein to a pre-fusion state, iii) the S2 subunit of the S
protein is cleaved by host proteases at the S2′ site to trigger irreversible refolding of the
S2 subunit into a post-fusion conformation, and iv) fusion of the cell/viral membranes
occurs to introduce the viral genome into the cytosol of the host cell 36–39. While SARSCoV-1 requires cleavage of the S protein at the S1/S2 site by host proteases in the entry
steps, the S1/S2 site of the S protein of SARS-CoV-2 is cleaved by intracellular
protease furin in the viral assembly step, which may affect the cell tropism and the entry
efficiency of SARS-CoV-2 40. In addition, it is suggested that the stability and
glycosylation state of the S protein regulates its conformations to maintain the contact
with ACE2, which is also related to vital entry efficiency 41–43. ...

この論文で使われている画像

参考文献

1.

Coker, R. et al. Towards a conceptual framework to support one-health research

for policy on emerging zoonoses. Lancet Infect. Dis. 11, 326–331 (2011).

2.

Woolhouse, M. E. J. & Gowtage-Sequeria, S. Host Range and Emerging and

Reemerging Pathogens. Emerg. Infect. Dis. J. 11, 1842–1847 (2005).

3.

Wolfe, N. D., Dunavan, C. P. & Diamond, J. Origins of major human infectious

diseases. Nature 447, 279–283 (2007).

4.

Cutler, S. J., Fooks, A. R. & Poel, W. H. M. van der. Public Health Threat of

New, Reemerging, and Neglected Zoonoses in the Industrialized World. Emerg.

Infect. Dis. J. 16, 1–7 (2010).

5.

Badrane, H. & Tordo, N. Host switching in lyssavirus history from the

Chiroptera to the carnivora orders. J. Virol. 75, 8096–8104 (2001).

6.

Chua, K. B. et al. Isolation of Nipah virus from malaysian island flying-foxes.

Microbes Infect. 4, 145–151 (2002).

7.

Halpin, K., Young, P. L., Field, H. E. & Mackenzie, J. S. Y. Isolation of Hendra

virus from pteropid bats: a natural reservoir of Hendra virus. J. Gen. Virol. 81,

1927–1932 (2000).

8.

Towner, J. S. et al. Isolation of genetically diverse Marburg viruses from

egyptian fruit bats. PLOS Pathog. 5, e1000536 (2009).

9.

Li, W. et al. Bats are natural reservoirs of SARS-like coronaviruses. Science

310, 676–679 (2005).

10.

Plyusnin, A., Vapalahti, O. & Vaheri, A. Hantaviruses: genome structure,

expression and evolution. J. Gen. Virol. 77, 2677–2687 (1996).

11.

Charrel, R. N. & de Lamballerie, X. Zoonotic aspects of arenavirus infections.

Vet. Microbiol. 140, 213–220 (2010).

12.

Roux, S. et al. Minimum Information about an Uncultivated Virus Genome

(MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

13.

Sasaki, M. et al. Isolation and Characterization of a Novel Alphaherpesvirus in

Fruit Bats. J. Virol. 88, 9819–9829 (2014).

91

14.

Intaruck, K. et al. Isolation and characterization of an orthoreovirus from

Indonesian fruit bats. Virology 575, 10–19 (2022).

15.

Laporte, M. & Naesens, L. Airway proteases: an emerging drug target for

influenza and other respiratory virus infections. Curr. Opin. Virol. 24, 16–24

(2017).

16.

Arias, C. F. & López, S. Rotavirus cell entry: not so simple after all. Curr. Opin.

Virol. 48, 42–48 (2021).

17.

Roth, A. N. et al. Ins and Outs of Reovirus: Vesicular Trafficking in Viral Entry

and Egress. Trends Microbiol. 29, 363–375 (2021).

18.

Shirogane, Y. et al. Efficient Multiplication of Human Metapneumovirus in

Vero Cells Expressing the Transmembrane Serine Protease TMPRSS2. J. Virol.

82, 8942–8946 (2008).

19.

Böttcher-Friebertshäuser, E. et al. Cleavage of Influenza Virus Hemagglutinin

by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization

and Susceptibility to Protease Inhibitors. J. Virol. 84, 5605–5614 (2010).

20.

Matsuyama, S. et al. Efficient Activation of the Severe Acute Respiratory

Syndrome Coronavirus Spike Protein by the Transmembrane Protease

TMPRSS2. J. Virol. 84, 12658–12664 (2010).

21.

Matsuyama, S. et al. Enhanced isolation of SARS-CoV-2 by TMPRSS2expressing cells. Proc. Natl. Acad. Sci. 117, 7001–7003 (2020).

22.

Nygaard, R. M., Golden, J. W. & Schiff, L. A. Impact of Host Proteases on

Reovirus Infection in the Respiratory Tract. J. Virol. 86, 1238–1243 (2012).

23.

Abe, M. et al. TMPRSS2 Is an Activating Protease for Respiratory

Parainfluenza Viruses. J. Virol. 87, 11930–11935 (2013).

24.

Bertram, S. et al. TMPRSS2 and TMPRSS4 Facilitate Trypsin-Independent

Spread of Influenza Virus in Caco-2 Cells. J. Virol. 84, 10016–10025 (2010).

25.

Zmora, P. et al. DESC1 and MSPL Activate Influenza A Viruses and Emerging

Coronaviruses for Host Cell Entry. J. Virol. 88, 12087–12097 (2014).

26.

Zmora, P. et al. TMPRSS11A activates the influenza A virus hemagglutinin and

the MERS coronavirus spike protein and is insensitive against blockade by HAI1. J. Biol. Chem. 293, 13863–13873 (2018).

92

27.

Sasaki, M. et al. Host serine proteases TMPRSS2 and TMPRSS11D mediate

proteolytic activation and trypsin-independent infection in group A rotaviruses.

J. Virol. 95, e00398-21 (2021).

28.

Wu, F. et al. A new coronavirus associated with human respiratory disease in

China. Nature 579, 265–269 (2020).

29.

Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of

probable bat origin. Nature 579, 270–273 (2020).

30.

Harrison, A. G., Lin, T. & Wang, P. Mechanisms of SARS-CoV-2 Transmission

and Pathogenesis. Trends Immunol. 42, 1100–1115 (2020).

31.

Xiao, F. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2.

Gastroenterology 158, 1831–1833 (2020).

32.

Cholankeril, G. et al. High Prevalence of Concurrent Gastrointestinal

Manifestations in Patients With Severe Acute Respiratory Syndrome

Coronavirus 2: Early Experience From California. Gastroenterology 159, 775–

777 (2020).

33.

Leung, W. K. et al. Enteric involvement of severe acute respiratory syndromeassociated coronavirus infection. Gastroenterology 125, 1011–1017 (2003).

34.

Huang, J. et al. Potential of SARS-CoV-2 to Cause CNS Infection: Biologic

Fundamental and Clinical Experience. Front. Neurol. 11, 659 (2020).

35.

Saleki, K., Banazadeh, M., Saghazadeh, A. & Rezaei, N. The involvement of the

central nervous system in patients with COVID-19. Rev. Neurosci. 31, 453–456

(2020).

36.

Hoffmann, M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2

and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181, 271–280

(2020).

37.

Boopathi, S., Poma, A. B. & Kolandaivel, P. Novel 2019 coronavirus structure,

mechanism of action, antiviral drug promises and rule out against its treatment.

J. Biomol. Struct. Dyn. 39, 3409–3418 (2020).

38.

Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein.

Science 369, 1586–1592 (2020).

93

39.

Tang, T., Bidon, M., Jaimes, J. A., Whittaker, G. R. & Daniel, S. Coronavirus

membrane fusion mechanism offers a potential target for antiviral development.

Antiviral Res. 178, 104792 (2020).

40.

Hoffmann, M., Kleine-Weber, H. & Pöhlmann, S. A Multibasic Cleavage Site in

the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung

Cells. Mol. Cell 78, 779–784 (2020).

41.

Moreira, R. A., Guzman, H. V., Boopathi, S., Baker, J. L. & Poma, A. B.

Characterization of Structural and Energetic Differences between Conformations

of the SARS-CoV-2 Spike Protein. Materials 13, 5362 (2020).

42.

Moreira, R. A., Chwastyk, M., Baker, J. L., Guzman, H. V. & Poma, A. B.

Quantitative determination of mechanical stability in the novel coronavirus spike

protein. Nanoscale 12, 16409–16413 (2020).

43.

Casalino, L. et al. Beyond Shielding: The Roles of Glycans in the SARS-CoV-2

Spike Protein. ACS Cent. Sci. 6, 1722–1734 (2020).

44.

Simmons, G., Zmora, P., Gierer, S., Heurich, A. & Pöhlmann, S. Proteolytic

activation of the SARS-coronavirus spike protein: Cutting enzymes at the

cutting edge of antiviral research. Antiviral Res. 100, 605–614 (2013).

45.

Ou, T. et al. Hydroxychloroquine-mediated inhibition of SARS-CoV-2 entry is

attenuated by TMPRSS2. PLOS Pathog. 17, e1009212 (2021).

46.

Antalis, T. M., Bugge, T. H. & Wu, Q. Membrane-Anchored Serine Proteases in

Health and Disease. Prog. Mol. Biol. Transl. Sci. 99, 1–50 (2011).

47.

Bertram, S., Glowacka, I., Steffen, I., Kühl, A. & Pöhlmann, S. Novel insights

into proteolytic cleavage of influenza virus hemagglutinin: Proteolytic activation

of influenza virus. Rev. Med. Virol. 20, 298–310 (2010).

48.

Laporte, M. et al. Hemagglutinin Cleavability, Acid Stability, and Temperature

Dependence Optimize Influenza B Virus for Replication in Human Airways. J.

Virol. 94, e01430-19 (2019).

49.

Shi, W. et al. TMPRSS2 and MSPL Facilitate Trypsin-Independent Porcine

Epidemic Diarrhea Virus Replication in Vero Cells. Viruses 9, 114 (2017).

94

50.

Bertram, S. et al. Cleavage and Activation of the Severe Acute Respiratory

Syndrome Coronavirus Spike Protein by Human Airway Trypsin-Like Protease.

J. Virol. 85, 13363–13372 (2011).

51.

Xia, S. et al. The role of furin cleavage site in SARS-CoV-2 spike proteinmediated membrane fusion in the presence or absence of trypsin. Signal

Transduct. Target. Ther. 5, 92 (2020).

52.

Ou, X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus

entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 11, 1620

(2020).

53.

Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of

human small intestinal enterocytes. Sci. Immunol. 5, eabc3582 (2020).

54.

Sasaki, M. et al. SARS-CoV-2 variants with mutations at the S1/S2 cleavage site

are generated in vitro during propagation in TMPRSS2-deficient cells. PLOS

Pathog. 17, e1009233 (2021).

55.

Thai, H. T. C. et al. Development and Evaluation of a Novel Loop-Mediated

Isothermal Amplification Method for Rapid Detection of Severe Acute

Respiratory Syndrome Coronavirus. J. Clin. Microbiol. 42, 1956–1961 (2004).

56.

Emery, S. L. et al. Real-Time Reverse Transcription–Polymerase Chain

Reaction Assay for SARS-associated Coronavirus. Emerg. Infect. Dis. 10, 311–

316 (2004).

57.

Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by realtime RT-PCR. Eurosurveillance 25, 23–30 (2020).

58.

Overbergh, L. et al. Validation of real-time RT-PCR assays for mRNA

quantification in baboons. Cytokine 31, 454–458 (2005).

59.

Hörnich, B. F. et al. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell

Fusion Differ in Their Requirements for Receptor Expression and Proteolytic

Activation. J. Virol. 95, e00002-21 (2021).

60.

Belouzard, S., Millet, J. K., Licitra, B. N. & Whittaker, G. R. Mechanisms of

Coronavirus Cell Entry Mediated by the Viral Spike Protein. Viruses 4, 1011–

1033 (2012).

95

61.

Fuentes-Prior, P. Priming of SARS-CoV-2 S protein by several membranebound serine proteinases could explain enhanced viral infectivity and systemic

COVID-19 infection. J. Biol. Chem. 296, 100135 (2020).

62.

Kido, H. & Okumura, Y. MSPL/TMPRSS13. Front Biosci 13, 754–8 (2008).

63.

Carocci, M. & Bakkali-Kassimi, L. The encephalomyocarditis virus. Virulence

3, 351–367 (2012).

64.

Cardeti, G. et al. Encephalomyocarditis virus infection in Macaca sylvanus and

Hystrix cristata from an Italian rescue centre for wild and exotic animals. Virol.

J. 13, 193 (2016).

65.

Reddacliff, L., Kirkland, P., Hartley, W., & Reece, R. Encephalomyocarditis

Virus Infections in an Australian Zoo. J. Zoo Wildl. Med. 28, 153–157 (1997).

66.

Susan K. Wells, Andrew E. Gutter, Kenneth F. Soike and Gary B. Baskin.

Encephalomyocarditis Virus: Epizootic in a Zoological Collection. J. Zoo Wildl.

Med. 20, 291–296 (1989).

67.

Vyshemirskii, O. I. et al. Isolation and genetic characterization of

encephalomyocarditis virus 1 from a deceased captive hamadryas baboon. Virus

Res. 244, 164–172 (2018).

68.

Yeo, D. S.-Y. et al. A highly divergent Encephalomyocarditis virus isolated

from nonhuman primates in Singapore. Virol. J. 10, 248 (2013).

69.

Canelli, E. et al. Encephalomyocarditis virus infection in an Italian zoo. Virol. J.

7, 64 (2010).

70.

van Sandwyk, J. H. d. T., Bennett, N. C., Swanepoel, R. & Bastos, A. D. S.

Retrospective genetic characterisation of Encephalomyocarditis viruses from

African elephant and swine recovers two distinct lineages in South Africa. Vet.

Microbiol. 162, 23–31 (2013).

71.

Lamglait, B., Joris, A., Romey, A., Bakkali-Kassimi, L. & Lemberger, K. Fatal

encephalomyocarditis virus infection in an African savanna elephant (Loxodonta

africana) in a french zoo. J. Zoo Wildl. Med. 46, 393–396 (2015).

72.

Grobler, D. G., Raath, J. P., Braack, L. E. O., Keet, D. F. & Gerdes, G. H. An

outbreak of encephalomyocarditis virus infection in free-ranging African

96

elephants in the Kruger National Park. Onderstepoort J. Vet. Res. 62, 97–108

(1995).

73.

Jones, P. et al. Encephalomyocarditis virus mortality in semi-wild bonobos (Pan

panicus): Encephalomyocarditis in semi-wild bonobos. J. Med. Primatol. 40,

157–163 (2011).

74.

Luo, Y.-K. et al. Isolation and Characterization of Encephalomyocarditis Virus

from Dogs in China. Sci. Rep. 7, 438 (2017).

75.

Maurice, H., Nielen, M., Vyt, Ph., Frankena, K. & Koenen, F. Factors related to

the incidence of clinical encephalomyocarditis virus (EMCV) infection on

Belgian pig farms. Prev. Vet. Med. 78, 24–34 (2007).

76.

Koenen F, Vanderhallen H, Castryck F, Miry C. Epidemiologic, pathogenic and

molecular analysis of recent encephalomyocarditis outbreaks in Belgium.

Zentralblatt Vet. Reihe B J. Vet. Med. Ser. B 46, 217–231 (1999).

77.

Zhang, G. Q., Ge, X. N., Guo, X. & Yang, H. C. Genomic analysis of two

porcine encephalomyocarditis virus strains isolated in China. Arch. Virol. 152,

1209–1213 (2007).

78.

Feng, R. et al. National serosurvey of encephalomyocarditis virus in healthy

people and pigs in China. Arch. Virol. 160, 2957–2964 (2015).

79.

Deutz, A. et al. [Seroepidemiological studies of zoonotic infections in hunters in

southeastern Austria—prevalences, risk factors, and preventive methods]. Berl.

Munch. Tierarztl. Wochenschr. 116, 306–311 (2003).

80.

Oberste, M. S. et al. Human Febrile Illness Caused by Encephalomyocarditis

Virus Infection, Peru. Emerg. Infect. Dis. 15, 640–646 (2009).

81.

Czechowicz, J. et al. Prevalence and Risk Factors for Encephalomyocarditis

Virus Infection in Peru. Vector-Borne Zoonotic Dis. 11, 367–374 (2011).

82.

Spyrou, V. et al. Transmission and pathogenicity of encephalomyocarditis virus

(EMCV) among rats. Vet. Res. 35, 113–122 (2004).

83.

Psalla, D. et al. Pathogenesis of Experimental Encephalomyocarditis: a

Histopathological, Immunohistochemical and Virological Study in Rats. J.

Comp. Pathol. 134, 30–39 (2006).

97

84.

Psalla, D. et al. Pathogenesis of Experimental Encephalomyocarditis: A

Histopathological, Immunohistochemical and Virological Study in Mice. J.

Comp. Pathol. 135, 142–145 (2006).

85.

Haydon, D. T., Cleaveland, S., Taylor, L. H. & Laurenson, M. K. Identifying

Reservoirs of Infection: A Conceptual and Practical Challenge. Emerg. Infect.

Dis. 8, 1468–1473 (2002).

86.

Zell, R. Picornaviridae—the ever-growing virus family. Arch. Virol. 163, 299–

317 (2018).

87.

Philipps, A. et al. Isolation and molecular characterization of a second serotype

of the encephalomyocarditis virus. Vet. Microbiol. 161, 49–57 (2012).

88.

Helwig, F. C. & Schmidt, C. H. A filter-passing agent producing interstitial

myocarditis in anthropoid apes and small animals. Science 102, 31–33 (1945).

89.

Feng, R. et al. Isolation, molecular and phylogenetic analysis of

encephalomyocarditis virus strain GS01 in China. Infect. Genet. Evol. 30, 19–26

(2015).

90.

Ishii, A. et al. Molecular surveillance and phylogenetic analysis of Old World

arenaviruses in Zambia. J. Gen. Virol. 93, 2247–2251 (2012).

91.

Sasaki, M. et al. Molecular epidemiology of paramyxoviruses in Zambian wild

rodents and shrews. J. Gen. Virol. 95, 325–330 (2014).

92.

An, D.-J. et al. Encephalomyocarditis in Korea: Serological survey in pigs and

phylogenetic analysis of two historical isolates. Vet. Microbiol. 137, 37–44

(2009).

93.

Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular

Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol.

35, 1547–1549 (2018).

94.

Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4:

Detection and analysis of recombination patterns in virus genomes. Virus Evol.

1, vev003 (2015).

95.

Yuan, W. et al. Porcine encephalomyocarditis virus strain BD2 isolated from

northern China is highly virulent for BALB/c mice. Acta Virol. 59, 300–304

(2015).

98

96.

Bai, J. et al. Pathogenicity and molecular analysis of an encephalomyocarditis

virus isolate from mideastern China. Can. J. Vet. Res. 76, 157–160 (2012).

97.

Billinis, C. Encephalomyocarditis Virus Infection in Wildlife Species in Greece.

J. Wildl. Dis. 45, 522–526 (2009).

98.

Gainer, J. H. Encephalomyocarditis virus infections in Florida, 1960-1966. J.

Am. Vet. Med. Assoc. 151, 421–425 (1967).

99.

Hill, B. D., Ketterer, P. J., Rodwell, B. J., Eaves, F. W. & Webster, W. R.

Encephalomyocarditis virus infection and pig disease in Queensland. Aust. Vet.

J. 62, 433–434 (1985).

100.

Hubbard, G. B. et al. An encephalomyocarditis virus epizootic in a baboon

colony. Lab. Anim. Sci. 42, 233–239 (1992).

101.

Roca-Garcia, M. & Sanmartin-Barberi, C. The Isolation of

Encephalomyocarditis Virus from Aotus Monkeys 1. Am. J. Trop. Med. Hyg. 6,

840–852 (1957).

102.

Ghosh, S. N. & Rajagopalan, P. K. Encephalomyocarditis virus activity in Mus

booduga (Gray) in Barur Village (1961-1962), Sagar KFD area, Mysore State,

India. Indian J. Med. Res. 61, 989–991 (1973).

103.

Vizoso, A. D., Vizoso, M. R. & Hay, R. Isolation of a Virus resembling

Encephalomyocarditis from a Red Squirrel. Nature 201, 849–850 (1964).

104.

Amaddeo, D., Cardeti, G. & Autorino, G. L. Isolation of Encephalomyocarditis

Virus from Dormice (Myoxus glis) in Italy. J. Wildl. Dis. 31, 238–242 (1995).

105.

Pope, J. A virus of the encephalomyocarditis group from a water-rat, Hydromys

chrysogaster, in north queensland. Aust. J. Exp. Biol. Med. Sci. 37, 117–124

(1959).

106.

Gainer, J. H. & Bigler, W. I. Encephalomyocarditis (EMC) Virus Recovered

From Two Cotton Rats and a Raccoon. Bull. Wildl. Dis. Assoc. 3, 47–49 (1967).

107.

Causey, O.R., Shope, R.E. and Laemmert, H. Report of an epizootic of

encephalomyocarditis virus in Para, Brazil. Rev Serv Esp 12, 47–50 (1962).

108.

Orba, Y. et al. Orthopoxvirus infection among wildlife in Zambia. J. Gen. Virol.

96, 390–394 (2015).

99

109.

Sasaki, M. et al. Metagenomic analysis of the shrew enteric virome reveals

novel viruses related to human stool-associated viruses. J. Gen. Virol. 96, 440–

452 (2015).

110.

Maurice, H. et al. The occurrence of encephalomyocarditis virus (EMCV) in

European pigs from 1990 to 2001. Epidemiol. Infect. 133, 547–557 (2005).

111.

Seaman, J. T., Boulton, J. G. & Carrigan, M. J. Encephalomyocarditis virus

disease of pigs associated with a plague of rodents. Aust. Vet. J. 63, 292–294

(1986).

112.

Liu, H. et al. Complete genome sequences and phylogenetic analysis of

encephalomyocarditis virus strains isolated from pigs and rats origin. Infect.

Genet. Evol. 55, 277–280 (2017).

113.

Oberste, M. S. et al. Enteroviruses 76, 89, 90 and 91 represent a novel group

within the species Human enterovirus A. J. Gen. Virol. 86, 445–451 (2005).

114.

Oberste, M. S., Peñaranda, S., Maher, K. & Pallansch, M. A. Complete genome

sequences of all members of the species Human enterovirus A. J. Gen. Virol. 85,

1597–1607 (2004).

115.

Doi, K. Experimental Encephalomyocarditis Virus Infection in Small Laboratory

Rodents. J. Comp. Pathol. 144, 25–40 (2011).

116.

Clark, A. et al. Estimating global, regional and national rotavirus deaths in

children aged <5 years: Current approaches, new analyses and proposed

improvements. PLOS ONE 12, e0183392 (2017).

117.

Jonesteller, C. L., Burnett, E., Yen, C., Tate, J. E. & Parashar, U. D.

Effectiveness of rotavirus vaccination: a systematic review of the first decade of

global postlicensure data, 2006–2016. Clin. Infect. Dis. 65, 840–850 (2017).

118.

Sadiq, A., Bostan, N., Khan, J. & Aziz, A. Effect of rotavirus genetic diversity

on vaccine impact. Rev. Med. Virol. 32, e2259 (2022).

119.

Malik Y. S. et al. Evolving rotaviruses, interspecies transmission and zoonoses.

Open Virol. J. 14, 1–6 (2020).

120.

Matthijnssens, J. et al. Full genome-based classification of rotaviruses reveals a

common origin between human Wa-like and porcine rotavirus strains and human

DS-1-like and bovine rotavirus strains. J. Virol. 82, 3204–3219 (2008).

100

121.

Matthijnssens, J. et al. Uniformity of rotavirus strain nomenclature proposed by

the Rotavirus Classification Working Group (RCWG). Arch. Virol. 156, 1397–

1413 (2011).

122.

Kumar, N. et al. Molecular characterization of unusual bovine rotavirus A

strains having high genetic relatedness with human rotavirus: evidence for

zooanthroponotic transmission. Zoonoses Public Health 65, 431–442 (2018).

123.

Steyer, A., Poljšak-Prijatelj, M., Barlič-Maganja, D. & Marin, J. 2008. Human,

porcine and bovine rotaviruses in Slovenia: evidence of interspecies

transmission and genome reassortment. J. Gen. Virol. 89, 1690–1698 (2008).

124.

Papp, H. et al. Zoonotic transmission of reassortant porcine G4P[6] rotaviruses

in Hungarian pediatric patients identified sporadically over a 15year period.

Infect. Genet. Evol. 19, 71–80 (2013).

125.

Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in

mammals. Trends Parasitol. 32, 565–577 (2016).

126.

Esona, M. D. et al. Reassortant group A rotavirus from straw-colored fruit bat

(Eidolon helvum). Emerg. Infect. Dis. J. 16, 1844–1852 (2010).

127.

Waruhiu, C. et al. Molecular detection of viruses in Kenyan bats and discovery

ofnovel astroviruses, caliciviruses and rotaviruses. Virol. Sin. 32, 101–114

(2017).

128.

Yinda, C. K. et al. Novel highly divergent reassortant bat rotaviruses in

Cameroon, without evidence of zoonosis. Sci. Rep. 6, 34209 (2016).

129.

He, B. et al. Group A rotaviruses in chinese bats: genetic composition, serology,

and evidence for bat-to-human transmission and reassortment. J. Virol. 91,

e02493-16 (2017).

130.

Xia, L. et al. The complete genome sequence of a G3P[10] Chinese bat rotavirus

suggests multiple bat rotavirus inter-host species transmission events. Infect.

Genet. Evol. 28, 1–4 (2014).

131.

He, B. et al. Characterization of a novel G3P[3] rotavirus isolated from a lesser

horseshoe bat: a distant relative of feline/canine rotaviruses. J. Virol. 87, 12357–

12366 (2013).

101

132.

Asano, K. M. et al. Group A rotavirus in Brazilian bats: description of novel T15

and H15 genotypes. Arch. Virol. 161, 3225–3230 (2016).

133.

Sasaki, M. et al. Identification of group A rotaviruses from Zambian fruit bats

provides evidence for long-distance dispersal events in Africa. Infect. Genet.

Evol. 63, 104–109 (2018).

134.

Sasaki, M. et al. Multi-reassortant G3P[3] group A rotavirus in a horseshoe bat

in Zambia. J. Gen. Virol. 97, 2488–2493 (2016).

135.

Mishra, N. et al. A viral metagenomic survey identifies known and novel

mammalian viruses in bats from Saudi Arabia. PLOS ONE 14, e0214227 (2019).

136.

Simsek, C. et al. At least seven distinct rotavirus genotype constellations in bats

with evidence of reassortment and zoonotic transmissions. mBio 12, e02755-20

(2021).

137.

Burns, J. W. et al. Analyses of homologous rotavirus infection in the mouse

model. Virology 207, 143–153 (1995).

138.

Li, K. et al. Identification of novel and diverse rotaviruses in rodents and

insectivores, and evidence of cross-species transmission into humans. Virology

494, 168–177 (2016).

139.

Johne, R. et al. Distantly related rotaviruses in common shrews, Germany,

2004–2014. Emerg. Infect. Dis. 25, 2310–2314 (2019).

140.

Sachsenröder, J. et al. Metagenomic identification of novel enteric viruses in

urban wild rats and genome characterization of a group A rotavirus. J. Gen.

Virol. 95, 2734–2747 (2014).

141.

Williams, S. H. et al. Viral diversity of house mice in New York City. mBio 9,

e01354-17 (2018).

142.

Maes, P., Matthijnssens, J., Rahman, M. & Van Ranst, M. RotaC: A web-based

tool for the complete genome classification of group A rotaviruses. BMC

Microbiol. 9, 238 (2009).

143.

Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for

phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296

(2021).

102

144.

Alfajaro, M. M. et al. Dual recognition of sialic acid and αGal epitopes by the

VP8* domains of the bovine rotavirus G6P[5] WC3 and of its mono-reassortant

G4P[5] RotaTeq vaccine strains. J. Virol. 93, e00941-19 (2019).

145.

Boshuizen, J. A. et al. Changes in small intestinal homeostasis, morphology,and

gene expression during rotavirus infection of infant mice. J. Virol. 77, 13005–

13016 (2003).

146.

Jothikumar, N., Kang, G. & Hill, V. R. Broadly reactive TaqMan® assay for

real-time RT-PCR detection of rotavirus in clinical and environmental samples.

J. Virol. Methods 155, 126–131 (2009).

147.

Iturriza Gómara, M., Wong, C., Blome, S., Desselberger, U. & Gray, J.

Molecular Characterization of VP6 Genes of Human Rotavirus Isolates:

Correlation of Genogroups with Subgroups and Evidence of Independent

Segregation. J. Virol. 76, 6596–6601 (2002).

148.

Imagawa, H. et al. Isolation of foal rotavirus in MA-104 cells. Bull. Equine Res.

Inst. 18, 119–128 (1981).

149.

Desselberger, U. Rotaviruses. Virus Res. 190, 75–96 (2014).

150.

Huang, P. et al. Spike protein VP8* of human rotavirus recognizes histo-blood

group antigens in a type-specific manner. J. Virol. 86, 4833–4843 (2012).

151.

Liu, Y. et al. Rotavirus VP8*: phylogeny, host range, and interaction with histoblood group antigens. J. Virol. 86, 9899–9910 (2012).

152.

Liu, Y. et al. Glycan specificity of P[19] rotavirus and comparison with those of

related P genotypes. J. Virol. 90, 9983–9996 (2016).

153.

Kim, J.-Y. et al. Glycan-specificity of four neuraminidase-sensitive animal

rotavirus strains. Vet. Microbiol. 207, 159–163 (2017).

154.

Haselhorst, T. et al. Sialic acid dependence in rotavirus host cell invasion. Nat.

Chem. Biol. 5, 91–93 (2009).

155.

Fukuda, S. et al. Rotavirus incapable of NSP6 expression can cause diarrhea in

suckling mice. J. Gen. Virol. 103, 001745 (2022).

156.

Mori, Y., Borgan, M. A., Ito, N., Sugiyama, M. & Minamoto, N. DiarrheaInducing Activity of Avian Rotavirus NSP4 Glycoproteins, Which Differ

103

Greatly from Mammalian Rotavirus NSP4 Glycoproteins in Deduced Amino

Acid Sequence, in Suckling Mice. J. Virol. 76, 5829–5834 (2002).

157.

Lynch, M. et al. The Pathology of Rotavirus-Associated Deaths, Using New

Molecular Diagnostics. Clin. Infect. Dis. 37, 1327–1333 (2003).

158.

Cui, Y., Claus, S., Schnell, D., Runge, F. & MacLean, C. In-depth

characterization of epiIntestinal microtissue as a model for intestinal drug

absorption and metabolism in human. Pharmaceutics 12, 405 (2020).

159.

Saxena, K. et al. Human intestinal enteroids: a new model to study human

rotavirus infection, host restriction, and pathophysiology. J. Virol. 90, 43–56

(2015).

160.

Guo, Y., Candelero-Rueda, R. A., Saif, L. J. & Vlasova, A. N. Infection of

porcine small intestinal enteroids with human and pig rotavirus A strains reveals

contrasting roles for histo-blood group antigens and terminal sialic acids. PLOS

Pathog. 17, e1009237 (2021).

161.

Varki, A. Loss of N-glycolylneuraminic acid in humans: Mechanisms,

consequences, and implications for hominid evolution. Am. J. Phys. Anthropol.

116, 54–69 (2001).

162.

Steppan, S. J. & Schenk, J. J. Muroid rodent phylogenetics: 900-species tree

reveals increasing diversification rates. PLOS ONE 12, e0183070 (2017).

163.

Simwaka, J. C. et al. Diversity of rotavirus strains circulating in children under

five years of age who presented with acute gastroenteritis before and after

rotavirus vaccine introduction, University Teaching Hospital, Lusaka, Zambia,

2008–2015. Vaccine 36, 7243–7247 (2018).

164.

Maringa, W. M. et al. Molecular Characterisation of a Rare Reassortant PorcineLike G5P[6] Rotavirus Strain Detected in an Unvaccinated Child in Kasama,

Zambia. Pathogens 9, 663 (2020).

165.

Maringa, W. M. et al. Whole Genome Analysis of Human Rotaviruses Reveals

Single Gene Reassortant Rotavirus Strains in Zambia. Viruses 13, 1872 (2021).

166.

Rakau, K. G. et al. Genetic characterization of G12P[6] and G12P[8] rotavirus

strains collected in six African countries between 2010 and 2014. BMC Infect.

Dis. 21, 107 (2021).

104

Summary in Japanese

研究の背景

国際社会ではこれまでに、COVID-19 をはじめとした様々な新興・再興感染症が出現

し、公衆衛生上の脅威となっている。約 3/4 以上の新興・再興感染症は人獣共通感染症で

あり、中でもウイルス感染症の多くは野生動物からの伝播を経て出現したと考えられる。

そのため、野生動物の保有するウイルスの調査はワンヘルスの観点から重要である。近

年、メタゲノム解析技術の普及に伴い、多くの検体から様々な新規ウイルスゲノムが検出

されている。しかし、ほとんどの報告はゲノム解析に留まっており、ウイルス分離および

ウイルス学的な性状解析の試みは十分ではない。特に、プロテアーゼ依存性ウイルスは、

培養細胞での増殖時に無血清培地下でトリプシンを作用させる必要があるため、検体の接

種による細胞傷害が生じやすく、ウイルス分離が困難である。これまで、宿主 II 型膜貫通

型セリンプロテアーゼ(TTSP)発現細胞において、トリプシン非存在下においてもプロテ

アーゼ依存性ウイルスの感染増殖が可能であることが明らかになっているが、プロテアー

ゼ発現細胞を野生動物からの網羅的なウイルス分離に用いた例は少ない。そこで本研究で

は、プロテアーゼ発現細胞を用いて野生動物由来検体からウイルス分離を実施し、分離し

たウイルスのウイルス学的および疫学的性状解析を実施することを目的とした。

第一章:新型コロナウイルス(SARS-CoV-2)スパイクタンパク質を活性化す

る TTSP の検討

まず、代表的なプロテアーゼ依存性ウイルスである SARS-CoV-2 の感染を促進する

TTSP を検索した。SARS-CoV-2 は、TMPRSS2 などの TTSP を利用して、ウイルスのスパ

イクタンパク質を切断・活性化し細胞侵入効率を上昇させるが、SARS-CoV-2 の感染にお

ける TMPRSS2 以外の TTSP の役割については解明されていない。本章では、ヒト ACE2

発現 HEK293T 細胞および Vero E6 細胞を用いて 12 種類の TTSP をスクリーニングし、

TMPRSS11D および TMPRSS13 が SARS-CoV-2 の感染増殖を促進することを明らかにし

た。また、SARS-CoV-1 と SARS-CoV-2 は、ウイルス侵入過程において同様の TTSP を利

用することが明らかになった。本研究は、宿主の TTSP が SARS-CoV-2 の感染に影響を与

えることを示し、細胞や組織の指向性、病原性に影響することを示唆している。

105

第二章:潜在的レゼルボアである齧歯類動物マストミスからの脳心筋炎ウイルス

(EMCV)の分離および性状解析

EMCV は様々な哺乳類動物に感染し、脳炎、心筋炎、生殖障害、糖尿病などを引き起こ

す。特に、養豚場における繁殖障害や、動物園や野生動物保護区等での希少動物の突然死

は経済・環境の観点から重要な問題である。動物との接触によってヒトへも稀に感染し、

発熱性疾患を引き起す人獣共通感染症である。本章では、ザンビアで採取した齧歯類動物

(マストミス、Mastomys natalensis)から EMCV ZM12/14 株を分離し、性状解析を実施し

た。系統解析の結果,ZM12/14 株は P1 および P3 領域で EMCV-1 と同じ系統に分類された

が、P2 領域では既知の EMCV 株と異なる系統に分類され、特徴的な進化系統を有するこ

とが示唆された。さらに、ザンビア各地で捕獲した各種齧歯類動物(n=179)の組織およ

び血清を用いて、EMCV の RT-PCR スクリーニングと中和抗体測定を実施した。その結

果、M. natalensis のみから EMCV ゲノム(19/179 = 10.6%)および中和抗体が検出され

(33/179 = 18.4%)、RT-PCR 陽性、陰性検体どちらにおいても、高い中和抗体価(≧

320)が確認された。他種の齧歯類動物ではゲノムおよび中和抗体は検出されなかった。

また、ZM12/14 株を腹腔内接種した BALB/c マウスは無症候性の持続感染を引き起こし

た。感染マウスでは感染 2 週間後において、高い中和抗体価と脳および脾臓における高い

ウイルスゲノム量が認められ、上記の疫学調査と一致する結果が得られた。本研究では、

ザンビアで初めて EMCV を検出し、M. natalensis が自然感染宿主としてレゼルボアの役割

を担うことを示唆する結果を得た。

第三章:コウモリおよび齧歯類動物由来ロタウイルス A(RVA)の分離と性

状解析

RVA は、ヒトや様々な動物に下痢性疾患を引き起こす。近年、ヒト RVA との遺伝子再

集合を示唆するコウモリおよび齧歯類動物由来 RVA が複数報告されている。しかし、

様々な非典型的遺伝子型が含まれるコウモリおよび齧歯類動物由来 RVA のウイルス学的

性状はほとんど解明されていない。そこで、ヒト TMPRSS2/TMPRSS11D 共発現 MA104 細

胞とザンビアで採取した野生動物検体を用いて RVA のウイルス分離先行型スクリーニン

グを実施し、コウモリ(Rousettus aegyptiacus)およびマストミス(M. natalensis)から

RVA を単離した。全ゲノム配列解析の結果、コウモリ由来 RVA 16-06 株の遺伝子型は、

ケニ ...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る