リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「低酸素ストレスにおける脳微小血管内皮細胞の増殖・死機構に関与するイオンチャネルの病態生理学的意義の解明」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

低酸素ストレスにおける脳微小血管内皮細胞の増殖・死機構に関与するイオンチャネルの病態生理学的意義の解明

山村 英斗 Yamamura Hideto 名古屋市立大学

2020.03.25

概要

本研究において以下のことを明らかにした。
1. 酸化ストレス培養は、濃度依存的なt-BBEC117 細胞の細胞死を引き起こした。

2. 酸化ストレス培養下のt-BBEC117 細胞において、Orai1 を介したSOCE が減少している。

3. 酸化ストレス培養下のt-BBEC117 細胞において、SOCE の分子実体であるOrai1 及びSTIM1のタンパク質発現は変化しなかった。

4. 酸化ストレス培養下のt-BBEC117 細胞において、Orai1 を介したSOCE の減少が、酸化ストレスによる細胞死を亢進している。

脳虚血時に引き起こされる低酸素ストレスは、部分的な酸化ストレスも引き起こす。脳内が物理的に損傷もしくは虚血状態になると、BCECs 内において、ROS が蓄積し、酸化ストレスが誘導される。酸化ストレスによる BBB の破綻は、脳内への有害物質の侵入を許し、神経炎症や神経細胞死、より長期的になると脳灌流圧の低下、血管性認知症などを引き起こす。しかし、酸化ストレス下の BCECsのアポトーシスに関与するイオンチャネルや[Ca2+]i 動態は未だ詳細には解明されていない。そのような中、本研究では、脳微小血管内皮細胞株に機能発現する Ca2+流入チャネル、特に Orai1 チャネルに着目し、Orai1 を介した SOCE が酸化ストレス培養により減少し、SOCE を担う Orai1 や STIM1の発現を変化させることなく、酸化ストレスによる細胞死に寄与することを明らかにした。以上の結果は、脳虚血時での BCECs の生理機能の重要性を裏付けるものである。本研究に関し以下の様な考察を行った。

1.酸化ストレスとSOCE、細胞死との関係性に関して
ROS の蓄積によって引き起こされる酸化ストレスが SOCE に与える影響は、酸化ストレスの程度、持続時間、細胞種によって様々である 93, 94)。血管内皮細胞において、H2O2 をはじめとした ROS の急性的な刺激は、SOCE を減少させることで Ca2+を必要とする eNOS を始めとした血管拡張物質の産生に必要な酵素の活性を低下させることが報告されている 95)。一方で、ラット好塩基球様細胞株 RBL-2H3 や、Jurkat T 細胞におけるH2O2 暴露での酸化ストレスは、SOCE を増加させる 96)。本研究において中・長期的な H2O2 暴露は、SOCE を減少させることが明らかとなった。SOCE は、主に非興奮性細胞において、細胞増殖だけでなく細胞死にも関与することが報告されている。細胞の生存、増殖にとって必要な Ca2+供給経路である SOCE の減少は、大腸がんや前立腺癌など一部のがん細胞において、CaMK/AKT, mTOR を介した経路によって、オートファジーやアポトーシスといった細胞死を引き起こすことが報告されている97-99)。研究成果Ⅲ‐1 の「要約と考察」でも述べたように、SOCE活性は、G0/G1 期に活性が上昇し、G2/M 期に減少する。G1 期からS 期への移行にはSOC チャネルを介した Ca2+流入が重要な役割を果たす。本研究において明らかにした t-BBEC117 細胞におけるSOCEの減少は、低酸素ストレスとは逆に、G1期からS期への適切な細胞周期の進行を妨げ、細胞死に繋がっている可能性が示唆された。

2. 酸化ストレスによるOrai、STIM遺伝子の転写制御
図33Aより、酸化ストレス培養下のt-BBEC117細胞では、Orai、STIM遺伝子のmRNA発現がわずかに上昇することが明らかとなった。酸化ストレス時に発生する低濃度のROSは、nuclear factor kB(NF-kB)を活性化し、Orai及びSTIM遺伝子の転写を亢進させることが報告されている,酸化ストレスによるNF-κΒの活性化は、抗酸化物質であるsenim and glucocorticoid-inducible kinase (SGK1)の発現上昇によって制御されている。本研究において、酸化ストレス培養はOrai、STIMのniRNA発現をわずかに増加させたが、図33B. Cのようにタンパク質発現を変化させるほどの刺激ではなかったと考えられる。

3. 酸化ストレスによるOrailチャネルの直接的な阻害効果
酸化ストレス培養は、t-BBEC117細胞において、SOCEを担う分子実体であるOrail、STIM1の夕ンパク質発現を変化させずに、Orailを介したSOCEを減少させる。この機構の1つとしてΗ202をはじめとしたROSのOrailチャネルへの直接的な阻害効果が考えられる。ナイーブT細胞、エフェクタ一丁細胞において、H2O2刺激は、Orail及びOrai2チャネルとSTIM1が担うSOC電流を直接的に阻害する1 02 J 0 3 ) o その機構は、Orail及びOrai2チャネルの細胞外領域195 CysをH2 O2 が酸化することで、OrailのCa2+透過を妨げることによるとされている。一方で、このCys残基(W5Cys)は、Orai3には保存されていない。そのため、Orai3はH2O2による電流の阻害を受けない。炎症環境下で酸化ストレスに晒されるナイーブT細胞、エフヱクターT細胞は、Orai3の発現を上昇させることで、生理機能や病態応答に必要なSOCEを維持している。1-BBEC117細胞において、H2O2刺激に耐性のある Orai3のniRNA発現の顕著な上昇を引き起こさなかったため、SOCEが減少したと考えられる。今後、 Orailを介したSOCE減少の詳細な機構を解明していく必要がある。

4. 総括
酸化ストレス培養下のt-BBEC117細胞において、ROSの蓄積が、〇railタンパク質を変化させることなく、Orailを介したSOCEを減少させ、細胞死に寄与することが明らかとなった(図37)。

脳虚血を想定した酸化ストレス環境下の脳微小血管内皮細胞におけるOrailを介した細胞内へのCa2+流入の減少による細胞死が、脳虚血によるBBB障害機構の一端を担っている可能性が示唆された。

この論文で使われている画像

参考文献

1) Abbott NJ, Ronnback L, Hansson E: Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 7, 41-53 (2006).

2) Hawkins BT, Davis TP: The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev, 57, 173-185 (2005).

3) Igarashi Y, Utsumi H, Chiba H, Yamada-Sasamori Y, Tobioka H, Kamimura Y, Furuuchi K, Kokai Y, Nakagawa T, Mori M, Sawada N: Glial cell line-derived neurotrophic factor induces barrier function of endothelial cells forming the blood-brain barrier. Biochem Biophys Res Commun, 261, 108-112 (1999).

4) Lee SW, Kim WJ, Choi YK, Song HS, Son MJ, Gelman IH, Kim YJ, Kim KW: SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat Med, 9, 900-906 (2003).

5) Iadecola C, Nedergaard M: Glial regulation of the cerebral microvasculature. Nat Neurosci, 10, 1369- 1376 (2007).

6) Lin B: Encephalopathy: a vicious cascade following forebrain ischemia and hypoxia. Cent Nerv Syst Agents Med Chem, 13, 57-70 (2013).

7) Erickson MA, Banks WA: Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease. J Cereb Blood Flow Metab, 33, 1500-1513 (2013).

8) Bartels AL: Blood-brain barrier P-glycoprotein function in neurodegenerative disease. Curr Pharm Des, 17, 2771-2777 (2011).

9) Li L, Welser JV, Dore-Duffy P, del Zoppo GJ, Lamanna JC, Milner R: In the hypoxic central nervous system, endothelial cell proliferation is followed by astrocyte activation, proliferation, and increased expression of the alpha 6 beta 4 integrin and dystroglycan. Glia, 58, 1157-1167 (2010).

10) Engelhardt S, Patkar S, Ogunshola OO: Cell-specific blood-brain barrier regulation in health and disease: a focus on hypoxia. Br J Pharmacol, 171, 1210-1230 (2014).

11) Argaw AT, Gurfein BT, Zhang Y, Zameer A, John GR: VEGF-mediated disruption of endothelial CLN-5 promotes blood-brain barrier breakdown. Proc Natl Acad Sci U S A, 106, 1977-1982 (2009).

12) Wang F, Cao Y, Ma L, Pei H, Rausch WD, Li H: Dysfunction of Cerebrovascular Endothelial Cells: Prelude to Vascular Dementia. Front Aging Neurosci, 10, 376 (2018).

13) Anasooya Shaji C, Robinson BD, Yeager A, Beeram MR, Davis ML, Isbell CL, Huang JH, Tharakan B: The tri-phasic role of hydrogen peroxide in blood-brain barrier endothelial cells. Sci Rep, 9, 133 (2019).

14) Berridge MJ, Lipp P, Bootman MD: The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol, 1, 11-21 (2000).

15) Zhu T, Yao Q, Wang W, Yao H, Chao J: iNOS Induces Vascular Endothelial Cell Migration and Apoptosis Via Autophagy in Ischemia/Reperfusion Injury. Cell Physiol Biochem, 38, 1575-1588 (2016).

16) Choi J, Chiang A, Taulier N, Gros R, Pirani A, Husain M: A calmodulin-binding site on cyclin E mediates Ca2+-sensitive G1/S transitions in vascular smooth muscle cells. Circ Res, 98, 1273-1281 (2006).

17) Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y: Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol Rev, 90, 291-366 (2010).

18) Bichet D, Haass FA, Jan LY: Merging functional studies with structures of inward-rectifier K(+) channels. Nat Rev Neurosci, 4, 957-967 (2003).

19) Nilius B, Droogmans G: Ion channels and their functional role in vascular endothelium. Physiol Rev, 81, 1415-1459 (2001).

20) Liu H, Huang J, Peng J, Wu X, Zhang Y, Zhu W, Guo L: Upregulation of the inwardly rectifying potassium channel Kir2.1 (KCNJ2) modulates multidrug resistance of small-cell lung cancer under the regulation of miR-7 and the Ras/MAPK pathway. Mol Cancer, 14, 59 (2015).

21) Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT: Capillary K+-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci, 20, 717-726 (2017).

22) Sancho M, Gao Y, Hald BO, Yin H, Boulton M, Steven DA, MacDougall KW, Parrent AG, Pickering JG, Welsh DG: An assessment of KIR channel function in human cerebral arteries. Am J Physiol Heart Circ Physiol, 316, H794-H800 (2019).

23) Millar ID, Wang S, Brown PD, Barrand MA, Hladky SB: Kv1 and Kir2 potassium channels are expressed in rat brain endothelial cells. Pflugers Arch, 456, 379-391 (2008).

24) Yamazaki D, Aoyama M, Ohya S, Muraki K, Asai K, Imaizumi Y: Novel functions of small conductance Ca2+-activated K+ channel in enhanced cell proliferation by ATP in brain endothelial cells. J Biol Chem, 281, 38430-38439 (2006).

25) Kito H, Yamazaki D, Ohya S, Yamamura H, Asai K, Imaizumi Y: Up-regulation of Kir2.1 by ER stress facilitates cell death of brain capillary endothelial cells. Biochem Biophys Res Commun, 411, 293-298 (2011).

26) Parekh AB, Putney JW, Jr.: Store-operated calcium channels. Physiol Rev, 85, 757-810 (2005).

27) Vig M, Beck A, Billingsley JM, Lis A, Parvez S, Peinelt C, Koomoa DL, Soboloff J, Gill DL, Fleig A, Kinet JP, Penner R: CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol, 16, 2073-2079 (2006).

28) DeHaven WI, Smyth JT, Boyles RR, Bird GS, Putney JW, Jr.: Complex actions of 2-aminoethyldiphenyl borate on store-operated calcium entry. J Biol Chem, 283, 19265-19273 (2008).

29) Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, Fleig A, Penner R: CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol, 17, 794-800 (2007).

30) Rothberg BS, Wang Y, Gill DL: Orai channel pore properties and gating by STIM: implications from the Orai crystal structure. Sci Signal, 6, pe9 (2013).

31) Penna A, Demuro A, Yeromin AV, Zhang SL, Safrina O, Parker I, Cahalan MD: The CRAC channel consists of a tetramer formed by Stim-induced dimerization of Orai dimers. Nature, 456, 116-120 (2008).

32) Thompson JL, Mignen O, Shuttleworth TJ: The Orai1 severe combined immune deficiency mutation and calcium release-activated Ca2+ channel function in the heterozygous condition. J Biol Chem, 284, 6620- 6626 (2009).

33) Hogan PG, Lewis RS, Rao A: Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol, 28, 491-533 (2010).

34) Brandman O, Liou J, Park WS, Meyer T: STIM2 is a feedback regulator that stabilizes basal cytosolic and endoplasmic reticulum Ca2+ levels. Cell, 131, 1327-1339 (2007).

35) Kito H, Yamamura H, Suzuki Y, Ohya S, Asai K, Imaizumi Y: Regulation of store-operated Ca2+ entry activity by cell cycle dependent up-regulation of Orai2 in brain capillary endothelial cells. Biochem Biophys Res Commun, 459, 457-462 (2015).

36) Nomura M, Yamagishi S, Harada S, Hayashi Y, Yamashima T, Yamashita J, Yamamoto H: Possible participation of autocrine and paracrine vascular endothelial growth factors in hypoxia-induced proliferation of endothelial cells and pericytes. J Biol Chem, 270, 28316-28324 (1995).

37) Brown RC, Mark KS, Egleton RD, Davis TP: Protection against hypoxia-induced blood-brain barrier disruption: changes in intracellular calcium. Am J Physiol Cell Physiol, 286, C1045-1052 (2004).

38) Sobue K, Yamamoto N, Yoneda K, Hodgson ME, Yamashiro K, Tsuruoka N, Tsuda T, Katsuya H, Miura Y, Asai K, Kato T: Induction of blood-brain barrier properties in immortalized bovine brain endothelial cells by astrocytic factors. Neurosci Res, 35, 155-164 (1999).

39) Weksler BB, Subileau EA, Perriere N, Charneau P, Holloway K, Leveque M, Tricoire-Leignel H, Nicotra A, Bourdoulous S, Turowski P, Male DK, Roux F, Greenwood J, Romero IA, Couraud PO: Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J, 19, 1872-1874 (2005).

40) Yang S, Mei S, Jin H, Zhu B, Tian Y, Huo J, Cui X, Guo A, Zhao Z: Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier. PLoS One, 12, e0187017 (2017).

41) Yamada A, Gaja N, Ohya S, Muraki K, Narita H, Ohwada T, Imaizumi Y: Usefulness and limitation of DiBAC4(3), a voltage-sensitive fluorescent dye, for the measurement of membrane potentials regulated by recombinant large conductance Ca2+-activated K+ channels in HEK293 cells. Jpn J Pharmacol, 86, 342-350 (2001).

42) Kodama Y, Hu CD: Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques, 53, 285-298 (2012).

43) Shyu YJ, Hiatt SM, Duren HM, Ellis RE, Kerppola TK, Hu CD: Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis. Nat Protoc, 3, 588-596 (2008).

44) Vovenko E: Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats. Pflugers Arch, 437, 617-623 (1999).

45) Sasaki K, Yoshida H: Organelle autoregulation-stress responses in the ER, Golgi, mitochondria and lysosome. J Biochem, 157, 185-195 (2015).

46) Kito H, Yamamura H, Suzuki Y, Ohya S, Asai K, Imaizumi Y: Membrane hyperpolarization induced by endoplasmic reticulum stress facilitates Ca2+ influx to regulate cell cycle progression in brain capillary endothelial cells. J Pharmacol Sci, 125, 227-232 (2014).

47) Gonzalez-Jamett AM, Momboisse F, Haro-Acuna V, Bevilacqua JA, Caviedes P, Cardenas AM: Dynamin-2 function and dysfunction along the secretory pathway. Front Endocrinol (Lausanne), 4, 126 (2013).

48) Cao H, Weller S, Orth JD, Chen J, Huang B, Chen JL, Stamnes M, McNiven MA: Actin and Arf1- dependent recruitment of a cortactin-dynamin complex to the Golgi regulates post-Golgi transport. Nat Cell Biol, 7, 483-492 (2005).

49) Boyer SB, Slesinger PA, Jones SV: Regulation of Kir2.1 channels by the Rho-GTPase, Rac1. J Cell Physiol, 218, 385-393 (2009).

50) Shi D, Xie D, Zhang H, Zhao H, Huang J, Li C, Liu Y, Lv F, The E, Yuan T, Wang S, Chen J, Pan L, Yu Z, Liang D, Zhu W, Zhang Y, Li L, Peng L, Li J, Chen YH: Reduction in dynamin-2 is implicated in ischaemic cardiac arrhythmias. J Cell Mol Med, 18, 1992-1999 (2014).

51) Chee NT, Lohse I, Brothers SP: mRNA-to-protein translation in hypoxia. Mol Cancer, 18, 49 (2019).

52) Wang F, Qiu Y, Zhang HM, Hanson P, Ye X, Zhao G, Xie R, Tong L, Yang D: Heat shock protein 70 promotes coxsackievirus B3 translation initiation and elongation via Akt-mTORC1 pathway depending on activation of p70S6K and Cdc2. Cell Microbiol, 19, (2017).

53) Chimote AA, Kuras Z, Conforti L: Disruption of kv1.3 channel forward vesicular trafficking by hypoxia in human T lymphocytes. J Biol Chem, 287, 2055-2067 (2012).

54) Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T: Dynasore, a cell-permeable inhibitor of dynamin. Dev Cell, 10, 839-850 (2006).

55) Damke H, Baba T, Warnock DE, Schmid SL: Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J Cell Biol, 127, 915-934 (1994).

56) Sever S, Chang J, Gu C: Dynamin rings: not just for fission. Traffic, 14, 1194-1199 (2013).

57) Prabhakar NR, Semenza GL: Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev, 92, 967-1003 (2012).

58) Stroka DM, Burkhardt T, Desbaillets I, Wenger RH, Neil DA, Bauer C, Gassmann M, Candinas D: HIF- 1 is expressed in normoxic tissue and displays an organ-specific regulation under systemic hypoxia. FASEB J, 15, 2445-2453 (2001).

59) Joshi HP, Subramanian IV, Schnettler EK, Ghosh G, Rupaimoole R, Evans C, Saluja M, Jing Y, Cristina I, Roy S, Zeng Y, Shah VH, Sood AK, Ramakrishnan S: Dynamin 2 along with microRNA-199a reciprocally regulate hypoxia-inducible factors and ovarian cancer metastasis. Proc Natl Acad Sci U S A, 111, 5331-5336 (2014).

60) Chen YW, Chen YF, Chen YT, Chiu WT, Shen MR: The STIM1-Orai1 pathway of store-operated Ca2+ entry controls the checkpoint in cell cycle G1/S transition. Sci Rep, 6, 22142 (2016).

61) Lee I, Lee SJ, Kang TM, Kang WK, Park C: Unconventional role of the inwardly rectifying potassium channel Kir2.2 as a constitutive activator of RelA in cancer. Cancer Res, 73, 1056-1062 (2013).

62) Chilton L, Ohya S, Freed D, George E, Drobic V, Shibukawa Y, Maccannell KA, Imaizumi Y, Clark RB, Dixon IM, Giles WR: K+ currents regulate the resting membrane potential, proliferation, and contractile responses in ventricular fibroblasts and myofibroblasts. Am J Physiol Heart Circ Physiol, 288, H2931- 2939 (2005).

63) Kroemer G, Marino G, Levine B: Autophagy and the integrated stress response. Mol Cell, 40, 280-293 (2010).

64) Varkevisser R, Houtman MJ, Waasdorp M, Man JC, Heukers R, Takanari H, Tieland RG, van Bergen En Henegouwen PM, Vos MA, van der Heyden MA: Inhibiting the clathrin-mediated endocytosis pathway rescues KIR2.1 downregulation by pentamidine. Pflugers Arch, 465, 247-259 (2013).

65) Kolb AR, Needham PG, Rothenberg C, Guerriero CJ, Welling PA, Brodsky JL: ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol Biol Cell, 25, 276-289 (2014).

66) Ambrosini E, Sicca F, Brignone MS, D'Adamo MC, Napolitano C, Servettini I, Moro F, Ruan Y, Guglielmi L, Pieroni S, Servillo G, Lanciotti A, Valvo G, Catacuzzeno L, Franciolini F, Molinari P, Marchese M, Grottesi A, Guerrini R, Santorelli FM, Priori S, Pessia M: Genetically induced dysfunctions of Kir2.1 channels: implications for short QT3 syndrome and autism-epilepsy phenotype. Hum Mol Genet, 23, 4875-4886 (2014).

67) Martinez-Marmol R, Comes N, Styrczewska K, Perez-Verdaguer M, Vicente R, Pujadas L, Soriano E, Sorkin A, Felipe A: Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis. Cell Mol Life Sci, 73, 1515-1528 (2016).

68) Mankouri J, Taneja TK, Smith AJ, Ponnambalam S, Sivaprasadarao A: Kir6.2 mutations causing neonatal diabetes prevent endocytosis of ATP-sensitive potassium channels. EMBO J, 25, 4142-4151 (2006).

69) Bernatchez PN, Acevedo L, Fernandez-Hernando C, Murata T, Chalouni C, Kim J, Erdjument-Bromage H, Shah V, Gratton JP, McNally EM, Tempst P, Sessa WC: Myoferlin regulates vascular endothelial growth factor receptor-2 stability and function. J Biol Chem, 282, 30745-30753 (2007).

70) Ray SK, Banik NL: Calpain and its involvement in the pathophysiology of CNS injuries and diseases: therapeutic potential of calpain inhibitors for prevention of neurodegeneration. Curr Drug Targets CNS Neurol Disord, 2, 173-189 (2003).

71) Pahima H, Reina S, Tadmor N, Dadon-Klein D, Shteinfer-Kuzmine A, Mazure NM, De Pinto V, Shoshan- Barmatz V: Hypoxic-induced truncation of voltage-dependent anion channel 1 is mediated by both asparagine endopeptidase and calpain 1 activities. Oncotarget, 9, 12825-12841 (2018).

72) Lamothe SM, Song W, Guo J, Li W, Yang T, Baranchuk A, Graham CH, Zhang S: Hypoxia reduces mature hERG channels through calpain up-regulation. FASEB J, 31, 5068-5077 (2017).

73) Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE: Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol, 289, H2461-2467 (2005).

74) Alpadi K, Kulkarni A, Namjoshi S, Srinivasan S, Sippel KH, Ayscough K, Zieger M, Schmidt A, Mayer A, Evangelista M, Quiocho FA, Peters C: Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion. Nat Commun, 4, 1704 (2013).

75) Li X, Ortega B, Kim B, Welling PA: A Common Signal Patch Drives AP-1 Protein-dependent Golgi Export of Inwardly Rectifying Potassium Channels. J Biol Chem, 291, 14963-14972 (2016).

76) Ma D, Taneja TK, Hagen BM, Kim BY, Ortega B, Lederer WJ, Welling PA: Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell, 145, 1102-1115 (2011).

77) Haberg K, Lundmark R, Carlsson SR: SNX18 is an SNX9 paralog that acts as a membrane tubulator in AP-1-positive endosomal trafficking. J Cell Sci, 121, 1495-1505 (2008).

78) Luo W, Zhong J, Chang R, Hu H, Pandey A, Semenza GL: Hsp70 and CHIP selectively mediate ubiquitination and degradation of hypoxia-inducible factor (HIF)-1alpha but Not HIF-2alpha. J Biol Chem, 285, 3651-3663 (2010).

79) Jiang J, Ballinger CA, Wu Y, Dai Q, Cyr DM, Hohfeld J, Patterson C: CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J Biol Chem, 276, 42938-42944 (2001).

80) Janaszak-Jasiecka A, Bartoszewska S, Kochan K, Piotrowski A, Kalinowski L, Kamysz W, Ochocka RJ, Bartoszewski R, Collawn JF: miR-429 regulates the transition between Hypoxia-Inducible Factor (HIF)1A and HIF3A expression in human endothelial cells. Sci Rep, 6, 22775 (2016).

81) Kim HG, Hwang YP, Jeong HG: Metallothionein-III induces HIF-1alpha-mediated VEGF expression in brain endothelial cells. Biochem Biophys Res Commun, 369, 666-671 (2008).

82) Masada T, Hua Y, Xi G, Ennis SR, Keep RF: Attenuation of ischemic brain edema and cerebrovascular injury after ischemic preconditioning in the rat. J Cereb Blood Flow Metab, 21, 22-33 (2001).

83) Huang Y, Lei L, Liu D, Jovin I, Russell R, Johnson RS, Di Lorenzo A, Giordano FJ: Normal glucose uptake in the brain and heart requires an endothelial cell-specific HIF-1alpha-dependent function. Proc Natl Acad Sci U S A, 109, 17478-17483 (2012).

84) Palmer LA, Gaston B, Johns RA: Normoxic stabilization of hypoxia-inducible factor-1 expression and activity: redox-dependent effect of nitrogen oxides. Mol Pharmacol, 58, 1197-1203 (2000).

85) Muellner MK, Schreier SM, Schmidbauer B, Moser M, Quehenberger P, Kapiotis S, Goldenberg H, Laggner H: Vitamin C inhibits NO-induced stabilization of HIF-1alpha in HUVECs. Free Radic Res, 44, 783-791 (2010).

86) Li F, Sonveaux P, Rabbani ZN, Liu S, Yan B, Huang Q, Vujaskovic Z, Dewhirst MW, Li CY: Regulation of HIF-1alpha stability through S-nitrosylation. Mol Cell, 26, 63-74 (2007).

87) Heaps CL, Bray JF, McIntosh AL, Schroeder F: Endothelial nitric oxide synthase protein distribution and nitric oxide production in endothelial cells along the coronary vascular tree. Microvasc Res, 122, 34-40 (2019).

88) Longden TA, Nelson MT: Vascular inward rectifier K+ channels as external K+ sensors in the control of cerebral blood flow. Microcirculation, 22, 183-196 (2015).

89) Han F, Shirasaki Y, Fukunaga K: Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood-brain barrier in rat brain. J Neurochem, 99, 97-106 (2006).

90) Sonkusare SK, Dalsgaard T, Bonev AD, Nelson MT: Inward rectifier potassium (Kir2.1) channels as end- stage boosters of endothelium-dependent vasodilators. J Physiol, 594, 3271-3285 (2016).

91) Prakriya M, Lewis RS: Potentiation and inhibition of Ca2+ release-activated Ca2+ channels by 2- aminoethyldiphenyl borate (2-APB) occurs independently of IP(3) receptors. J Physiol, 536, 3-19 (2001).

92) Yuan JP, Zeng W, Dorwart MR, Choi YJ, Worley PF, Muallem S: SOAR and the polybasic STIM1 domains gate and regulate Orai channels. Nat Cell Biol, 11, 337-343 (2009).

93) Elliott SJ, Eskin SG, Schilling WP: Effect of t-butyl-hydroperoxide on bradykinin-stimulated changes in cytosolic calcium in vascular endothelial cells. J Biol Chem, 264, 3806-3810 (1989).

94) Redondo PC, Salido GM, Pariente JA, Rosado JA: Dual effect of hydrogen peroxide on store-mediated calcium entry in human platelets. Biochem Pharmacol, 67, 1065-1076 (2004).

95) Florea SM, Blatter LA: The effect of oxidative stress on Ca2+ release and capacitative Ca2+ entry in vascular endothelial cells. Cell Calcium, 43, 405-415 (2008).

96) Grupe M, Myers G, Penner R, Fleig A: Activation of store-operated I(CRAC) by hydrogen peroxide. Cell Calcium, 48, 1-9 (2010).

97) Jing Z, Sui X, Yao J, Xie J, Jiang L, Zhou Y, Pan H, Han W: SKF-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/CaMKIIgamma/AKT-mediated pathway. Cancer Lett, 372, 226-238 (2016).

98) Selvaraj S, Sun Y, Sukumaran P, Singh BB: Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of STIM1 and the mTOR pathway. Mol Carcinog, 55, 818-831 (2016).

99) Jing Y, Yang J, Wang Y, Li H, Chen Y, Hu Q, Shi G, Tang X, Yi J: Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent. Free Radic Biol Med, 40, 2183-2197 (2006).

100) Eylenstein A, Schmidt S, Gu S, Yang W, Schmid E, Schmidt EM, Alesutan I, Szteyn K, Regel I, Shumilina E, Lang F: Transcription factor NF-kB regulates expression of pore-forming Ca2+ channel unit, Orai1, and its activator, STIM1, to control Ca2+ entry and affect cellular functions. J Biol Chem, 287, 2719-2730 (2012).

101) Wang M, Xue Y, Shen L, Qin P, Sang X, Tao Z, Yi J, Wang J, Liu P, Cheng H: Inhibition of SGK1 confers vulnerability to redox dysregulation in cervical cancer. Redox Biol, 24, 101225 (2019).

102) Nunes P, Demaurex N: Redox regulation of store-operated Ca2+ entry. Antioxid Redox Signal, 21, 915- 932 (2014).

103) Bogeski I, Kummerow C, Al-Ansary D, Schwarz EC, Koehler R, Kozai D, Takahashi N, Peinelt C, Griesemer D, Bozem M, Mori Y, Hoth M, Niemeyer BA: Differential redox regulation of ORAI ion channels: a mechanism to tune cellular calcium signaling. Sci Signal, 3, ra24 (2010).

104) 山崎 大樹. 脳血管内皮細胞における細胞外 ATP による受容体及びイオンチャネルの機能連関と生理的意義の解明 名古屋市立大学 大学院薬学研究科 博士論文 (2007)

105) 鬼頭 宏彰. 脳血管内皮細胞におけるイオンチャネルを介した細胞増殖及び細胞死制御機構の解明名古屋市立大学 大学院薬学研究科 博士論文 (2014)

参考文献をもっと見る