リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「代謝ストレスおよびインスリンシグナル障害がアルツハイマー病モデルマウス脳におけるAβ蓄積に及ぼす影響の解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

代謝ストレスおよびインスリンシグナル障害がアルツハイマー病モデルマウス脳におけるAβ蓄積に及ぼす影響の解析

松井, 健太郎 東京大学 DOI:10.15083/0002002364

2021.10.13

概要

アルツハイマー病(AD)は高齢者に生じる認知症として最も頻度が高く、不可逆的に進行する神経変性疾患である。ADの主な臨床症状として、記憶障害・見当識障害・判断力の低下が挙げられ、病理学的特徴としては、アミロイドβペプチド(Aβ)よりなる老人斑の蓄積、タウ繊維よりなる神経原線維変化の出現、そして神経細胞死に伴う脳の萎縮が挙げられる。Aβの凝集と老人斑への蓄積がAD発症の原因であるという、アミロイド・カスケード仮説(アミロイド仮説)が提唱されている。
 ADの大多数を占める孤発例においては、発症の要因として加齢や遺伝的背景に加え、環境要因が関与すると考えられている。中でも近年、2型糖尿病がAD発症のリスクとなることが複数の疫学的研究から示唆されており、注目を集めている。糖尿病とは、血液中のグルコース濃度(血糖値)の調節を行うインスリンの作用が低下することにより、高血糖状態が続く代謝性疾患である。特に2型糖尿病においては、糖代謝におけるインスリンの作用不全を示す病態である、インスリン抵抗性が発症機序に大きく関与している。
 これまでに2型糖尿病とADの関係については、様々な実験的・臨床的検討が行われてきた。この中で、インスリンシグナルの障害とAD病態との関連が示唆されている。しかし、末梢ならびに脳内のインスリンシグナルの変化とAD病態、特にAβの蓄積メカニズムとの関係は不明である。そこで本研究にでは、高脂肪食(HFD)負荷またはインスリン受容体基質2型(IRS-2)遺伝子欠損ADモデルマウスという、インスリン抵抗性を示す2種類の糖尿病合併モデルマウスを、Aβを蓄積するAPPトランスジェニックマウスと交配し、その病態を比較検討することにより、インスリンシグナルとAD病理増悪との関係を明らかにすることを目的として研究を行った。そして、代謝ストレスとAβ病態との関連に着目した解析を行い、糖尿病が脳に及ぼす影響について考察を行った。

 本研究では、当研究室で作出した家族性AD変異型APP Tgマウス(A7)をADモデルマウスとして用いた。A7マウスに対するHFD負荷を行い、アミロイド斑蓄積の前後におけるインスリンシグナルの変化およびAβ病理への影響を検討した。その結果、Aβ蓄積開始時期に先立ち、末梢ならびに中枢のインスリン抵抗性が生じることを示した。そして長期間のHFD負荷により、不溶性Aβ量及びアミロイド斑蓄積が顕著に増加することが示された。これらの結果から、末梢・中枢のインスリンシグナル障害とそれに伴う糖尿病様病態が、アミロイド蓄積を促進することが示された。
 この結果に基づき、インスリンシグナルの異常とアミロイド病態形成との関連を明らかにする目的で、インスリンシグナルが遺伝学的に抑制されるIRS-2欠損マウス(Irs2 KOマウス)を用いた検討を行った。Irs2-/-;A7マウスはインスリン抵抗性を示し、糖尿病様病態を発症することが示された。ししかしHFD負荷群と異なり、Aβ蓄積を顕著に減少させることが明らかとなった。
 A7マウスに対するHFD負荷あるいはIRS-2の欠損はいずれもインスリン抵抗性を示し、糖尿病様病態を呈するにもかかわらず、アミロイド斑蓄積に関して前者は促進、後者は抑制という相反する結果となった。両モデルでのインスリン抵抗性発症要因の違いとして、Irs2 KOマウスでは肝臓や膵β細胞、視床下部などのインスリン感受性組織におけるインスリンシグナルの低下によりインスリン抵抗性を示すのに対し、HFD負荷においては、脂肪組織を始めとするインスリン感受性組織における炎症反応や小胞体ストレス、酸化ストレスが引き起こされ、その結果としてインスリンシグナルの障害が生じることが示されている。そこで、このようなインスリン抵抗性発症の上流に位置する要因がAβ蓄積促進の原因となる可能性を考え、Irs2-/-;A7マウスに対するHFD負荷を行った。その結果、インスリン抵抗性の増大、血糖値や血中インスリンレベルの上昇が認められ、糖尿病病態が増悪した。この時、Irs2-/-;A7マウスに比してAβの蓄積も亢進することが分かった。これらの結果から、Aβ病理の増悪はインスリンシグナル障害(低下)の結果として生じるものではない可能性が示唆された。
 2型糖尿病における慢性的な過食、肥満状態は脂肪組織の肥大化、TNFαなどの炎症性サイトカインの分泌増加や活性酸素種の発現増加、そしてそれに伴う小胞体ストレスシグナルの活性亢進といった現象を引き起こし、インスリン抵抗性の原因となることが知られている。そこで、本研究で用いた糖尿病合併A7マウスの脂肪組織における炎症性及び小胞体ストレスシグナル分子のmRNA発現量を測定した。その結果、HFD負荷により炎症性シグナルの活性が亢進することが示された一方で、IRS-2の欠損では変化が見られなかった。更に、Irs2-/-;A7マウスに対するHFD負荷では、炎症性ならびに小胞体ストレスシグナル分子の発現量に有意な増加が示された。これらの結果から、炎症性ならびに小胞体ストレスシグナルの活性はIRS-2の欠損では変化せず、HFD負荷によってのみ亢進することが示された。

 上記の結果を踏まえ、糖尿病様ADモデルマウスの中枢における炎症性シグナル及び小胞体ストレスシグナル分子の活性について、検討を行った。WTマウス及びA7マウスの中枢では、アミロイド斑蓄積開始前の若齢においてIRE1-XBP1s経路に代表される小胞体ストレスシグナル分子のmRNA発現量がHFD負荷により有意に増加していたが、高齢ではその変化が見られなくなることが示された。そして、A7マウスではWTマウスに比べHFD負荷によるmRNA発現量の増加が抑制されていた。
 近年、炎症性シグナル分子であるIKKβ及び小胞体ストレスシグナル分子であるXBP1sの肝臓における活性が、グルコース恒常性の改善につながることが報告され、糖尿病の増悪には炎症反応または小胞体ストレス反応の応答性低下が関与している可能性が新たに示唆されている。しかし、脳においてこれらのシグナル応答性に変化が生じているかどうかは未だ解明されていない。そこで、HFDを負荷したA7マウスおよびWTマウスにおいて、小胞体ストレスならびに炎症性反応の応答性が中枢または末梢で変化しているかを検討した。この目的で、絶食後の再摂食による生理的代謝ストレスに対する応答性を評価する実験系を確立し、HFDを負荷した6か月齢のWTとA7マウスで小胞体ストレス反応の応答性を評価した。その結果、A7マウスではアミロイド斑蓄積開始前より、特に大脳皮質においてHFDを負荷した際にIRE1-XBP1s経路に代表される小胞体ストレスの応答性がWTマウスに比べ低下していることが示された。これらの結果から、HFDを負荷したA7マウスでは、中枢における小胞体ストレス反応の特異的経路における応答性低下が慢性的に持続した結果、Aβ量増加によるAD病理増悪を引き起こす可能性が新たに示唆された。

 以上の結果から、本研究において私はHFDを負荷したADモデルマウスの解析により、糖尿病様病態が脳のAβ量増加に伴いアミロイド蓄積を促進させることを示した。一方、IRS-2の欠損による遺伝的インスリンシグナルの抑制ではAβの蓄積が顕著に減少することが示された。そして、IRS-2欠損A7マウスに対してHFDを負荷した検討により、A7マウスではIRS-2が欠損していてもHFD負荷によりAβ蓄積ならびに炎症性、小胞体ストレスシグナル分子の発現量が有意に増加することが示された。これらの結果から、HFD負荷ADモデルマウスでは、代謝負荷により生じるインスリンシグナル低下の結果Aβ蓄積が促進されるのではなく、その上流で生じている代謝ストレス、すなわち炎症性反応ならびに小胞体ストレス反応の亢進がアミロイド病理を増悪させている可能性が考えられた。更に、HFD負荷ADモデルマウスの詳細な検討により、ADモデルマウスではHFD負荷による脳の小胞体ストレス応答性の低下が生じている可能性が示された。この結果は、脳における小胞体ストレス反応の応答性の改善がAD発症に対しても有効に働く可能性を新たに示唆するものである。IRS-2欠損ADモデルマウスの結果を考慮すると、上述したメカニズムが成り立っていると仮定した場合、炎症性ならびに小胞体ストレス反応によるAβ蓄積促進作用が、インスリン作用の低下に伴うAβ斑蓄積抑制作用を顕著に上回っていると考えられる。今後は、HFD負荷時に小胞体ストレス応答性が低下する分子メカニズムについて更に検討を進め、この変化がAD病理の促進に関与していることを明らかにすることにより、治療標的となりうる分子を特定しADの予防・治療に役立てたい。

この論文で使われている画像

参考文献

Aigner L, Arber S, Kapfhammer JP, Laux T, Schneider C, Botteri F, Brenner HR, Caroni P. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice. Cell. 83: 269–78 (1995)

Arriagada P, Growdon J, Hedley-Whyte E, Hyman B. Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology. 42: 631–9 (1992)

Asami-Odaka A, Ishibashi Y, Kikuchi T, Kitada C, Suzuki N. Long amyloid beta-protein secreted from wild-type human neuroblastoma IMR-32 cells. Biochemistry. 34: 10272–8 (1995)

Baskin DG, Figlewicz Lattemann D, Seeley RJ, Woods SC, Porte D Jr, Schwartz MW. Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 848: 114-23

Baura GD, Foster DM, Porte D, Kahn SE, Bergman RN, Cobelli C, Schwartz MW. Saturable transport of insulin from plasma into the central nervous system of dogs in vivo. J. Clin. Invest. 92: 1824–1830 (1993)

Borchelt D, Thinakaran G, Eckman C, Lee M, Davenport F, Ratovitsky T, Prada C, Kim G, Seekins S, Yager D, Slunt H, Wang R, Seeger M, Levey A, Gandy S, Copeland N, Jenkins N, Price D, Younkin S, Sisodia S. Familial Alzheimer’s Disease–Linked Presenilin 1 Variants Elevate Aβ1–42/1–40 Ratio In Vitro and In Vivo. Neuron. 17: 1005–1013 (1996)

Borchelt DR, Ratovitski T, van Lare J, Lee MK, Gonzales V, Jenkins N a, Copeland NG, Price DL, Sisodia SS. Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron. 19: 939–45 (1997)

Burns JM, Honea RA, Vidoni ED, Hutfles LJ, Brooks WM, Swerdlow RH. Insulin is differentially related to cognitive decline and atrophy in Alzheimer's disease and aging. Biochim Biophys Acta. 1822: 333-9 (2012)

Buxbaum J, Liu K, Luo Y, Slack J, Stocking K, Peschon J, Johnson R, Castner B, Cerretti D, Black R. Evidence that tumor necrosis factor α converting enzyme is involved in regulated α-secretase cleavage of the Alzheimer amyloid protein precursor. J. Biol. Chem. 273: 27765–27767 (1998)

Celardo I, Costa AC, Lehmann S, Jones C, Wood N, Mencacci NE, Mallucci GR, Loh SH, Martins LM. Mitofusin-mediated ER stress triggers neurodegeneration in pink1/parkin models of Parkinson's disease. Cell Death Dis. 23: e2271 (2016)

Chen G, Chen K, Knox J, Inglis J, Bernard A, Martin S, Justice A, McConlogue L, Games D, Freedman S, Morris R. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer’s disease. Nature. 408: 975–979 (2000)

Cirrito JR, May PC, O’Dell M a, Taylor JW, Parsadanian M, Cramer JW, Audia JE, Nissen JS, Bales KR, Paul SM, DeMattos RB, Holtzman DM. In vivo assessment of brain interstitial fluid with microdialysis reveals plaque-associated changes in amyloid-beta metabolism and half-life. J. Neurosci. 23: 8844–53 (2003)

Clarke JR, Lyra E Silva NM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, Razolli D, Carvalho BM, Frazão R, Silveira MA, Ribeiro FC, Bomfim TR, Neves FS, Klein WL, Medeiros R, LaFerla FM, Carvalheira JB, Saad MJ, Munoz DP, Velloso LA, Ferreira ST, De Felice FG. Alzheimer-associated Aβ oligomers impact the central nervous system to induce peripheral metabolic deregulation. EMBO Mol Med. 7: 190– 210 (2015)

Cohen E, Paulsson JF, Blinder P, Burstyn-Cohen T, Du D, Estepa G, Adame A, Pham HM, Holzenberger M, Kelly JW, Masliah E, Dillin A. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell. 139: 1157–69 (2009)

Costantini C, Scrable H, Puglielli L. An aging pathway controls the TrkA to p75NTR receptor switch and amyloid beta-peptide generation. EMBO J. 25: 1997–2006 (2006)

Davis RJ. Signal transduction by the JNK group of MAP kinases. Cell. 103: 239–52 (2000)

de la Monte SM, Tong M, Lester-Coll N, Plater M Jr, Wands JR. Therapeutic rescue of neurodegeneration in experimental type 3 diabetes: relevance to Alzheimer's disease. J Alzheimers Dis. 10: 89–109 (2006)

De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 6: 99–107 (2010)

Devaskar SU, Giddings SJ, Rajakumar PA, Carnaghi LR, Menon RK, Zahm DS. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J Biol Chem. 269: 8445-54 (1994)

Di Fede G, Catania M, Morbin M, Rossi G, Suardi S, Mazzoleni G, Merlin M, Giovagnoli AR, Prioni S, Erbetta A, Falcone C, Gobbi M, Colombo L, Bastone A, Beeg M, Manzoni C, Francescucci B, Spagnoli A, Cantù L, Del Favero E, Levy E, Salmona M, Tagliavini F. A recessive mutation in the APP gene with dominant-negative effect on amyloidogenesis. Science. 323: 1473–7 (2009)

Duran-Aniotz C, Cornejo VH, Espinoza S, Ardiles ÁO, Medinas DB, Salazar C, Foley A, Gajardo I, Thielen P, Iwawaki T, Scheper W, Soto C, Palacios AG, Hoozemans JJM, Hetz C. IRE1 signaling exacerbates Alzheimer's disease pathogenesis. Acta Neuropathol. 134: 489–506 (2017)

Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM, Prada CM, Younkin SG, Hutton M, Hardy J. A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of A beta 42(43). Hum Mol Genet. 6: 2087–9 (1997)

Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, Guralnik JM, Longo DL. The origins of age-related proinflammatory state. Blood. 105: 2294-9 (2005)

Fewlass DC, Noboa K, Pi-Sunyer FX, Johnston JM, Yan SD, Tezapsidis N. Obesity-related leptin regulates Alzheimer's Abeta. FASEB J. 18: 1870-8 (2004)

Freude S, Hettich MM, Schumann C, Stöhr O, Koch L, Köhler C, Udelhoven M, Leeser U, Müller M, Kubota N, Kadowaki T, Krone W, Schröder H, Brüning JC, Schubert M. Neuronal IGF-1 resistance reduces Abeta accumulation and protects against premature death in a model of Alzheimer’s disease. FASEB J. 23: 3315–24 (2009)

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda, M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 114: 1752–61 (2004)

Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature. 373: 523–527 (1995)

Gasparini L, Gouras GK, Wang R, Gross RS, Beal MF, Greengard P, Xu H. Stimulation of beta-amyloid precursor protein trafficking by insulin reduces intraneuronal beta-amyloid and requires mitogen-activated protein kinase signaling. J. Neurosci. 21: 2561–70 (2001)

Guo Q, Shi Q, Li H, Liu J, Wu S, Sun H, Zhou B. Glycolipid Metabolism Disorder in the Liver of Obese Mice Is Improved by TUDCA via the Restoration of Defective Hepatic Autophagy. Int J Endocrinol. (2015)

Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9: 857–65 (2008)

Hardy J, Higgins G. Alzheimer’s disease: the amyloid cascade hypothesis. Science (80-. ). 256: 184–5 (1992)

Hardy J, Selkoe D. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science (80-. ). 297: 353–356 (2002)

Hashimoto S, Ishii A, Kamano N, Watamura N, Saito T, Ohshima T, Yokosuka M, Saido TC. Endoplasmic reticulum stress responses in mouse models of Alzheimer's disease: Overexpression paradigm versus knockin paradigm. J Biol Chem. 293: 3118–3125 (2018)

Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, Gelpi E, Halle A, Korte M, Latz E, Golenbock DT. NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 493: 674–8 (2013)

Ho L, Qin W, Pompl PN, Xiang Z, Wang J, Zhao Z, Peng Y, Cambareri G, Rocher A, Mobbs C V, Hof PR, Pasinetti GM. Diet-induced insulin resistance promotes amyloidosis in a transgenic mouse model of Alzheimer’s disease. FASEB J. 18: 902–4 (2004)

Hori Y, Hashimoto T, Wakutani Y, Urakami K, Nakashima K, Condron MM, Tsubuki S, Saido TC, Teplow DB, Iwatsubo T. The Tottori (D7N) and English (H6R) familial Alzheimer disease mutations accelerate Abeta fibril formation without increasing protofibril formation. J Biol Chem. 282: 4916–23 (2007)

Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J. Clin. Invest. 95: 2409–2415 (1995)

Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G. Correlative Memory Deficits, Aβ Elevation, and Amyloid Plaques in Transgenic Mice. Science (80-. ). 274: 7–10 (1996)

Irvine EE, Drinkwater L, Radwanska K, Al-Qassab H, Smith MA, O'Brien M, Kielar C, Choudhury AI, Krauss S, Cooper JD, Withers DJ, Giese KP. Insulin receptor substrate 2 is a negative regulator of memory formation. Learn Mem. 18: 375–83 (2011)

Ishiguro K, Shiratsuchi A, Sato S, Omori A, Arioka M, Kobayashi S, Uchida T, Imahori K. Glycogen synthase kinase 3β is identical to tau protein kinase I generating several epitopes of paired helical filaments. FEBS Lett. 325: 167–72 (1993)

Iwatsubo T, Odaka A, Suzuki N, Mizusawa H, Nukina N, Ihara Y. Visualization of AP42(43) and AP40 in Senile Plaques with End-Specific AP Monoclonals : Evidence Thai an Initially D, posited Species Is AP42(43). Neuron. 13: 45–53 (1994)

Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC. Increased risk of type 2 diabetes in Alzheimer disease. Diabetes. 53: 474–81 (2004)

Jarrett J, Berger E, Lansbury P. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry. 32: 4694–7 (1993)

Jonsson T, Atwal JK, Steinberg S, Snaedal J, Jonsson P V, Bjornsson S, Stefansson H, Sulem P, Gudbjartsson D, Maloney J, Hoyte K, Gustafson A, Liu Y, Lu Y, Bhangale T, Graham RR, Huttenlocher J, Bjornsdottir G, Andreassen OA, Jönsson EG, Palotie A, Behrens TW, Magnusson OT, Kong A, Thorsteinsdottir U, Watts RJ, Stefansson K. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 488: 96–9 (2012)

Joshi RL, Lamothe B, Cordonnier N, Mesbah K, Monthioux E, Jami J, Bucchini D. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 15: 1542–7 (1996)

Kawasaki N, Asada R, Saito A, Kanemoto S, Imaizumi K. Obesity-induced endoplasmic reticulum stress causes chronic inflammation in adipose tissue. Sci Rep. 2 (2012)

Kidana K, Tatebe T, Ito K, Hara N, Kakita A, Saito T, Takatori S, Ouchi Y, Ikeuchi T, Makino M, Saido TC, Akishita M, Iwatsubo T, Hori Y, Tomita T. Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice. EMBO Mol Med. 10: e8184 (2018)

Killick R, Scales G, Leroy K, Causevic M, Hooper C, Irvine EE, Choudhury AI, Drinkwater L, Kerr F, Al-Qassab H, Stephenson J, Yilmaz Z, Giese KP, Brion J-P, Withers DJ, Lovestone S. Deletion of Irs2 reduces amyloid deposition and rescues behavioural deficits in APP transgenic mice. Biochem. Biophys. Res. Commun. 386: 257–62 (2009)

Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 24: 7130–9 (2004)

Koike H, Tomiyama S, Sorimachi H, Saido T, Maruyama K, Okuyama A, Fujisawa-Sehara A, Ohno S, Suzuki K, Ishiura S. Membrane-anchored metalloprotease MDC9 has an α-secretase activity responsible for processing the amyloid precursor protein. Biochem. J. 343: 371–375 (1999)

Könner AC, Janoschek R, Plum L, Jordan SD, Rother E, Ma X, Xu C, Enriori P, Hampel B, Barsh GS, Kahn CR, Cowley MA, Ashcroft FM, Brüning JC. Insulin action in AgRP-expressing neurons is required for suppression of hepatic glucose production. Cell Metab. 5: 438–49 (2007)

Kubota N, Tobe K, Terauchi Y, Eto K, Yamauchi T, Suzuki R, Tsubamoto Y, Komeda K, Nakano R, Miki H, Satoh S, Sekihara H, Sciacchitano S, Lesniak M, Aizawa S, Nagai R, Kimura S, Akanuma Y, Taylor SI, Kadowaki T. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes. 49: 1880–9 (2000)

Kubota T, Kubota N, Kumagai H, Yamaguchi S, Kozono H, Takahashi T, Inoue M, Itoh S, Takamoto I, Sasako T, Kumagai K, Kawai T, Hashimoto S, Kobayashi T, Sato M, Tokuyama K, Nishimura S, Tsunoda M, Ide T, Murakami K, Yamazaki T, Ezaki O, Kawamura K, Masuda H, Moroi M, Sugi K, Oike Y, Shimokawa H, Yanagihara N, Tsutsui M, Terauchi Y, Tobe K, Nagai R, Kamata K, Inoue K, Kodama T, Ueki K, Kadowaki T. Impaired insulin signaling in endothelial cells reduces insulin-induced glucose uptake by skeletal muscle. Cell Metab. 13: 294–307 (2011)

Kumar-Singh S, De Jonghe C, Cruts M, Kleinert R, Wang R, Mercken M, De Strooper B, Vanderstichele H, Löfgren A, Vanderhoeven I, Backhovens H, Vanmechelen E, Kroisel PM, Van Broeckhoven C. Nonfibrillar diffuse amyloid deposition due to a gamma(42)-secretase site mutation points to an essential role for N-truncated A beta(42) in Alzheimer's disease. Hum Mol Genet. 9: 2589–98 (2000)

Lammich S, Kojro E, Postina R, Gilbert S, Pfeiffer R, Jasionowski M, Haass C, Fahrenholz F. Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc. Natl. Acad. Sci. U. S. A. 96: 3922–7 (1999)

Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ. Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron. 40: 1087–93 (2003)

Levy-Lahad E, Wasco W, Poorkaj P, Romano D, Oshima J, Pettingell W, Yu C, Jondro P, Schmidt S, Wang K. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science (80-. ). 269: 973–7 (1995)

Li R, Lindholm K, Yang L, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H, Wong P, Price D, Shen Y. Amyloid β peptide load is correlated with increased β-secretase activity in sporadic Alzheimer’s disease patients. PNAS. 101: 3632–7 (2004)

Liu J, Ibi D, Taniguchi K, Lee J, Herrema H, Akosman B, Mucka P, Salazar Hernandez MA, Uyar MF, Park SW, Karin M, Ozcan U. Inflammation Improves Glucose Homeostasis through IKKβ-XBP1s Interaction. Cell. 167: 1052–1066 (2016)

Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J, Amaral OB, Silva CA, Freitas-Correa L, Espírito-Santo S, Campello-Costa P, Houzel JC, Klein WL, Holscher C, Carvalheira JB, Silva AM, Velloso LA, Munoz DP, Ferreira ST, De Felice FG. TNF-α mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer's β-amyloid oligomers in mice and monkeys. Cell Metab. 18: 831-43 (2013)

Macdonald IR, DeBay DR, Reid GA, O'Leary TP, Jollymore CT, Mawko G, Burrell S, Martin E, Bowen CV, Brown RE, Darvesh S. Early detection of cerebral glucose uptake changes in the 5XFAD mouse. Curr Alzheimer Res. 11: 450–60 (2014)

Maesako M, Uemura K, Kubota M, Kuzuya A, Sasaki K, Asada M, Watanabe K, Hayashida N, Ihara M, Ito H, Shimohama S, Kihara T, Kinoshita A. Environmental enrichment ameliorated high-fat diet-induced Aβ deposition and memory deficit in APP transgenic mice. Neurobiol. Aging. 33: 1011.e11–e23 (2012)

Matsuzaki T, Sasaki K, Tanizaki Y, Hata J, Fujimi K, Matsui Y, Sekita A, Suzuki S, Kanba S, Kiyahara Y, Iwaki T Insulin resistance is associated with the pathology of Alzheimer disease The Hisayama Study. Neurology. 75: 764–70 (2010)

Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ. Decreased clearance of CNS beta-amyloid in Alzheimer's disease. Science. 330: 1774 (2010)

Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA, Mallucci GR. Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinicaldisease in prion-infected mice. Sci Transi Med. 5: 206ra138 (2013)

Mulder S, van der Flier W, Verheijen J, Mulder C, Scheltens P, Blankenstein M, Hack C, Veerhuis R. BACE1 activity in cerebrospinal fluid and its relation to markers of AD pathology. J. Alzheimer’s Dis. 20: 253–260 (2010)

Mullan M, Crawford F, Axelman K, Houlden H, Lilius L, Winblad B, Lannfelt L A. Pathogenic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of beta-amyloid. Nat Genet. 1: 345–7 (1992)

Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, Yeung PK, Zhou LL, Hoo RL, Chung SK, Xu A, Lam KS, Chan KH. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener. 11: 71 (2016)

Nilsberth C, Westlind-Danielsson A, Eckman CB, Condron MM, Axelman K, Forsell C, Stenh C, Luthman J, Teplow DB, Younkin SG, Näslund J, Lannfelt L. The 'Arctic' APP mutation (E693G) causes Alzheimer's disease by enhanced Abeta protofibril formation. Nat Neurosci. 4: 887–93 (2001)

Njie E, Boelen E, Stassen F, Steinbusch H, Borchelt D, Streit W. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol. Aging. 33: 195.e1–195.e12 (2012)

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, Laferla FM. Triple-Transgenic Model of Alzheimer ’ s Disease with Plaques and Tangles : Intracellular Aβ and Synaptic Dysfunction. Neuron. 39: 409–421 (2003)

Ohara T, Doi Y, Ninomiya T, Hirakawa Y, Hata J, Iwaki T, Kanba S, Kiyohara Y. Glucose tolerance status and risk of dementia in the community The Hisayama Study. Neurology. 77: 1126–34 (2011)

Otoda T, Takamura T, Misu H, Ota T, Murata S, Hayashi H, Takayama H, Kikuchi A, Kanamori T, Shima KR, Lan F, Takeda T, Kurita S, Ishikura K, Kita Y, Iwayama K, Kato K, Uno M, Takeshita Y, Yamamoto M, Tokuyama K, Iseki S, Tanaka K, Kaneko S. Proteasome dysfunction mediates obesity-induced endoplasmic reticulum stress and insulin resistance in the liver. Diabetes. 62: 811–24 (2013)

Ott A, Stolk R, Harskamp F Van, Pols H, Hofman A, Breteler M. Diabetes mellitus and the risk of dementia The Rotterdam Study. Neurology. 53: 1937–42 (1999)

Ozcan L, Ergin AS, Lu A, Chung J, Sarkar S, Nie D, Myers MG Jr, Ozcan U. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab. 7: 35-51 (2009)

Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Görgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 306: 457-61 (2004)

Paolisso G, Rizzo MR, Mazziotti G, Tagliamonte MR, Gambardella A, Rotondi M, Carella C, Giugliano D, Varricchio M, D'Onofrio F. Advancing age and insulin resistance: role of plasma tumor necrosis factor-alpha. Am J Physiol. 275: E294-9 (1998)

Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer's disease amyloid beta-protein via a scavenger receptor. Neuron. 17: 553–65 (1996)

Pérez A, Morelli L, Cresto J, Castaño E. Degradation of soluble amyloid beta-peptides 1-40, 1-42, and the Dutch variant 1-40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res. 25: 247–255 (2000)

Pete G, Fuller CR, Oldham JM, Smith DR, D'Ercole AJ, Kahn CR, Lund PK. Postnatal growth responses to insulin-like growth factor I in insulin receptor substrate-1-deficient mice. Endocrinology. 140: 5478–87 (1999)

Phiel CJ, Wilson CA, Lee VM, Klein PS. GSK-3 alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature. 423: 435–9 (2003)

Rajan RS, Tsumoto K, Tokunaga M, Tokunaga H, Kita Y, Arakawa T. Chemical and pharmacological chaperones: application for recombinant protein production and protein folding diseases. Curr Med Chem. 18: 1-15 (2011)

Robinson LJ, Leitner W, Draznin B, Heidenreich KA. Evidence that p21ras mediates the neurotrophic effects of insulin and insulin-like growth factor I in chick forebrain neurons. Endocrinology. 135: 2568–73 (1994)

Roytblat L, Rachinsky M, Fisher A, Greemberg L, Shapira Y, Douvdevani A, Gelman S. Raised interleukin-6 levels in obese patients. Obes Res. 8: 673–675 (2000)

Sah SK, Lee C, Jang JH, Park GH. Effect of high-fat diet on cognitive impairment in triple-transgenic mice model of Alzheimer's disease. Biochem Biophys Res Commun. 493: 731–736 (2017)

Scherer T, Hare JO, Diggs-andrews K, Schweiger M, Cheng B, Lindtner C, Zielinski E, Vempati P, Su K, Dighe S, Milsom T, Puchowicz M, Scheja L, Zechner R, Fisher SJ, Previs SF, Buettner C. Brain Insulin Controls Adipose Tissue Lipolysis and Lipogenesis. Cell Metab. 13: 183–194 (2011)

Schlöndorff J, Blobel CP. Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci. 112: 3603-17 (1999)

Schubert M, Brazil DP, Burks DJ, Kushner J a, Ye J, Flint CL, Farhang-Fallah J, Dikkes P, Warot XM, Rio C, Corfas G, White MF. Insulin receptor substrate-2 deficiency impairs brain growth and promotes tau phosphorylation. J. Neurosci. 23: 7084–92 (2003)

Selkoe D. Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81: 742–66 (2001)

Shankar G, Bloodgood B, Townsend M, Walsh D, Selkoe D, Sabatini B. Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27: 2866–75 (2007)

Sherrington R, Rogaev E, Liang Y, Rogaeva E, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J, Bruni A, Montesi M, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sanseau P, Polinsky RJ, Wasco W, Da Silva HA, Haines JL, Perkicak-Vance MA, Tanzi RE, Roses AD, Fraser PE, Rommens JM, St George-Hyslop PH. Cloning of the gene bearing missense mutations in early onset familial Alzheimer disease. Nature.375: 754–760 (1995)

Simmgen M, Knauf C, Lopez M, Choudhury AI, Charalambous M, Cantley J, Bedford DC, Claret M, Iglesias MA, Heffron H, Cani PD, Vidal-Puig A, Burcelin R, Withers DJ. Liver-specific deletion of insulin receptor substrate 2 does not impair hepatic glucose and lipid metabolism in mice. Diabetologia. 49: 552-61 (2006)

Solomon SS, Mishra SANJAYK, Palazzolo MR, Postlethwaite AE, Seyer JM. Identification of specific sites in the TNF-α molecule promoting insurin resistance in H-411E cells. J Lab Clin Med. 130: 139–146 (1997)

Stein LJ, Dorsa DM, Baskin DG, Figlewicz DP, Porte D, Woods SC. Reduced effect of experimental peripheral hyperinsulinemia to elevate cerebrospinal fluid insulin concentrations of obese Zucker rats. Endocrinology. 121: 1611–5 (1987)

Stephens JM, Lee J, Pilch PF. Tumor Necrosis Factor-alpha -induced Insulin Resistance in 3T3-L1 Adipocytes Is Accompanied by a Loss of Insulin Receptor Substrate-1 and GLUT4 Expression without a Loss of Insulin Receptor-mediated Signal Transduction. J. Biol. Chem. 272: 971–976 (1997)

Stichel CC, Luebbert H. Inflammatory processes in the aging mouse brain: participation of dendric cells and T-cells. Neurobiol Aging. 28: 1507–21 (2007)

Stöhr O, Schilbach K, Moll L, Hettich MM, Freude S, Wunderlich FT, Ernst M, Zemva J, Brüning JC, Krone W, Udelhoven M, Schubert M. Insulin receptor signaling mediates APP processing and β-amyloid accumulation without altering survival in a transgenic mouse model of Alzheimer's disease. Age (Dordr). 35: 83–101 (2013)

Suzuki N, Iwatsubo T, Odaka A, Ishibashi Y, Kitada C, Ihara Y. High tissue content of soluble beta 1-40 is linked to cerebral amyloid angiopathy. Am. J. Pathol. 145: 452–60 (1994)

Taguchi A, Wartschow LM, White MF. Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science. 317: 369-72 (2007)

Takahashi H. Animal models of Alzheimer’s disease for precrinical research. Nihon Yakurigaku Zasshi. 136: 6-10 (2010)

Takatani T, Shirakawa J, Roe MW, Leech CA, Maier BF, Mirmira RG, Kulkarni RN. IRS1 deficiency protects β-cells against ER stress-induced apoptosis by modulating sXBP-1 stability and protein translation. Sci Rep. 6: srep28177 (2016)

Takeda S, Sato N, Uchio-Yamada K, Sawada K, Kunieda T, Takeuchi D, Kurinami H, Shinohara M, Rakugi H, Morishita R. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Abeta deposition in an Alzheimer mouse model with diabetes. PNAS. 107: 7036–41 (2010)

Talbot K, Wang H, Kazi H, Han L, Bakshi KP, Stucky A, Fuino RL, Kawaguchi KR, Samoyedny AJ, Wilson RS, Arvanitakis Z, Schneider JA, Wolf BA, Bennett DA, Trojanowski JQ, Arnold SE. Demonstrated brain insulin resistance in Alzheimer ’ s disease patients is associated with IGF-1 resistance, IRS-1 dysregulation, and cognitive decline. J. Clin. Invest. 122: 1316–38 (2012)

Tamemoto H, Kadowaki T, Tobe K, Yagi T, Sakura H, Hayakawa T, Terauchi Y, Ueki K, Kaburagi Y, Satoh S, Sekihara H, Yoshioka S, Horikoshi H, Furuta Y, Ikawa Y, Kasuga M, Yazaki Y, Aizawa S. Insulin resistance and growth retardation in mice lacking insulin receptor substrate-1. Nature. 372: 182–6 (1994)

Terauchi Y, Iwamoto K, Tamemoto H, Komeda K, Ishii C, Kanazawa Y, Asanuma N, Aizawa T, Akanuma Y, Yasuda K, Kodama T, Tobe K, Yazaki Y, Kadowaki T. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J Clin Invest. 99: 861–6 (1997)

Terauchi Y, Takamoto I, Kubota N, Matsui J, Suzuki R, Komeda K, Hara A, Toyoda Y, Miwa I, Aizawa S, Tsutsumi S, Tsubamoto Y, Hashimoto S, Eto K, Nakamura A, Noda M, Tobe K, Aburatani H, Nagai R, Kadowaki T. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance. J Clin Invest. 117: 246-57 (2007)

Tomita T, Tokuhiro S, Hashimoto T, Aiba K, Saido T, Maruyama K, Iwatsubo T. Overproduction of amyloidogenic forms of amyloid β peptides inability of trancated forms of PS2 with familial Alzheimer's disease mutation to increase secration of Aβ42. J. Biol. Chem. 273: 21153–60 (1998)

van der Heide LP, Ramakers GM, Smidt MP. Insulin signaling in the central nervous system: learning to survive. Prog Neurobiol. 79: 205-21 (2006)

Vettorazzi JF, Kurauti MA, Soares GM, Borck PC, Ferreira SM, Branco RCS, Michelone LSL, Boschero AC, Junior JMC, Carneiro EM. Bile acid TUDCA improves insulin clearance by increasing the expression of insulin-degrading enzyme in the liver of obese mice. Sci Rep. 7 (2017)

Wallum BJ, Taborsky GJ, Porte D, Figlewicz DP, Jacobson L, Beard JC, Ward WK, Dorsa D. Cerebrospinal fluid insulin levels increase during intravenous insulin infusions in man. J. Clin. Endocrinol. Metab. 64: 190–4 (1987)

Wan Q, Xiong ZG, Man HY, Ackerley C a, Braunton J, Lu WY, Becker LE, MacDonald JF, Wang YT. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature. 388: 686–90 (1997)

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 112: 1796-808 (2003)

Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner-Weir S, White MF. Disruption of IRS-2 causes type 2 diabetes in mice. Nature. 391: 900–4 (1998)

Wyss-Coray T, Loike JD, Brionne TC, Lu E, Anankov R, Yan F, Silverstein SC, Husemann J. Adult mouse astrocytes degrade amyloid-beta in vitro and in situ. Nat Med. 9: 453–7 (2003)

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 112: 1821-30 (2003)

Yamada K, Yabuki C, Seubert P, Schenk D, Hori Y, Ohtsuki S, Terasaki T, Hashimoto T, Iwatsubo T. Aβ immunotherapy: intracerebral sequestration of Aβ by an anti-Aβ monoclonal antibody 266 with high affinity to soluble Aβ. J. Neurosci. 29: 11393–8 (2009)

Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K, Eto K, Akanuma Y, Froguel P, Foufelle F, Ferre P, Carling D, Kimura S, Nagai R, Kahn BB, Kadowaki T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 8: 1288–95 (2002)

Yankner B, Duffy L, Kirschner D. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science (80-. ). 250: 279–282 (1990)

Yoon SO, Park DJ, Ryu JC, Ozer HG, Tep C, Shin YJ, Lim TH, Pastorino L, Kunwar AJ, Walton JC, Nagahara AH, Lu KP, Nelson RJ, Tuszynski MH, Huang K. JNK3 perpetuates metabolic stress induced by Aβ peptides. Neuron. 75: 824–37 (2012)

Young WS 3rd. Periventricular hypothalamic cells in the rat brain contain insulin mRNA. Neuropeptides. 8: 93-7 (1986)

Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 135: 61–73 (2008)

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る