リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of cyclic tensile strain and microgravity on the distribution of actin fiber and Fat1 cadherin in murine articular chondrocytes」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of cyclic tensile strain and microgravity on the distribution of actin fiber and Fat1 cadherin in murine articular chondrocytes

Hatakeyama, Junpei Nomura, Masato Wakimoto, Yoshio Inoue, Shota Li, Changxin Takamura, Daisuke Akisue, Toshihiro Moriyama, Hideki 神戸大学

2021.12.02

概要

Chondrocytes as mechano-sensitive cells can sense and respond to mechanical stress throughout life. In chondrocytes, changes of structure and morphology in the cytoskeleton have been potentially involved in various mechano-transductions such as stretch-activated ion channels, integrins, and intracellular organelles. However, the mechanism of cytoskeleton rearrangement in response to mechanical loading and unloading remains unclear. In this study, we exposed chondrocytes to a physiological range of cyclic tensile strain as mechanical loading or to simulated microgravity by 3D-clinostat that produces an unloading environment. Based on microarray profiling, we focused on Fat1 that implicated in the formation and rearrangement of actin fibers. Next, we examined the relationship between the distribution of Fat1 proteins and actin fibers after cyclic tensile strain and microgravity. As a result, Fat1 proteins did not colocalize with actin stress fibers after cyclic tensile strain, but accumulated near the cell membrane and colocalized with cortical actin fibers after microgravity. Our findings indicate that Fat1 may mediate the rearrangement of cortical actin fibers induced by mechanical unloading.

この論文で使われている画像

参考文献

295

Aleshcheva, G., Sahana, J., Ma, X., Hauslage, J., Hemmersbach, R., Egli, M., Infanger, M.,

296

Bauer, J., Grimm, D., 2013. Changes in morphology, gene expression and protein

297

content in chondrocytes cultured on a random positioning machine. PLoS One 8.

298

https://doi.org/10.1371/journal.pone.0079057

299

Aleshcheva, G., Wehland, M., Sahana, J., Bauer, J., Corydon, T.J., Hemmersbach, R., Frett,

300

T., Egli, M., Infanger, M., Grosse, J., Grimm, D., 2015. Moderate alterations of the

301

cytoskeleton in human chondrocytes after short-term microgravity produced by

19

302

parabolic flight maneuvers could be prevented by up-regulation of BMP-2 and SOX-9.

303

FASEB J. 29, 2303–2314. https://doi.org/10.1096/fj.14-268151

304

Bleuel, J., Zaucke, F., Brüggemann, G.P., Niehoff, A., 2015. Effects of cyclic tensile strain

305

on chondrocyte metabolism: A systematic review. PLoS One 10, 1–25.

306

https://doi.org/10.1371/journal.pone.0119816

307

Campbell, J.J., Blain, E.J., Chowdhury, T.T., Knight, M.M., 2007. Loading alters actin

308

dynamics and up-regulates cofilin gene expression in chondrocytes. Biochem. Biophys.

309

Res. Commun. 361, 329–334. https://doi.org/10.1016/j.bbrc.2007.06.185

310

Carmona-saez, P., Chagoyen, M., Tirado, F., 2007. GENECODIS : a web-based tool for

311

finding significant concurrent annotations in gene lists 8, 1–8.

312

https://doi.org/10.1186/gb-2007-8-1-r3

313

Chao, P.H.G., West, A.C., Hung, C.T., 2006. Chondrocyte intracellular calcium, cytoskeletal

314

organization, and gene expression responses to dynamic osmotic loading. Am. J.

315

Physiol. - Cell Physiol. 291, 718–725. https://doi.org/10.1152/ajpcell.00127.2005

316

317

318

319

Ciccone, E., Med, J.E., 2016. Mechanotransduction Across the Cell Surface and Through the

Cytoskeleton 260, 1124–1127.

Dallas, P.B., Gottardo, N.G., Firth, M.J., Beesley, A.H., Hoffmann, K., Terry, P.A., Freitas,

J.R., Boag, J.M., Cummings, A.J., Kees, U.R., 2005. Gene expression levels assessed by

20

320

oligonucleotide microarray analysis and quantitative real-time RT-PCR - How well do

321

they correlate? BMC Genomics 6, 1–10. https://doi.org/10.1186/1471-2164-6-59

322

Gardner, K.L., Arnoczky, S.P., 2015. High magnitude , in vitro , biaxial , cyclic tensile strain

323

induces actin depolymerization in tendon cells Corresponding author : Muscles

324

Ligaments Tendons J actions 3, 124–128.

325

Gigante, A., Bruge, F., Cecconi, S., Manzotti, S., Littarru, G.P., Tiano, L., 2015. Vitamin

326

MK-7 enhances vitamin D3-induced osteogenesis in hMSCs: modulation of key

327

effectors in mineralization and vascularization. J Tissue Eng Regen Med 9, 691–701.

328

https://doi.org/10.1002/term

329

Gosset, M., Berenbaum, F., Thirion, S., Jacques, C., 2008. Primary culture and phenotyping

330

of murine chondrocytes. Nat. Protoc. 3, 1253–1260.

331

https://doi.org/10.1038/nprot.2008.95

332

Greiner, A.M., Chen, H., Spatz, J.P., Kemkemer, R., 2013. Cyclic Tensile Strain Controls

333

Cell Shape and Directs Actin Stress Fiber Formation and Focal Adhesion Alignment in

334

Spreading Cells. PLoS One 8. https://doi.org/10.1371/journal.pone.0077328

335

Halder, G., Dupont, S., Piccolo, S., 2012. Transduction of mechanical and cytoskeletal cues

336

by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13, 591–600.

337

https://doi.org/10.1038/nrm3416

21

338

Hinterwimmer, S., Krammer, M., Kro, M., Glaser, C., Baumgart, R., Reiser, M., Eckstein, F.,

339

2004. Cartilage Atrophy in the Knees of Patients After Seven Weeks of Partial Load

340

Bearing 50, 2516–2520. https://doi.org/10.1002/art.20378

341

Janmey, P.A., 1998. The cytoskeleton and cell signaling: Component localization and

342

mechanical coupling. Physiol. Rev. 78, 763–781.

343

https://doi.org/10.1152/physrev.1998.78.3.763

344

Jortikka, M.O., Parkkinen, J.J., Inkinen, R.I., Kärner, J., Järveläinen, H.T., Nelimarkka, L.O.,

345

Tammi, M.I., Lammi, M.J., 2000. The role of microtubules in the regulation of

346

proteoglycan synthesis in chondrocytes under hydrostatic pressure. Arch. Biochem.

347

Biophys. 374, 172–180. https://doi.org/10.1006/abbi.1999.1543

348

Knight, M.M., Toyoda, T., Lee, D.A., Bader, D.L., 2006. Mechanical compression and

349

hydrostatic pressure induce reversible changes in actin cytoskeletal organisation in

350

chondrocytes in agarose. J. Biomech. 39, 1547–1551.

351

https://doi.org/10.1016/j.jbiomech.2005.04.006

352

Langelier, E., Suetterlin, R., Hoemann, C.D., Aebi, U., Buschmann, M.D., 2000. The

353

chondrocyte cytoskeleton in mature articular cartilage: Structure and distribution of

354

actin, tubulin, and vimentin filaments. J. Histochem. Cytochem. 48, 1307–1320.

355

https://doi.org/10.1177/002215540004801002

22

356

Liphardt, A.M., Mündermann, A., Koo, S., Bäcker, N., Andriacchi, T.P., Zange, J., Mester,

357

J., Heer, M., 2009. Vibration training intervention to maintain cartilage thickness and

358

serum concentrations of cartilage oligometric matrix protein (COMP) during

359

immobilization. Osteoarthr. Cartil. 17, 1598–1603.

360

https://doi.org/10.1016/j.joca.2009.07.007

361

Liu, Q., Hu, X., Zhang, X., Duan, X., Yang, P., Zhao, F., Ao, Y., 2016. Effects of mechanical

362

stress on chondrocyte phenotype and chondrocyte extracellular matrix expression. Sci.

363

Rep. 6, 1–8. https://doi.org/10.1038/srep37268

364

Mocellin, S., Rossi, C.R., Pilati, P., Nitti, D., Marincola, F.M., 2003. Quantitative real-time

365

PCR: A powerful ally in cancer research. Trends Mol. Med. 9, 189–195.

366

https://doi.org/10.1016/S1471-4914(03)00047-9

367

Moeller, M.J., Soofi, A., Braun, G.S., Li, X., Watzl, G., Kriz, W., Holzman, L.B., 2004.

368

Protocadherin FAT1 binds Ena/VASP proteins and is necessary for actin dynamics and

369

cell polarization. EMBO J. 23, 3769–3779. https://doi.org/10.1038/sj.emboj.7600380

370

Morey, J.S., Ryan, J.C., Van Dolah, F.M., 2006. Microarray validation: Factors influencing

371

correlation between oligonucleotide microarrays and real-time PCR. Biol. Proced.

372

Online 8, 175–193. https://doi.org/10.1251/bpo126

23

373

Ofek, G., Wiltz, D.C., Athanasiou, K.A., 2009. Contribution of the cytoskeleton to the

374

compressive properties and recovery behavior of single cells. Biophys. J. 97, 1873–

375

1882. https://doi.org/10.1016/j.bpj.2009.07.050

376

Pascarelli, N.A., Collodel, G., Moretti, E., Cheleschi, S., Fioravanti, A., 2015. Changes in

377

ultrastructure and cytoskeletal aspects of human normal and osteoarthritic chondrocytes

378

exposed to interleukin-1β and cyclical hydrostatic pressure. Int. J. Mol. Sci. 16, 26019–

379

26034. https://doi.org/10.3390/ijms161125936

380

Salter, D.M., Millward-Sadler, S.J., Nuki, G., Wright, M.O., 2001. Integrin-interleukin-4

381

mechanotransduction pathways in human chondrocytes. Clin. Orthop. Relat. Res. 49–60.

382

https://doi.org/10.1097/00003086-200110001-00006

383

Sarasa-renedo, A., Tunç-civelek, V., Chiquet, M., 2006. Role of RhoA / ROCK-dependent

384

actin contractility in the induction of tenascin-C by cyclic tensile strain 2.

385

https://doi.org/10.1016/j.yexcr.2005.12.025

386

Shi, F., Wang, Y.C., Hu, Z.B., Xu, H.Y., Sun, J., Gao, Y., Li, X.T., Yang, C. Bin, Xie, C., Li,

387

C.F., Zhao, J.D., Zhang, S., Cao, X.S., Sun, X.Q., 2017. Simulated microgravity

388

promotes angiogenesis through rhoa-dependent rearrangement of the actin cytoskeleton.

389

Cell. Physiol. Biochem. 41, 227–238. https://doi.org/10.1159/000456060

390

391

Tanoue, T., Takeichi, M., 2004. Mammalian Fat1 cadherin regulates actin dynamics and cellcell contact. J. Cell Biol. 165, 517–528. https://doi.org/10.1083/jcb.200403006

24

392

Versari, S., Villa, A., Bradamante, S., Maier, J.A.M., 2007. Alterations of the actin

393

cytoskeleton and increased nitric oxide synthesis are common features in human primary

394

endothelial cell response to changes in gravity. Biochim. Biophys. Acta - Mol. Cell Res.

395

1773, 1645–1652. https://doi.org/10.1016/j.bbamcr.2007.05.014

396

Wu, Z., Wong, K., Glogauer, M., Ellen, R.P., McCulloch, C.A.G., 1999. Regulation of

397

stretch-activated intracellular calcium transients by actin filaments. Biochem. Biophys.

398

Res. Commun. 261, 419–425. https://doi.org/10.1006/bbrc.1999.1057

399

Xu, T., Yang, K., You, H., Chen, A., Wang, J., Xu, K., Gong, C., Shao, J., Ma, Z., Guo, F.,

400

Qi, J., 2013. Regulation of PTHrP expression by cyclic mechanical strain in postnatal

401

growth plate chondrocytes. Bone 56, 304–311.

402

https://doi.org/10.1016/j.bone.2013.06.027

403

Zignego, D.L., Hilmer, J.K., Bothner, B., Schell, W.J., June, R.K., 2019. Primary human

404

chondrocytes respond to compression with phosphoproteomic signatures that include

405

microtubule activation. J. Biomech. 97, 109367.

406

https://doi.org/10.1016/j.jbiomech.2019.109367

407

25

Figure Legends

Fig. 1. Microarray analysis of gene expression profiling

Microarray profiling of chondrocytes showed genes that are commonly or conflictingly

regulated by CTS and µG (n = 1 per group). Category I: genes upregulated by both CTS and

µG, Category Ⅱ: genes upregulated by CTS and downregulated by µG, Category Ⅲ: genes

upregulated by µG and downregulated by CTS, and Category Ⅵ: genes downregulated by

both CTS and µG.

Fig. 2. Fat1 mRNA gene expression in response to CTS and µG

The graphs show the expression of Fat1 in each group. Data are shown as the mean ± SD of 4

wells per group. *P < 0.05.

Fig. 3. Immunocytochemical staining of β-tubulin

Representative images of immunocytochemical staining shows (A-D) β-tubulin.in each group

Scale bars = 50 µm.

Fig. 4. Immunocytochemical staining of F-actin and Fat1

Representative images of immunocytochemical staining shows (A-B) F-actin, (E-H) Fat1, (IL) nucleus staining-DAPI, and (M-P) Merge in each group. Scale bars = 50 µm. The graph

26

right shows staining intensity of (Q and R) F-Actin in whole cell region (n =150-200 cells per

group), (S and T) Fat1 in whole cell region (n = 60-70 cells per group), and (U and V) Fat1 in

the cell cortical region (n =60-70 cells per group) in each group. Data are shown as the mean

± SD. *P < 0.05.

27

Figure 1

28

Figure 2

29

Figure 3

30

Figure 4

31

Table 1. GO terms of genes upregulated by both CTS and µG

symbol

description

GO biological process

Traf3ip3

TRAF3 interacting protein 3

GO:0008150 (biological process)

S100g

S100 calcium binding protein G

Unavailable annotation

Kell blood group precursor

(McLeod phenotype) homolog

GO:0006865 (amino acid transport)

GO:0006874 (cellular calcium ion homeostasis)

GO:0008361 (regulation of cell size)

GO:0010961 (cellular magnesium ion homeostasis)

GO:0042552 (myelination)

GO:0048741 (skeletal muscle fiber development)

prokineticin receptor 1

GO:0007165 (signal transduction)

GO:0007186 (G-protein coupled receptor protein signaling pathway)

GO:0007623 (circadian rhythm)

GO:0043066 (negative regulation of apoptotic process)

GO:0060976 (coronary vasculature development)

Xk

Prokr1

32

Table 2. GO terms of genes upregulated by CTS and downregulated by µG

symbol

description

GO biological process

GO:0002088 (lens development in camera-type eye)

GO:0003382 (epithelial cell morphogenesis)

GO:0003412 (establishment of epithelial cell apical/basal polarity

involved in camera-type eye morphogenesis)

GO: 0007015 (actin filament organization)

GO:0007155 (cell adhesion)

Fat1

Il17rb

FAT tumor suppressor homolog 1

interleukin 17 receptor B

GO: 0007156(homophilic cell adhesion via plasma membrane adhesion

molecules)

GO: 0007163 (establishment and/or maintenance of cell polarity)

GO: 0016337 (cell-cell adhesion)

GO:0043010 (camera-type eye development)

GO:0045197 (establishment or maintenance of epithelial cell apical/basal

polarity)

GO:0048593 (camera-type eye morphogenesis)

GO:0050729 (positive regulation of inflammatory response)

GO:0098609 (cell-cell adhesion)

GO:0019221 (cytokine-mediated signaling pathway cytokine-mediated

signaling pathway)

GO:0032736 (positive regulation of interleukin-13 production)

GO:0032754 (positive regulation of interleukin-5 production)

GO:0050729 (positive regulation of inflammatory response)

33

Table 3. GO terms of genes upregulated by µG and downregulated by CTS

symbol

Sfrp2

description

GO biological process

secreted frizzled-related protein 2

GO:0001569 (branching involved in blood vessel morphogenesis)

GO:0001756 (somitogenesis)

GO:0002063 (chondrocyte development)

GO:0003214 (cardiac left ventricle morphogenesis)

GO:0007584 (response to nutrient)

GO:0010975 (regulation of neuron projection development)

GO:0010719 (negative regulation of epithelial to mesenchymal transition)

GO:0010667 (negative regulation of cardiac muscle cell apoptotic process)

GO:0010950 (positive regulation of endopeptidase activity)

GO:0021915 (neural tube development)

GO:0030111 (regulation of Wnt signaling pathway)

GO:0030178 (negative regulation of Wnt signaling pathway)

GO:0030199 (collagen fibril organization)

GO:0030514 (negative regulation of BMP signaling pathway)

GO:0003151 (outflow tract morphogenesis)

GO:0031668 (cellular response to extracellular stimulus)

GO:0035567 (non-canonical Wnt signaling pathway)

GO:0036342 (post-anal tail morphogenesis)

GO:0042493 (response to drug)

GO:0042733 (embryonic digit morphogenesis)

34

GO:0045600 (positive regulation of fat cell differentiation)

GO:0042662 (negative regulation of mesodermal cell fate specification)

GO:0043508 (negative regulation of JUN kinase activity)

GO:0046546 (development of primary male sexual characteristics)

GO:0048546 (digestive tract morphogenesis)

GO:0050732 (negative regulation of peptidyl-tyrosine phosphorylation)

GO:0060028 (convergent extension involved in axis elongation)

GO:0060349 (bone morphogenesis)

GO:0061056 (sclerotome development)

GO:0061185 (negative regulation of dermatome development)

GO:0071425 (hematopoietic stem cell proliferation)

GO:0071481 (cellular response to X-ray)

GO:0090175 (regulation of establishment of planar polarity)

GO:0090179 (planar cell polarity pathway involved in neural tube closure)

GO:0090244 (Wnt signaling pathway involved in somitogenesis)

GO:1902042 (negative regulation of extrinsic apoptotic signaling pathway

via death domain receptors)

GO:1904956 (regulation of midbrain dopaminergic neuron differentiation)

GO:2000035 (regulation of stem cell division)

GO:2000041 (negative regulation of planar cell polarity pathway involved

in axis elongation)

Gpr12

G-protein coupled receptor 12

GO:0006874 (calcium ion homeostasis)

GO:0007165 (signal transduction)

GO:0007186 (G-protein coupled receptor protein signaling pathway)

35

GO:0019222 (regulation of metabolic process)

Slc8a1

solute carrier family 8

(sodium/calcium exchanger),

member 1

GO:0001892 (embryonic placenta development)

GO:0002026 (regulation of the force of heart contraction)

GO:0002027 (regulation of heart rate)

GO:0002028 (regulation of sodium ion transport)

GO:0006874 (cellular calcium ion homeostasis)

GO:0006883 (cellular sodium ion homeostasis)

GO:0007154 (cell communication)

GO:0007584 (response to nutrient)

GO:0010763 (positive regulation of fibroblast migration)

GO:0010881 (regulation of cardiac muscle contraction by regulation of the

release of sequestered calcium ion)

GO:0014829 (vascular associated smooth muscle contraction)

GO:0021537 (telencephalon development)

GO:0030001 (metal ion transport)

GO:0030501 (positive regulation of bone mineralization)

GO:0033198 (response to ATP)

GO:0034614 (cellular response to reactive oxygen species)

GO:0035050 (embryonic heart tube development)

GO:0035902 (response to immobilization stress)

GO:0035994 (response to muscle stretch)

GO:0036376 (sodium ion export across plasma membrane)

GO:0042493 (response to drug)

GO:0042542 (response to hydrogen peroxide)

36

GO:0044557 (relaxation of smooth muscle)

GO:0048747 (muscle fiber development)

GO:0051481 (negative regulation of cytosolic calcium ion concentration)

GO:0051924 (regulation of calcium ion transport)

GO:0055013 (cardiac muscle cell development)

GO:0055074 (calcium ion homeostasis)

GO:0060048 (cardiac muscle contraction)

GO:0060402 (calcium ion transport into cytosol)

GO:0070509 (calcium ion import)

GO:0071313 (cellular response to caffeine)

GO:0071320 (cellular response to cAMP)

GO:0071901 (negative regulation of protein serine/threonine kinase

activity)

GO:0086036 (regulation of cardiac muscle cell membrane potential)

GO:0086064 (cell communication by electrical coupling involved in cardiac

conduction)

GO:0098703 (calcium ion import across plasma membrane)

GO:0098719 (sodium ion import across plasma membrane)

GO:0098735 (positive regulation of the force of heart contraction)

GO:0099566 (regulation of postsynaptic cytosolic calcium ion

concentration)

GO:1901660 (calcium ion export)

37

Fscn2

Dnahc6

Krt8

fascin homolog 2, actin-bundling

protein, retinal

GO:0007163 (establishment or maintenance of cell polarity)

GO:0042462 (eye photoreceptor cell development)

GO:0051017(actin filament bundle assembly)

dynein, axonemal, heavy chain 6

GO:0003341 (cilium movement)

GO:0007018(microtubule-based movement)

GO:0060285 (cilium-dependent cell motility)

keratin 8

GO:0000904 (cell morphogenesis involved in differentiation)

GO:0033209 (tumor necrosis factor-mediated signaling pathway)

GO:0045214 (sarcomere organization)

GO:0051599 (response to hydrostatic pressure)

GO:0051707 (response to other organism)

GO:0060706 (cell differentiation involved in embryonic placenta

development)

GO:0097191 (extrinsic apoptotic signaling pathway)

GO:0097284 (hepatocyte apoptotic process)

2210403B10Rik RIKEN cDNA 2210403B10 gene

GO:0007165 (signal transduction)

Olfr1218

GO:0007165 (signal transduction)

GO:0007186 (G-protein coupled receptor protein signaling pathway)

GO:0007608 (sensory perception of smell)

olfactory receptor 1218

GO:0050911 (detection of chemical stimulus involved in sensory

perception of smell)

Prap1

proline-rich acidic protein 1

Unavailable annotation

38

AK122525

Phospho1

cDNA sequence AK122525

Unavailable annotation

phosphatase, orphan 1

GO:0001958 (endochondral ossification)

GO:0030500 (regulation of bone mineralization)

GO:0035630 (bone mineralization involved in bone maturation)

39

Table 4. GO terms of genes downregulated by both CTS and µG

symbol

description

GO biological process

Serpina3k

serine (or cysteine) peptidase

inhibitor, clade A, member 3K

GO:0010466 (negative regulation of peptidase activity)

GO:0010951 (negative regulation of endopeptidase activity)

GO:0034097 (response to cytokine)

GO:0043434 (response to peptide hormone)

Klhl4

kelch-like 4 (Drosophila)

GO:0008150 (biological_process)

Me3

malic enzyme 3, NADP(+)dependent, mitochondrial

GO:0006090(pyruvate metabolic process)

GO:0006108(malate metabolic process)

1700093K21Rik RIKEN cDNA 1700093K21 gene

GO:0008150 (biological_process)

4930528A17Rik RIKEN cDNA 4930528A17 gene

Unavailable annotation

Gsta3

glutathione S-transferase, alpha 3

GO:0001657 (ureteric bud development)

GO:0006749 (glutathione metabolic process)

GO:0006805 (xenobiotic metabolic process)

GO:0046223 (aflatoxin catabolic process)

Slamf7

SLAM family member 7

GO:0002250 (adaptive immune response)

GO:0032814 (regulation of natural killer cell activation)

GO:0045087 (innate immune response)

Slitrk4

SLIT and NTRK-like family,

member 4

GO:0007409 (axonogenesis)

GO:0050807 (egulation of synapse organization)

GO:0051965 (positive regulation of synapse assembly)

GO:1905606 (regulation of presynapse assembly)

40

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る