リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Cryogenic Torsion Pendulum for Observing Low-frequency Gravity Gradient Fluctuation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Cryogenic Torsion Pendulum for Observing Low-frequency Gravity Gradient Fluctuation

下田, 智文 東京大学 DOI:10.15083/0002004686

2022.06.22

概要

Gravity gradient fluctuation is a valuable observational target in measuring the motion of mass precisely. Currently, low-frequency fluctuation around 0.1 Hz is targeted for earthquake early warning using terrestrial gravity gradient, and for observation of gravitational waves from intermediate mass black holes. Developing high sensitive gravity gradiometers are essential for those scientific observations. A torsion-bar antenna (TOBA) is a ground-based detector for measuring low-frequency gravity gradient fluctuations (Fig. 1). The low mechanical resonant frequency of TOBA enables observations of gravity gradient around 0.1 Hz even on the ground where the detector is bound by the strong gravitational field. Several prototype TOBA developments and component researches have been performed and revealed the characteristics of detector noises. Currently a 35 cm-scale detector, Phase-III TOBA, is under development as an earthquake early warning system and to demonstrate noise reduction. However, the concrete design of Phase-III TOBA has not been made, and many of the required technologies have not been established yet. In particular, the cryogenic cooling for the torsion pendulum to reduce thermal noise is high priority since previous studies using cryogenic cooling for a torsion pendulum are few and far between. Additionally, earthquake detectability and localizability with TOBA have not been clarified well so far. These topics should be investigated to establish a realistic gravity-based earthquake early warning system.

In this thesis, both theoretical and experimental topics are investigated with the goal of the earthquake early warning using TOBA. On the theoretical side, detectability of earthquakes with TOBA that is sensitive to only horizontal gravity gradient was evaluated for the first time. By comparing it with other types of gravity gradiometers, it was found that TOBA has advantages for detection of strike-slip earthquakes and also has a good detectability for dip-slip earthquakes even without vertical gravity gradient measurement. The calculation result is shown in Fig. 2. Additionally, localizability of the epicenter using an array of TOBAs was also simulated to investigate the suitable arrangement of the detectors, required calibration accuracy of the detectors, and necessary accuracy of the presumed source fault parameters.

On the experimental side, the system of Phase-III TOBA is designed to achieve the sensitivity of 10−15 / √ Hz. In the design, in addition to the known noise suppression methods, reduction of nonlinear vibration transfer noise which was recently found and a newly proposed highly sensitive angular sensor are also included. The most essential part of Phase-III TOBA, the cryogenic system, was then experimentally demonstrated by cooling a prototype 35 cm-scale torsion pendulum. The prototype was successfully cooled down to 6.1 K as shown in Fig. 3, which establishes the basis of the cryogenic system in Phase-III TOBA.

From these theoretical and experimental works, the path to gravity-based earthquake early warning with Phase-III TOBA has been opened. This thesis reports the details of these results.

この論文で使われている画像

参考文献

[1] J. Harms, J.-P. Ampuero, M. Barsuglia, E. Chassande-Mottin, J.-P. Montagner, S. N. Somala, and B. F. Whiting. Transient gravity perturbations induced by earthquake rupture. Geophysical Journal International, 201(3):1416–1425, 2015.

[2] K. Juhel, J. P. Ampuero, M. Barsuglia, P. Bernard, E. Chassande-Mottin, D. Fiorucci, J. Harms, J.-P. Montagner, M. Vall´ee, and B. F. Whiting. Earthquake Early Warning Using Future Generation Gravity Strainmeters. Journal of Geophysical Research: Solid Earth, 123(12):10,889– 10,902, 2018.

[3] Jean-Paul Montagner, K´evin Juhel, Matteo Barsuglia, Jean Paul Ampuero, Eric Chassande-Mottin, Jan Harms, Bernard Whiting, Pascal Bernard, Eric Cl´ev´ed´e, and Philippe Lognonn´e. Prompt gravity signal induced by the 2011 Tohoku-Oki earthquake. Nature Communications, 7:13349 EP –, 11 2016.

[4] Martin Vall´ee, Jean Paul Ampuero, K´evin Juhel, Pascal Bernard, JeanPaul Montagner, and Matteo Barsuglia. Observations and modeling of the elastogravity signals preceding direct seismic waves. Science, 358(6367):1164–1168, 2017.

[5] Masaya Kimura, Nobuki Kame, Shingo Watada, Makiko Ohtani, Akito Araya, Yuichi Imanishi, Masaki Ando, and Takashi Kunugi. Earthquakeinduced prompt gravity signals identified in dense array data in Japan. Earth, Planets and Space, 71(1):27, 2019.

[6] Martin Vall´ee, Jean Paul Ampuero, K´evin Juhel, Pascal Bernard, JeanPaul Montagner, and Matteo Barsuglia. Comment on “earthquakeinduced prompt gravity signals identified in dense array data in japan”by kimura et al. Earth, Planets and Space, 71(1):51, 2019.

[7] Masaya Kimura, Nobuki Kame, Shingo Watada, Makiko Ohtani, Akito Araya, Yuichi Imanishi, Masaki Ando, and Takashi Kunugi. Reply to comment by vall´ee et al. on “earthquake-induced prompt gravity signals identified in dense array data in japan”. Earth, Planets and Space, 71(1):120, 2019.

[8] Martin Vall´ee and K´evin Juhel. Multiple observations of the prompt elastogravity signals heralding direct seismic waves. Journal of Geophysical Research: Solid Earth, 124(3):2970–2989, 2019.

[9] B. P. Abbott et al.,. Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett., 116:061102, Feb 2016.

[10] B. P. Abbott et al.,. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett., 119:161101, Oct 2017.

[11] B. P. Abbott et al.,. Gwtc-1: A gravitational-wave transient catalog of compact binary mergers observed by ligo and virgo during the first and second observing runs. Phys. Rev. X, 9:031040, Sep 2019.

[12] B. P. Abbott et al.,. Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and advanced virgo. The Astrophysical Journal, 882(2):L24, sep 2019.

[13] B. P. Abbott et al.,. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817a. The Astrophysical Journal, 848(2):L13, oct 2017.

[14] B. P. Abbott et al.,. Tests of general relativity with gw150914. Phys. Rev. Lett., 116:221101, May 2016.

[15] Toshikazu Ebisuzaki, Junichiro Makino, Takeshi Go Tsuru, Yoko Funato, Simon Portegies Zwart, Piet Hut, Steve McMillan, Satoki Matsushita, Hironori Matsumoto, and Ryohei Kawabe. Missing link found? the “runaway” path to supermassive black holes. The Astrophysical Journal, 562(1):L19–L22, nov 2001.

[16] Masaki Ando, Koji Ishidoshiro, Kazuhiro Yamamoto, Kent Yagi, Wataru Kokuyama, Kimio Tsubono, and Akiteru Takamori. Torsion-Bar Antenna for Low-Frequency Gravitational-Wave Observations. Phys. Rev. Lett., 105:161101, Oct 2010.

[17] Koji Ishidoshiro, Masaki Ando, Akiteru Takamori, Hirotaka Takahashi, Kenshi Okada, Nobuyuki Matsumoto, Wataru Kokuyama, Nobuyuki Kanda, Yoichi Aso, and Kimio Tsubono. Upper Limit on Gravitational Wave Backgrounds at 0.2 Hz with a Torsion-Bar Antenna. Phys. Rev. Lett., 106:161101, Apr 2011.

[18] Ayaka Shoda, Yuya Kuwahara, Masaki Ando, Kazunari Eda, Kodai Tejima, Yoichi Aso, and Yousuke Itoh. Ground-based low-frequency gravitational-wave detector with multiple outputs. Phys. Rev. D, 95:082004, Apr 2017.

[19] Wataru Kokuyama. Spaceborne Rotating Torsion-Bar Antenna for LowFrequency Gravitational-Wave Observations. PhD thesis, The University of Tokyo, 2012.

[20] Tomofumi Shimoda, Satoru Takano, Ching Pin Ooi, Naoki Aritomi, Yuta Michimura, Masaki Ando, and Ayaka Shoda. Torsion-bar antenna: A ground-based mid-frequency and low-frequency gravitational wave detector. International Journal of Modern Physics D, 28:1940003, 2019.

[21] Tomofumi Shimoda, Naoki Aritomi, Ayaka Shoda, Yuta Michimura, and Masaki Ando. Seismic cross-coupling noise in torsion pendulums. Phys. Rev. D, 97:104003, May 2018.

[22] Tomofumi Shimoda and Masaki Ando. Nonlinear vibration transfer in torsion pendulums. Classical and Quantum Gravity, 36(12):125001, may 2019.

[23] Jan Harms. Terrestrial gravity fluctuations. Living Reviews in Relativity, 18(1):3, Dec 2015.

[24] J. Harms. Transient gravity perturbations from a double-couple in a homogeneous half-space. Geophysical Journal International, 205(2):1153– 1164, 2016.

[25] Riley Newman, Michael Bantel, Eric Berg, and William Cross. A measurement of G with a cryogenic torsion pendulum. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2026):20140025, 2014.

[26] K. Somiya (KAGRA Collaboration). Detector configuration of KAGRA - the Japanese cryogenic gravitational-wave detector. Classical and Quantum Gravity, 29(12):124007, 2012.

[27] Yuichi Imanishi, Tadahiro Sato, Toshihiro Higashi, Wenke Sun, and Shuhei Okubo. A network of superconducting gravimeters detects submicrogal coseismic gravity changes. Science, 306(5695):476–478, 2004.

[28] B. D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9), 2004.

[29] Shin-Chan Han, C. K. Shum, Michael Bevis, Chen Ji, and Chung-Yen Kuo. Crustal dilatation observed by grace after the 2004 sumatraandaman earthquake. Science, 313(5787):658–662, 2006.

[30] Kosuke Heki and Koji Matsuo. Coseismic gravity changes of the 2010 earthquake in central chile from satellite gravimetry. Geophysical Research Letters, 37(24), 2010.

[31] Koji Matsuo and Kosuke Heki. Coseismic gravity changes of the 2011 tohoku-oki earthquake from satellite gravimetry. Geophysical Research Letters, 38(7), 2011.

[32] Keiiti Aki and Paul G. Richards. Quantitative Seismology, 2nd Edition. University Science Books, 2009.

[33] Martin Vall´ee and Vincent Douet. A new database of source time functions (stfs) extracted from the scardec method. Physics of the Earth and Planetary Interiors, 257:149 – 157, 2016.

[34] Heidi Houston. Influence of depth, focal mechanism, and tectonic setting on the shape and duration of earthquake source time functions. Journal of Geophysical Research: Solid Earth, 106(B6):11137–11150, 2001.

[35] Fabrice Cotton and Olivier Coutant. Dynamic stress variations due to shear faults in a plane-layered medium. Geophysical Journal International, 128(3):676–688, 03 1997.

[36] K Juhel, J-P Montagner, M Vall´ee, J P Ampuero, M Barsuglia, P Bernard, E Cl´ev´ed´e, J Harms, and B F Whiting. Normal mode simulation of prompt elastogravity signals induced by an earthquake rupture. Geophysical Journal International, 216(2):935–947, 2019.

[37] J Aasi et al., (LIGO Scientific Collaboration). Advanced LIGO. Classical and Quantum Gravity, 32(7):074001, 2015.

[38] F. Acernese et al., (Virgo Collaboration). Advanced Virgo: a secondgeneration interferometric gravitational wave detector. Classical and Quantum Gravity, 32(2):024001, 2015.

[39] B. P. Abbott et al.,. Multi-messenger observations of a binary neutron star merger. The Astrophysical Journal, 848(2):L12, oct 2017.

[40] K. Danzmann and the LISA study team. LISA: laser interferometer space antenna for gravitational wave measurements. Classical and Quantum Gravity, 13(11A):A247, 1996.

[41] Seiji Kawamura et al.,. The Japanese space gravitational wave antenna: DECIGO. Classical and Quantum Gravity, 28(9):094011, 2011.

[42] Jan Harms, Bram J. J. Slagmolen, Rana X. Adhikari, M. Coleman Miller, Matthew Evans, Yanbei Chen, Holger M¨uller, and Masaki Ando. Low-frequency terrestrial gravitational-wave detectors. Phys. Rev. D, 88:122003, Dec 2013.

[43] Maggiore Michele. Gravitational Waves. Oxford University Press, 2008.

[44] J.H. Taylor and J.M. Weisberg. Further experimental tests of relativistic gravity using the binary pulsar psr 1913 + 16. Astrophysical Journal; (USA), 345, 10 1989.

[45] Dheeraj R. Pasham, Tod E. Strohmayer, and Richard F. Mushotzky. A 400-solar-mass black hole in the galaxy m82. Nature, 513:74 EP –, 08 2014.

[46] B¨ulent Kızıltan, Holger Baumgardt, and Abraham Loeb. An intermediate-mass black hole in the centre of the globular cluster 47 tucanae. Nature, 542:203 EP –, 02 2017.

[47] Shunya Takekawa, Tomoharu Oka, Yuhei Iwata, Shiho Tsujimoto, and Mariko Nomura. Indication of another intermediate-mass black hole in the galactic center. The Astrophysical Journal, 871(1):L1, jan 2019.

[48] Tristan L. Smith, Marc Kamionkowski, and Asantha Cooray. Direct detection of the inflationary gravitational-wave background. Phys. Rev. D, 73:023504, Jan 2006.

[49] D J McManus, P W F Forsyth, M J Yap, R L Ward, D A Shaddock, D E McClelland, and B J J Slagmolen. Mechanical characterisation of the TorPeDO: a low frequency gravitational force sensor. Classical and Quantum Gravity, 34(13):135002, 2017.

[50] H. A. Chan and H. J. Paik. Superconducting gravity gradiometer for sensitive gravity measurements. i. theory. Phys. Rev. D, 35:3551–3571, Jun 1987.

[51] Ho Jung Paik, Cornelius E Griggs, M Vol Moody, Krishna Venkateswara, Hyung Mok Lee, Alex B Nielsen, Ettore Majorana, and Jan Harms. Lowfrequency terrestrial tensor gravitational-wave detector. Classical and Quantum Gravity, 33(7):075003, mar 2016.

[52] M. Vol Moody, Ho Jung Paik, and Edgar R. Canavan. Three-axis superconducting gravity gradiometer for sensitive gravity experiments. Review of Scientific Instruments, 73(11):3957–3974, 2002.

[53] Paik, Ho Jung. Sogro (superconducting omni-directional gravitational radiation observatory). EPJ Web Conf., 168:01005, 2018.

[54] David W. Keith, Christopher R. Ekstrom, Quentin A. Turchette, and David E. Pritchard. An interferometer for atoms. Phys. Rev. Lett., 66:2693–2696, May 1991.

[55] M. Kasevich and S. Chu. Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer. Applied Physics B, 54(5):321–332, May 1992.

[56] Savas Dimopoulos, Peter W. Graham, Jason M. Hogan, Mark A. Kasevich, and Surjeet Rajendran. Atomic gravitational wave interferometric sensor. Phys. Rev. D, 78:122002, Dec 2008.

[57] B. Canuel, A. Bertoldi, L. Amand, E. Pozzo di Borgo, T. Chantrait, C. Danquigny, M. Dovale Alvarez, B. Fang, A. Freise, R. Geiger, J. Gillot, ´ S. Henry, J. Hinderer, D. Holleville, J. Junca, G. Lef`evre, M. Merzougui, N. Mielec, T. Monfret, S. Pelisson, M. Prevedelli, S. Reynaud, I. Riou, Y. Rogister, S. Rosat, E. Cormier, A. Landragin, W. Chaibi, S. Gaffet, and P. Bouyer. Exploring gravity with the MIGA large scale atom interferometer. Scientific Reports, 8(1):14064, 2018.

[58] M. Armano et al.,. Sub-femto-g free fall for space-based gravitational wave observatories: Lisa pathfinder results. Phys. Rev. Lett., 116:231101, Jun 2016.

[59] Peter R. Saulson. Thermal noise in mechanical experiments. Phys. Rev. D, 42:2437–2445, Oct 1990.

[60] Yu. Levin. Internal thermal noise in the ligo test masses: A direct approach. Phys. Rev. D, 57:659–663, Jan 1998.

[61] Gregory M Harry, Andri M Gretarsson, Peter R Saulson, Scott E Kittelberger, Steven D Penn, William J Startin, Sheila Rowan, Martin M Fejer, D R M Crooks, Gianpietro Cagnoli, Jim Hough, and Norio Nakagawa. Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings. Classical and Quantum Gravity, 19(5):897–917, feb 2002.

[62] H. J. Kimble, Yuri Levin, Andrey B. Matsko, Kip S. Thorne, and Sergey P. Vyatchanin. Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics. Phys. Rev. D, 65:022002, Dec 2001.

[63] Donatella Fiorucci, Jan Harms, Matteo Barsuglia, Irene Fiori, and Federico Paoletti. Impact of infrasound atmospheric noise on gravity detectors used for astrophysical and geophysical applications. Phys. Rev. D, 97:062003, Mar 2018.

[64] Peter R. Saulson. Terrestrial gravitational noise on a gravitational wave antenna. Phys. Rev. D, 30:732–736, Aug 1984.

[65] Scott A. Hughes and Kip S. Thorne. Seismic gravity-gradient noise in interferometric gravitational-wave detectors. Phys. Rev. D, 58:122002, Nov 1998.

[66] Teviet Creighton. Tumbleweeds and airborne gravitational noise sources for LIGO. Classical and Quantum Gravity, 25(12):125011, jun 2008.

[67] Jennifer C. Driggers, Jan Harms, and Rana X. Adhikari. Subtraction of Newtonian noise using optimized sensor arrays. Phys. Rev. D, 86:102001, Nov 2012.

[68] Jan Harms and Krishna Venkateswara. Newtonian-noise cancellation in large-scale interferometric GW detectors using seismic tiltmeters. Classical and Quantum Gravity, 33(23):234001, 2016.

[69] Jan Harms and Stefan Hild. Passive newtonian noise suppression for gravitational-wave observatories based on shaping of the local topography. Classical and Quantum Gravity, 31(18):185011, aug 2014.

[70] H. Ohta, A. Koike, K. Hoshino, H. Kotaka, E. Sudoh, K. Kato, H. Takahara, Y. Uchikawa, K. Shinada, M. Takahata, Y. Yamada, and T. Matsui. Neuromagnetic squid measurements in a helmet-type superconducting magnetic shield of bscco. IEEE Transactions on Applied Superconductivity, 3(1):1953–1956, March 1993.

[71] Miroslav Micic, Kelly Holley-Bockelmann, Steinn Sigurdsson, and Tom Abel. Supermassive black hole growth and merger rates from cosmological N-body simulations. Monthly Notices of the Royal Astronomical Society, 380(4):1533–1540, 09 2007.

[72] M. Armano et al.,. Beyond the required lisa free-fall performance: New lisa pathfinder results down to 20 µHz. Phys. Rev. Lett., 120:061101, Feb 2018.

[73] Ayaka Shoda, Masaki Ando, Koji Ishidoshiro, Kenshi Okada, Wataru Kokuyama, Yoichi Aso, and Kimio Tsubono. Search for a stochastic gravitational-wave background using a pair of torsion-bar antennas. Phys. Rev. D, 89:027101, Jan 2014.

[74] Ayaka Shoda. Development of a High-Angular-Resolution Antenna for Low-Frequency Gravitational-Wave Observation. PhD thesis, The University of Tokyo, 2015.

[75] Kazunari Eda, Ayaka Shoda, Yousuke Itoh, and Masaki Ando. Improving parameter estimation accuracy with torsion-bar antennas. Phys. Rev. D, 90:064039, Sep 2014.

[76] Yuya Kuwahara, Ayaka Shoda, Kazunari Eda, and Masaki Ando. Search for a stochastic gravitational wave background at 1–5 hz with a torsionbar antenna. Phys. Rev. D, 94:042003, Aug 2016.

[77] Seiya Uyeda and Hiroo Kanamori. Back-arc opening and the mode of subduction. Journal of Geophysical Research: Solid Earth, 84(B3):1049– 1061, 1979.

[78] D. J. McManus, P. W. F. Forsyth, N. A. Holland, R. L. Ward, D. A. Shaddock, D. E. McClelland, and B. J. J. Slagmolen. Early Earthquake Detection with a Dual Torsion-Beam Gravimeter. arXiv, 1809.04787, 2018.

[79] D. F. McGuigan, C. C. Lam, R. Q. Gram, A. W. Hoffman, D. H. Douglass, and H. W. Gutche. Measurements of the mechanical q of singlecrystal silicon at low temperatures. Journal of Low Temperature Physics, 30(5):621–629, Mar 1978.

[80] R Nawrodt, C Schwarz, S Kroker, I W Martin, R Bassiri, F Br¨uckner, L Cunningham, G D Hammond, D Heinert, J Hough, T K¨asebier, E-B Kley, R Neubert, S Reid, S Rowan, P Seidel, and A T¨unnermann. Investigation of mechanical losses of thin silicon flexures at low temperatures. Classical and Quantum Gravity, 30(11):115008, may 2013.

[81] C. J. Glassbrenner and Glen A. Slack. Thermal conductivity of silicon and germanium from 3◦k to the melting point. Phys. Rev., 134:A1058–A1069, May 1964.

[82] W. Duffy. Acoustic quality factor of copper, brass and beryllium copper from 50 mk to 300 k. Cryogenics, 32(12):1121 – 1124, 1992.

[83] N.J. Simon, E.S. Drexler, and R.P. Reed. Properties of copper and copper alloys at cryogenic temperatures. 2 1992.

[84] Guy K. White. Experimental Techniques In Low-Temperature Physics (Fourth Edition). Oxford University Press, 2002.

[85] Yusuke Sakakibara. A Study of Cryogenic Techniques for Gravitational Wave Detection. PhD thesis, The University of Tokyo, 2015.

[86] Takayuki Tomaru, Hiroaki Hoshikawa, Hiroshi Tabuchi, and Takakazu Shintomi. Conduction cooling using ultra-pure fine metal wire i -pure aluminum-. TEION KOGAKU(J. Cryo. Super. Soc. Jpn.), 46:415, 2011.

[87] Eric D. Black. An introduction to pound-drever-hall laser frequency stabilization. American Journal of Physics, 69(1):79–87, 2001.

[88] Janyce Franc, Nazario Morgado, Raffaele Flaminio, Ronny Nawrodt, Iain Martin, Liam Cunningham, Alan Cumming, Sheila Rowan, and James Hough. Mirror thermal noise in laser interferometer gravitational wave detectors operating at room and cryogenic temperature, 2009.

[89] Eiichi Hirose, Dan Bajuk, GariLynn Billingsley, Takaaki Kajita, Bob Kestner, Norikatsu Mio, Masatake Ohashi, Bill Reichman, Hiroaki Yamamoto, and Liyuan Zhang. Sapphire mirror for the kagra gravitational wave detector. Phys. Rev. D, 89:062003, Mar 2014.

[90] J.R. Davis. Copper and Copper Alloys. ASM International, 2001.

[91] Gautam Sinha and S. S. Prabhu. Analytical model for estimation of eddy current and power loss in conducting plate and its application. Phys. Rev. ST Accel. Beams, 14:062401, Jun 2011.

[92] Anthony E. Siegman. LASERS. University Science Books, 1990.

[93] Yutaro Enomoto, Koji Nagano, and Seiji Kawamura. Standard quantum limit of angular motion of a suspended mirror and homodyne detection of a ponderomotively squeezed vacuum field. Phys. Rev. A, 94:012115, Jul 2016.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る