リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative Evaluation of Osteocyte Morphology and Bone Anisotropic Extracellular Matrix in Rat Femur」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative Evaluation of Osteocyte Morphology and Bone Anisotropic Extracellular Matrix in Rat Femur

Ishimoto, Takuya 大阪大学

2021.05.19

概要

Osteocytes are believed to play a crucial role in mechanosensation and mechanotransduction which are important for maintenance of mechanical integrity of bone. Recent investigations have revealed that the preferential orientation of bone extracellular matrix (ECM) mainly composed of collagen fibers and apatite crystallites is one of the important determinants of bone mechanical integrity. However, the relationship between osteocytes and ECM orientation remains unclear. In this study, the association between ECM orientation and anisotropy in the osteocyte lacuno-canalicular system, which is thought to be optimized along with the mechanical stimuli, was investigated using male rat femur. The degree of ECM orientation along the femur longitudinal axis was significantly and positively correlated with the anisotropic features of the osteocyte lacunae and canaliculi. At the femur middiaphysis, there are the osteocytes with lacunae that highly aligned along the bone long axis (principal stress direction) and canaliculi that preferentially extended perpendicular to the bone long axis, and the highest degree of apatite c-axis orientation along the bone long axis was shown. Based on these data, we propose a model in which osteocytes can change their lacuno-canalicular architecture depending on the mechanical environment so that they can become more susceptible to mechanical stimuli via fluid flow in the canalicular channel.

この論文で使われている画像

参考文献

1. Dallas SL, Moore DS (2020) Using confocal imaging approaches to understand the structure and function of osteocytes and the lacunocanalicular network. Bone 138:115463. https://doi.org/10. 1016/j.bone.2020.115463

2. Bellido T (2014) Osteocyte-driven bone remodeling. Calcif Tissue Int 94:25–34. https://doi.org/10.1007/s00223-013-9774-y

3. Klein-Nulend J, Bakker AD (2007) Osteocytes: mechanosen- sors of bone and orchestrators of mechanical adaptation. Clin Rev Bone Miner Metab 5:195–209. https://doi.org/10.1007/ s12018-008-9014-6

4. Burger EH, Klein-Nulend J (1999) Mechanotransduction in bone– role of the lacuno-canalicular network. FASEB J 13:S101–S112. https://doi.org/10.1096/fasebj.13.9001.s101

5. Carina V, Bella ED, Costa V, Bellavia D, Veronesi F, Cepollaro S, Fini M, Giavaresi G (2020) Bone’s response to mechanical load- ing in aging and osteoporosis: molecular mechanisms. Calcif Tis- sue Int 107:301–318. https://doi.org/10.1007/s00223-020-00724-0

6. Cabahug-Zuckerman P, Frikha-Benayed D, Majeska RJ, Tuthill A, Yakar S, Judex S, Schaffler MB (2016) Osteocyte apoptosis caused by hindlimb unloading is required to trigger osteocyte RANKL production and subsequent resorption of cortical and trabecular bone in mice femurs. J Bone Miner Res 31:1356–1365. https://doi.org/10.1002/jbmr.2807

7. Metzger CE, Brezicha JE, Elizondo JP, Narayan SA, Hogan HA, Bloomfield SA (2017) Differential responses of mechanosensitive osteocyte proteins in fore- and hindlimbs of hindlimb-unloaded rats. Bone 105:26–34. https://doi.org/10.1016/j.bone.2017.08.002

8. Tajima T, Menuki K, Okuma KF, Tsukamoto M, Fukuda H, Okada Y, Kosugi K, Yamanaka Y, Uchida S, Sakai A (2018) Cortical bone loss due to skeletal unloading in aldehyde dehydrogenase 2 gene knockout mice is associated with decreased PTH receptor expression in osteocytes. Bone 110:254–266. https://doi.org/10. 1016/j.bone.2018.02.020

9. Hemmatian H, Jalali R, Semeins CM, Hogervorst JMA, van Len- the GH, Klein-Nulend J, Bakker AD (2018) Mechanical loading differentially affects osteocytes in fibulae from lactating mice compared to osteocytes in virgin mice: possible role for lacuna size. Calcif Tissue Int 103:675–685. https://doi.org/10.1007/ s00223-018-0463-8

10. Lara-Castillo N, Kim-Weroha NA, Kamel MA, Javaheri B, Ellies DL, Krumlauf RE, Thiagarajan G, Johnson ML (2015) In vivo mechanical loading rapidly activates β-catenin signaling in osteo- cytes through a prostaglandin mediated mechanism. Bone 76:58–66. https://doi.org/10.1016/j.bone.2015.03.019

11. Bach-Gansmo FL, Wittig NK, Brüel A, Thomsen JS, Birkedal H (2016) Immobilization and long-term recovery results in large changes in bone structure and strength but no corresponding atera- tions of osteocyte lacunar properties. Bone 91:139–147. https:// doi.org/10.1016/j.bone.2016.07.005

12. Yang J, Li J, Cui X, Li W, Xue Y, Shang P, Zhang H (2020) Blocking glucocorticoid signaling in osteoblasts and osteocytes prevents mechanical unloading-induced cortical bone loss. Bone 130:115108. https://doi.org/10.1016/j.bone.2019.115108

13. Sekita A, Matsugaki A, Ishimoto T, Nakano T (2017) Synchro- nous disruption of anisotropic arrangement of the osteocyte net- work and collagen/apatite in melanoma bone metastasis. J Struct Biol 197:260–270. https://doi.org/10.1016/j.jsb.2016.12.003

14. Silva MJ, Brodt MD, Wopenka B, Thomopoulos S, Williams D, Wassen MH, Ko M, Kusano N, Bank RA (2006) Decreased colla- gen organization and content are associated with reduced strength of demineralized and intact bone in the SAMP6 mouse. J Bone Miner Res 21:78–88. https://doi.org/10.1359/JBMR.050909

15. Ishimoto T, Nakano T, Umakoshi Y, Ymamoto M, Tabata Y (2013) Degree of biological apatite c-axis orientation rather than bone mineral density controls mechanical function in bone regen- erated using recombinant bone morphogenetic protein-2. J Bone Miner Res 28:1170–1179. https://doi.org/10.1002/jbmr.1825

16. Nakano T, Kaibara K, Tabata Y, Nagata N, Enomoto S, Maru- kawa E, Umakoshi Y (2002) Unique alignment and texture of biological apatite crystallites in typical calcified tissues analyzed by microbeam X-ray diffractometer system. Bone 31:479–487. https://doi.org/10.1016/S8756-3282(02)00850-5

17. Li S, Demirci E, Silberschmid VV (2013) Variability and ani- sotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 21:109–120. https:// doi.org/10.1016/j.jmbbm.2013.02.021

18. Katz JL (1980) Anisotropy of Young’s modulus of bone. Nature 283:106–107. https://doi.org/10.1038/283106a0

19. Shinno T, Ishimoto T, Saito M, Uemura R, Arino M, Marumo K, Nakano T, Hayashi M (2016) Comprehensive analyses of how tubule occlusion and advanced glycation end-products diminish strength of aged dentin. Sci Rep 6:19849. https://doi.org/10.1038/srep19849

20. Peterlik H, Roschger P, Klaushofer K, Fratzl P (2012) From brittle to ductile fracture of bone. Nature Mater 5:52–55. https://doi.org/ 10.1038/nmat1545

21. Nakano T, Kaibara K, Ishimoto T, Tabata Y, Umakoshi Y (2012) Biological apatite (BAp) crystallographic orientation and texture as a new index for assessing the microstructure and function of bone regenerated by tissue engineering. Bone 51:741–747. https:// doi.org/10.1016/j.bone.2012.07.003

22. Liu Y, Manjubala I, Schell H, Epari DR, Roschger P, Duda GN, Fratzl P (2010) Size and habit of mineral particles in bone and mineralized callus during bone healing in sheep. J Bone Miner Res 25:2029–2038. https://doi.org/10.1002/jbmr.84

23. Ishimoto T, Nakano T, Yamamoto M, Tabata Y (2011) Biome- chanical evaluation of regenerated long bone by nanoindentation. J Mater Sci Mater Med 22:969–976. https://doi.org/10.1007/ s10856-011-4266-y

24. Vatsa A, Semeins CM, Smit TH, Klein-Nulend J (2008) Paxillin localisation in osteocytes—Is it determined by the direction of loading? Biochem Biophys Res Commun 377:1019–1024. https:// doi.org/10.1016/j.bbrc.2007.12.174

25. Sawada Y, Sheetz MP (2002) Force transduction by triton cytoskeletons. J Cell Biol 156:609–615. https://doi.org/10.1083/ jcb.200110068

26. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell-surface and through the cytoskeleton. Science 260:1124– 1127. https://doi.org/10.1126/science.7684161

27. Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA 94:849–854. https://doi.org/10.1073/pnas.94.3.849

28. Klein-Nulend J, Bacabac RG, Bakker D (2012) Mechanical loading and how it affects bone cells: the role of the osteocyte cytoskeleton in maintaining our skeleton. Eur Cell Mater 24:278–291. https://doi.org/10.22203/eCM.v024a20

29. Wehner T, Wolfram U, Henzler T, Niemeyer F, Claes L, Simon U (2010) Internal forces and moments in the femur of the rat during gait. J Biomech 43:2473–2479. https://doi.org/10.1016/j.jbiom ech.2010.05.028

30. Ciani C, Doty SD, Fritton SP (2009) An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy. Bone 44:1015–1017. https://doi.org/10. 1016/j.bone.2009.01.376

31. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimen- sional distribution of osteocyte processes revealed by the com- bination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149. https://doi. org/10.1016/S8756-3282(00)00421-X

32. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, Guertin DA, Chang JH, Lindquist RA, Moffat J, Gol- land P, Sabatini DM (2006) Cell Profiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol 7:R100. https://doi.org/10.1186/gb-2006-7-10-r100

33. Nakanishi Y, Matsugaki A, Kawahara K, Ninomiya T, Sawada H, Nakano T (2019) Unique arrangement of bone matrix orthogonal to osteoblast alignment controlled by Tspan11-mediated focal adhesion assembly. Biomaterials 209:103–110. https://doi.org/ 10.1016/j.biomaterials.2019.04.016

34. Landis WJ (1995) The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix. Bone 16:533–544. https:// doi.org/10.1016/8756-3282(95)00076-P

35. Ozasa R, Ishimoto T, Miyabe S, Hashimoto J, Hirao M, Yoshi- kawa H, Nakano T (2019) Osteoporosis changes collagen/apa- tite orientation and Young’s modulus in vertebral cortical bone of rat. Calcif Tissue Int 104:449–460. https://doi.org/10.1007/ s00223-018-0508-z

36. Noyama Y, Nakano T, Ishimoto T, Sakai T, Yoshikawa H (2013) Design and optimization of the oriented groove on the hip implant surface to promote bone microstructure integrity. Bone 52:659– 667. https://doi.org/10.1016/j.bone.2012.11.005

37. Kuroshima S, Nakano T, Ishimoto T, Sasaki M, Inoue M, Yas- utake M, Sawase T (2017) Optimally oriented grooves on dental implants improve bone quality around implants under repetitive mechanical loading. Acta Biomater 48:433–444. https://doi.org/10.1016/j.actbio.2016.11.021

38. Ishimoto T, Yamada K, Takahashi H, Takahata M, Ito M, Hanawa T, Nakano T (2018) Trabecular health of vertebrae based on anisotropy in trabecular architecture and collagen/ apatite micro-arrangement after implantation of intervertebral fusion cages in the sheep spine. Bone 108:25–33. https://doi. org/10.1016/j.bone.2017.12.012

39. Kameo Y, Adachi T (2014) Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation. Biomech Model Mechanobiol 13:851–860. https:// doi.org/10.1007/s10237-013-0539-3

40. Biewener AA, Taylor CR (1986) Bone strain: a determinant of gait and speed? J Exp Biol 123:383–400

41. Biewener AA (1983) Allometry of quadrupedal locomotion: the scaling of duty factor, bone curvature and limb orientation to body size. J Exp Biol 105:147–171

42. Repp F, Kollmannsberger P, Roschger A, Berzlanovich A, Gru- ber GM, Roschger P, Wagermaier W, Weinkamer R (2017) Coa- lignment of osteocyte canaliculi and collagen fibers in human osteonal bone. J Struct Biol 199:177–186. https://doi.org/10. 1016/j.jsb.2017.07.004

43. Weinbaum S, Cowin SC, Zeng Y (1994) A model for the exci- tation of osteocytes by mechanical loading-induced bone fluid shear stress. J Biomech 27:339–360. https://doi.org/10.1016/ 0021-9290(94)90010-8

44. Klein-Nulend J, Bakker AD, Bacabac RG, Vatsa A, Weinbaum S (2013) Mechanosensation and transduction in osteocytes. Bone 54:182–190. https://doi.org/10.1016/j.bone.2012.10.013

45. Vatsa A, Mizuno D, Smit TM, Schmidt CF, MacKintosh FC, Klein-Nulend J (2006) Bio imaging of intracellular NO produc- tion in single bone cells after mechanical stimulation. J Bone Miner Res 21:1722–1728. https://doi.org/10.1359/jbmr.060720

46. Adachi T, Aonuma Y, Tanaka M, Hojo M, Takano-Yamamoto T, Kamioka H (2009) Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J Biomech 42:1989–1995. https://doi.org/10.1016/j.jbiomech.2009.04.034

47. Jia Y, Bagnaninchi PO, Yang Y, El Haj AJ, Hinds MT, Kirkpat- rick SJ, Wang R (2009) Doppler optical coherence tomography imaging of local fluid flow and shear stress within microporous scaffolds. J Biomed Opt 14:034014. https://doi.org/10.1117/1. 3130345

48. Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitricoxide and prostaglandin E2 by primary bone cells is shear stress dependent. J Biomech 34:671–677. https:// doi.org/10.1016/S0021-9290(00)00231-1

49. Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J (2014) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Com- mun 315:823–829. https://doi.org/10.1016/j.bbrc.2004.01.138

50. Srinivasan S, Gross TS (2000) Canalicular fluid flow induced by bending of a long bone. Med Eng Phys 22:127–133. https://doi.org/10.1016/S1350-4533(00)00021-7

51. Vatsa A, Breuls RG, Semeins CM, Salmon PL, Smit TH, Klein- Nulend J (2008) Osteocyte morphology in fibula and calvaria— Is there a role for mechanosensing? Bone 43:452–458. https:// doi.org/10.1016/j.bone.2008.01.030

52. Sugawara Y, Kamioka H, Ishihara Y, Fujisawa N, Kawanabe N, Yamashiro T (2013) The early mouse 3D osteocyte network in the presence and absence of mechanical loading. Bone 52:189–196. https://doi.org/10.1016/j.bone.2012.09.033

53. Wang J, Ishimoto T, Nakano T (2017) Unloading-induced deg- radation of the anisotropic arrangement of collagen/apatite in rat femurs. Calcif Tissue Int 100:87–97. https://doi.org/10.1007/ s00223-016-0200-0

54. Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, Mundlos S, Fratzl P (2011) The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol 173:303–311. https://doi.org/10.1016/j.jsb. 2010.11.014

55. Matsugaki A, Isobe Y, Saku T, Nakano T (2015) Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on ori- ented collagen substrates. J Biomed Mater Res A 103:489–499. https://doi.org/10.1002/jbm.a.35189

56. Meakin LB, Price JS, Lanyon LE (2014) The contribution of experimental in vivo models to understanding the mechanisms of adaptation to mechanical loading in bone. Front Endocrinol 5:154. https://doi.org/10.3389/fendo.2014.00154

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る