リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Study of an Equatorward Detachment of Auroral Arc From the Oval Using Ground‐Space Observations and the BATS‐R‐US–CIMI Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Study of an Equatorward Detachment of Auroral Arc From the Oval Using Ground‐Space Observations and the BATS‐R‐US–CIMI Model

Yadav, Sneha Shiokawa, K. Oyama, S. Inaba, Y. Takahashi, N. Seki, K. Keika, K. Chang, Tzu‐Fang Tam, S. W. Y. Wang, B.‐J. Kazama, Y. Wang, S.‐Y. Asamura, K. Kasahara, S. Yokota, S. Hori, T. Kasaba, Y. Tsuchiya, F. Kumamoto, A. Shoji, M. Kasahara, Y. Matsuoka, A. Matsuda, S. Jun, C.‐W. Imajo, S. Miyoshi, Y. Shinohara, I. 名古屋大学

2021.12

概要

The solar wind energy and its complex interaction with the magnetosphere powers the vibrant aurora in the
Earth's upper atmosphere. The aurora is an optical emission produced by the energetic electrons precipitating
along the geomagnetic field, eventually collide and excite particles in the upper atmosphere that, in turn, emit
photons (e.g., Jones, 1974). The diverse processes occurring in different regions of the magnetosphere cause the
formation of aurora in various forms.
An auroral arc is defined as a curtain-shaped optical emission aligned along the geomagnetic east-west direction
in the upper atmosphere (e.g., Karlsson et al., 2020, for a review). Different types of arcs correspond to different
regions of the Earth's magnetosphere and diverse processes that occur in the region. Therefore, these arcs serve as
a diagnostic tool for investigating the large-scale processes occurring in the magnetosphere and their association
with the ionosphere. ...

この論文で使われている画像

関連論文

参考文献

Anger, C., Moshupi, M., Wallis, D., Murphree, J., Brace, L., & Shepherd, G. (1978). Detached auroral arcs in the trough region. Journal of Geophysical Research, 83, 2683. https://doi.org/10.1029/ja083ia06p02683

Angelopoulos, V., Cruce, P., Drozdov, A., Grimes, E. W., Hatzigeorgiu, N., King, D. A., et al. (2019). The Space Physics Environment Data

Analysis System (SPEDAS). Space Science Review, 215. https://doi.org/10.1007/s11214-018-0576-4

Banks, P. M., Chappell, C. R., & Nagy, A. F. (1974). A new model for the interaction of auroral electrons with the atmosphere: Spectral

degradation, backscatter, optical emission, and ionization. Journal of Geophysical Research, 79(10), 1459–1470. https://doi.org/10.1029/

JA079i010p01459

Blanchard, G., Lyons, L., & Samson, J. (1997). Accuracy of using 6300 A auroral emission to identify the magnetic separatrix on the nightside

of Earth. Journal of Geophysical Research, 102(A5), 9697–9703. https://doi.org/10.1029/96JA04000

Buzulukova, N. Y., Kovrazhkin, R. A., Glazunov, A. L., Sauvaud, J.-A., Ganushkina, N. Y., & Pulkkinen, T. I. (2003). Stationary nose structures

of protons in the inner magnetosphere: Observations by the ION instrument onboard the Interball-2 satellite and modeling. Cosmic Research,

41, 3–12. https://doi.org/10.1023/a:1022343327565

Chu, X., Malaspina, D., Gallardo-Lacourt, B., Liang, J., Andersson, L., Ma, Q., et al. (2019). Identifying STEVE's Magnetospheric Driver

Using Conjugate Observations in the Magnetosphere and on the Ground. Geophysical Research Letters, 46, 12665, 12674. https://doi.

org/10.1029/2019GL082789

Cornwall, J. M., Coroniti, F. V., & Thorne, R. M. (1971). Unified theory of SAR arc formation at the plasmapause. Journal of Geophysical Research, 76, 4428–4445. https://doi.org/10.1029/JA076i019p04428

Cole, K. (1965). Stable auroral red arcs, sinks for energy of Dst main phase. Journal of Geophysical Research, 70, 1689–1706. https://doi.

org/10.1029/JZ070i007p01689

Dandouras, I., Cao, J., & Vallat, C. (2009). Energetic ion dynamics of the inner magnetosphere revealed in coordinated Cluster-Double Star

observations. Journal of Geophysical Research, 114, a, n, A01S90. https://doi.org/10.1029/2007JA012757

Frey, H. U. (2007). Localized aurora beyond the auroral oval. Reviews of Geophysics, 45(1), 1003. https://doi.org/10.1029/2005RG000174

Ejiri, M., Hoffman, R. A., & Smith, P. H. (1980). Energetic particle penetrations into the inner magnetosphere. Journal of Geophysical Research,

85, 653. https://doi.org/10.1029/ja085ia02p00653

Ferradas, C. P., Zhang, J.-C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G., et al. (2016). Ion nose spectral structures observed by the

Van Allen Probes. Journal of Geophysical Research-Space Physics, 121. 12,025–12. https://doi.org/10.1002/2016JA022942

Ferradas, C. P., Zhang, J.-C., Spence, H. E., Kistler, L. M., Larsen, B. A., Reeves, G. D., et al. (2018). Temporal evolution of ion spectral structuresduring a geomagnetic storm:Observations and modeling. Journal of Geophysical Research-Space Physics, 123, 179–196. https://doi.

org/10.1002/2017JA024702

Fok, M.-C., Buzulukova, N. Y., Chen, S.-H., Glocer, A., Nagai, T., Valek, P., & Perez, J. D. (2014). The Comprehensive Inner Magnetosphere-Ionosphere Model. Journal of Geophysical Research: Space Physics, 119, 7522–7540. https://doi.org/10.1002/2014JA020239

Fok, M.-C., Moore, T. E., & Delcourt, D. C. (1999). Modeling of inner plasma sheet and ring current during substorms. Journal of Geophysical

Research-Space Physics, 104, 14 557–14 569. https://doi.org/10.1029/1999ja900014

Ganushkina, N. Y., & Pulkkinen, T. I. (2002). Particle tracing in the inner Earth's magnetosphere and the formation of the ring current during

storm times. Advances in Space Research, 30, 1817–1820. https://doi.org/10.1016/s0273-1177(02)00455-6

Ganushkina, N. Y., Pulkkinen, T. I., Sergeev, V. A., Kubyshkina, M. V., Baker, D. N., Turner, N. E., et al. (2000). Entry of plasma sheet particles

into the inner magnetosphere as observed by Polar/CAMMICE. Journal of Geophysical Research-Space Physics, 105, 25 205–25 219. https://

doi.org/10.1029/2000ja900062

Ganushkina, N. Y., Pulkkinen, T. I., Bashkirov, V. F., Baker, D. N., & Li, X. (2001). Formation of intense nose structures. Geophysical Research

Letter, 28, 491–494. https://doi.org/10.1029/2000gl011955

Gallardo-Lacourt, B., Nishimura, Y., Donovan, E., Gillies, D. M., Perry, G. W., Archer, W. E., et al. (2018). A statistical analysis of STEVE.

Journal of Geophysical Research-Space Physics, 123, 9893–9905. https://doi.org/10.1029/2018JA025368

19 of 21

Journal of Geophysical Research: Space Physics

10.1029/2020JA029080

Gombosi, T. I., DeZeeuw, D. L., Groth, C. P. T., & Powell, K. G. (2000). Magnetospheric configuration for Parker-spiral IMF conditions: Results

of a 3D AMR MHD simulation. Advances in Space Research, 26(1), 139–149. https://doi.org/10.1016/s0273-1177(99)01040-6

Hosokawa, K., Miyoshi, Y., Ozaki, M., Oyama, S.-I., Ogawa, Y., Kurita, S., et al. (2020). Multiple time-scale beats in aurora: Precise orchestration

via magnetospehric chorus waves. Scientific Reports, 10, 3380. https://doi.org/10.1038/s41598-020-59642-8

Inaba, Y., Shiokawa, K., Oyama, S., Otsuka, Y., Oksanen, A., & Shinbori, A., (2020). Plasma and field observations in the magnetospheric source

region of a stable auroral red (SAR) arc by the Arase satellite on 28 March 2017. Journal of Geophysical Research: Space Physics, 125. https://

doi.org/10.1029/2020JA028068

Jackel, B. J., Creutzberg, F., Donovan, E. F., & Cogger, L. L. (2003). Triangulation of auroral red-line emission heights. In K. U. Kaila, J. R.

T. Jussila, & H. Holma (Eds.), Proceedings of the 28th annual European meeting on atmospheric studies by optical methods (pp. 97–100).

Sodankyla Geophys. Observ. Publ.Oulu, Finland.

Jones, A. V. (1974). Aurora. D. Reidel Publishing Co..Dordrecht, Holland.

Karlsson, T., Andersson, L., Gillies, D.M., Lynch, K., Marghitu, O., Partamies, N., & Sivadas, N., (2020). Quiet, discrete auroral arcs – observations. Space Science Reviews, 216, 16. https://doi.org/10.1007/s11214-020-0641-7

Kozyra, J. U., & Nagy, A. F. (1997). High-altitude energy source(s) for stable auroral red arcs. Reviews of Geophysics, 35, 155–190. 96RG03194.

https://doi.org/10.1029/96rg03194

Kasaba, Y., Ishisaka, K., Kasahara, Y., Imachi, T., Yagitani, S., Kojima, H., et al. (2017). Wire probe antenna (WPT) and electric field detector

(EFD) of plasma wave experiment (PWE) aboard the Arase satellite: Specifications and initial evaluation results. Earth, Planets and Space,

69(1), 174. https://doi.org/10.1186/s40623-017-0760-x

Kasahara, S., Yokota, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018c). The MEP-e instrument Level-2 omni-directional flux data of

Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-02001

Kasahara, S., Yokota, S., Mitani, T., Asamura, K., Hirahara, M., Shibano, Y., & Takashima, T. (2018a). Medium-energy particle experiments-electron analyzer (MEP-e) for the exploration of energization and radiation in geospace (ERG) mission. Earth, Planets and Space,

70(1), 69. https://doi.org/10.1186/s40623-018-0847-z

Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., Ishisaka, K., Kumamoto, A., et al. (2018b). The Plasma Wave Experiment (PWE) on board

the Arase (ERG) satellite. Earth, Planets and Space, 70(1), 86. https://doi.org/10.1186/s40623-018-0842-4

Kasahara, Y., Kasaba, Y., Matsuda, S., Shoji, M., Nakagawa, T., Ishisaka, K., et al. (2018d). The PWE/EFD instrument Level-2 spin-fit electric

field data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-07000

Kasahara, Y., Kojima, H., Matsuda, S., Ozaki, M., Yagitani, S., Shoji, M., et al. (2018f). The PWE/OFA instrument Level-2 spectrum data of

Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-08000

Kasahara, Y., Kumamoto, A., Tsuchiya, F., Matsuda, S., Shoji, M., Nakamura, S., et al. (2018e). The PWE/HFA instrument Level-2 spectrum data

of Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-10000

Kazama, Y., Wang, B. J., Wang, S. Y., Ho, P. T. P., Tam, S. W. Y., Chang, T. F., et al. (2017). Low-energy particle experiments-electron analyzer

(LEPe) onboard the Arase spacecraft. Earth, Planets and Space, 69(1), 165. https://doi.org/10.1186/s40623-017-0748-6

Keiling, A., Angelopoulos, V., Runov, A., Weygand, J., Apatenkov, S. V., Mende, S., et al. (2009). Substorm current wedge driven by plasma flow

vortices: THEMIS observations. Journal of Geophysical Research, 114, A00C22. https://doi.org/10.1029/2009JA014114

Kumamoto, A., Tsuchiya, F., Kasahara, Y., Kasaba, Y., Kojima, H., Yagitani, S., et al. (2018). High Frequency Analyzer (HFA) of Plasma Wave

Experiment (PWE) onboard the Arase spacecraft. Earth, Planets and Space. https://doi.org/10.1186/s40623-018-0854-0

Ogawa, Y., Kadokura, A., & Ejiri, M. K. (2020). Optical calibration system of NIPR for aurora and airglow observations. Polar Science, 26.

https://doi.org/10.1016/j.polar.2020.100570

Oyama, S., Shinbori, A., Ogawa, Y., Kellinsalmi, M., Raita, T., Aikio, A., et al. (2020). An ephemeral red arc appeared at 68° MLat at a pseudo breakup during geomagnetically quiet conditions. Journal of Geophysical Research: Space Physics, 125, e2020JA028468. https://doi.

org/10.1029/2020JA028468

Ozaki, M., Miyoshi, Y., Shiokawa, K., Hosokawa, K., Oyama, S.-I., Kataoka, R., et al. (2019). Visualization of rapid electron precipitation via

chorus element wave–particle interactions. Nature Communications, 10, 257. https://doi.org/10.1038/s41467-018-07996-z

Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., & De Zeeuw, D. (1999). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. Journal of Computational Physics, 154(2), 284–309. https://doi.org/10.1006/jcph.1999.6299

MacDonald, E. A., Donovan, E., Nishimura, Y., Case, N. A., Gillies, D. M., Gallardo-lacourt, B., et al. (2018). New science in plain sight: Citizen scientists lead to the discovery of optical structure in the upper atmosphere. Science Advances, 4(March), 16–21. https://doi.org/10.1126/

sciadv.aaq0030

Matsuda, S., Kasahara, Y., Kojima, H., Kasaba, Y., Yagitani, S., Ozaki, M., et al. (2018). Onboard software of Plasma Wave Experiment aboardArase: Instrument management and signal processing of waveform capture/onboard frequency analyzer. Earth, Planets and Space, 70(1), 75.

https://doi.org/10.1186/s40623-018-0838-0

Matsuoka, A., Teramoto, M., Nomura, R., Nose, M., Fujimoto, A., Tanaka, Y., et al. (2018a). The ARASE (ERG) magnetic field investigation.

Earth, Planets and Space, 70(1). https://doi.org/10.1186/s40623-018-0800-1

Matsuoka, A., Teramoto, M., Imajo, S., Kurita, S., Miyoshi, Y., & Shinohara, I. (2018b). The MGF instrument Level-2 spinfit magnetic field data

of Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-06001

Miyoshi, Y., Shinohara, I., Takashima, T., Asamura, K., Higashio, N., Mitani, T., et al. (2018a). Geospace exploration project ERG. Earth, Planets

and Space, 70(1), 101. https://doi.org/10.1186/s40623-018-0862-0

Miyoshi, Y., Hori, T., Shoji, M., Teramoto, M., Chang, T. F., Matsuda, S., et al. (2018b). The ERG Science Center. Earth, Planets and Space,

70(1), 96. https://doi.org/10.1186/s40623-018-0867-8

Miyoshi, Y., Shinohara, I., & Jun, C.-W. (2018c). The Level-2 orbit data of Exploration of energization and Radiation in Geospace (ERG) Arase

satellite. https://doi.org/10.34515/DATA.ERG-12000

Motoba, T., Ohtani, S., Anderson, B. J., Korth, H., Mitchell, D., Lanzerotti, L. J., et al. (2015). On the formation and origin of substorm growth

phase/onset auroral arcs inferred from conjugate space-ground observations. Journal of Geophysical Research: Space Physics, 120, 8707–

8722. https://doi.org/10.1002/2015JA021676

Moshupi, M. C., Anger, C. D., Murphree, J. S., Wallis, D. D., Whitteker, J. H., & Brace, L. H. (1979). Characteristics of trough region auroral

patches and detached arcs observed by Isis 2. Journal of Geophysical Research: Space Physics, 84(A4), 1333–1346. https://doi.org/10.1029/

JA084iA04p01333

Roach, F. E., & Roach, J. R. (1963). Stable 6300Å auroral arcs in midlatitudes. Planetary Space Scince, I1, 523–545. https://doi.

org/10.1016/0032-0633(63)90076-x

Roederer, J. G. (1970). Dynamics of geomagnetically trapped radiation. Cambridge Univ. Press. New York.

YADAV ET AL.

20 of 21

Journal of Geophysical Research: Space Physics

10.1029/2020JA029080

Sakaguchi, K., Shiokawa, K., Miyoshi, Y., Otsuka, Y., Ogawa, T., Asamura, K., & Connors, M. (2008). Simultaneous appearance of isolated auroral arcs and Pc 1 geomagnetic pulsations at subauroral latitudes. Journal of Geophysical Research, 113(A5), A05201. https://doi.

org/10.1029/2007ja012888

Shiokawa, K., & Fukunishi, H. (1990). Dependences of auroral 5577 Å and 6300 Å emission rates on thermosphere density variations. Proc.

NIPR Symp. Upper Atmos. Phys., 3, 24–31.

Shiokawa, K., Hosokawa, K., Sakaguchi, K., Ieda, A., Otsuka, Y., Ogawa, T., & Connors, M. (2009a). The optical mesosphere thermosphere

imagers (OMTIs) for network measurements of aurora and airglow, future perspectives of space plasma and particle instrumentation and international collaborations. AIP Conference Proceedings, 1144, 212–215. https://doi.org/10.1063/1.3169292

Shiokawa, K., Katoh, Y., Satoh, M., Ejiri, M. K., Ogawa, T., Nakamura, T., et al. (1999). Development of optical mesosphere thermosphere

imagers (OMTI). Earth Planets Space, 51, 887–896. https://doi.org/10.1186/bf03353247

Shiokawa, K., Otsuka, Y., & Ogawa, T. (2009b). Propagation characteristics of nighttime mesospheric and thermospheric waves observed by

optical mesosphere thermosphere imagers at middle and low latitudes. Earth Planets Space, 61, 479–491. https://doi.org/10.1186/bf03353165

Shiokawa, K., Katoh, Y., Hamaguchi, Y., Yamamoto, Y., Adachi, T., Ozaki, M., et al. (2017). Ground-based instruments of the PWING project to

investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network. Earth,

Planets and Space, 69(1), 160. https://doi.org/10.1186/s40623-017-0745-9

Shiokawa, K., Nose, M., Imajo, S., Tanaka, Y., Miyoshi, Y., Hosokawa, K., et al. (2020). Arase observation of the source region of auroral

arcs and diffuse auroras in the inner magnetosphere. Journal of Geophysical Research: Space Physics, 125, e2019JA027310. https://doi.

org/10.1029/2019JA027310

Shirai, H., Maezawa, K., Fujimoto, M., Mukai, T., Saito, Y., & Kaya, N. (1997). Monoenergetic ion drop-off in the inner magnetosphere. Journal

of Geophysical Research, 102(A9), 873–881. https://doi.org/10.1029/97JA01150

Smith, P. H., & Hoffman, R. A. (1974). Direct observations in the dusk hours of the characteristics of the storm time ring current particles during

the beginning of magnetic storms. Journal of Geophysical Research, 79(7). https://doi.org/10.1029/JA079i007p00966

Solomon, S. C., Hays, P. B., & Abreu, V. J. (1988). The auroral 6300 Å emission: Observation and modeling. Journal of Geophysical Research,

93, 9867–9882. https://doi.org/10.1029/ja093ia09p09867

Shepherd, G., Winningham, J., Bunn, F., & Thirkettle, F. (1980). An empirical determination of the production efficiency for auroral 6300-Å

emission by energetic electrons. Journal of Geophysical Research, 85(A2), 715–721. https://doi.org/10.1029/JA085iA02p00715

Takagi, Y., Shiokawa, K., Otsuka, Y., Connors, M., & Schofield, I. (2018). Statistical analysis of SAR arc detachment from the main oval

based on 11-year, all-sky imaging observation at Athabasca, Canada. Geophysical Research Letters, 45, 11,539–11,546. https://doi.

org/10.1029/2018GL079615

Torr, M., & Torr, D. (1982). The role of metastable species in the thermosphere. Reviews of Geophysics, 20, 91–144. https://doi.org/10.1029/

rg020i001p00091

Tsyganenko, N. A., & Sitnov, M. I. (2005), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, Journal of

Geophysical Research, 110, A03208. https://doi.org/10.1029/2004JA010798

Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, D. R., Clauer, C., et al. (2005). Space Weather Modeling Framework: A new tool for the space

science community. Journal of Geophysical Research: Space Physics, 110(A12), A12226. https://doi.org/10.1029/2005JA011126

Tóth, G., Sokolov, I. V., Gombosi, T. I., Chesney, C. R, Clauer, C. R., De Zeeuw, D. L., et al. (2012). Adaptive numerical algorithms in

space weather modeling. Special Issue: Computational Plasma Physics. Journal of Computational Physics, 231(3), 870–903. https://doi.

org/10.1016/j.jcp.2011.02.006

Turner, D. L., Claudepierre, S. G., Fennell, J. F., O'Brien, T. P., Blake, J. B., Lemon, C., et al. (2015). Energetic electron injections deep into the

inner magnetosphere associated with substorm activity. Geophysical Research Letters, 42, 2079–2087. https://doi.org/10.1002/2015GL063225

Vallat, C., Ganushkina, N., Dandouras, I., Escoubet, C. P., Taylor, M. G. G. T., Laakso, H., et al. (2007). Ion multi-nose structures observed by

Cluster in the inner magnetosphere. Annales Geophysicae, 25, 171–190. https://doi.org/10.5194/angeo-25-171-2007

Wallis, D. D., Burrows, J. R., Moshupi, M. C., Anger, C. D., & Murphree, J. S. (1979). Observations of particles precipitating into detached arcs

and patches equatorward of the auroral oval. Journal of Geophysical Research, 84, 1347.

Wang, S.-Y, Kazama, Y., Jun, C.-W., Chang, T.-F., Hori, T., Miyoshi, Y., & Shinohara, I. (2018). The LEPe instrument level-2 omni-directional

flux data of Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-04002

Yadav, S., Shiokawa, K., Otsuka, Y., Connors, M., & St. Maurice, J.-P. (2021). Multi-wavelength imaging observations of STEVE at Athabasca,

Canada. Journal of Geophysical Research: Space Physics, 125. https://doi.org/10.1029/2020JA028622

Yago, K., Shiokawa, K., Hayashi, K., & Yumoto, K. (2005). Auroral particles associated with a substorm brightening arc. Geophysical Research

Letters, 32, L06104. https://doi.org/10.1029/2004GL021894

Yokota, S., Kasahara, S., Mitani, T., Asamura, K., Hirahara, M., Takashima, T., et al. (2017). Medium-energy particle experiments-ion mass

analyzer (MEP-i) onboard ERG (Arase). Earth, Planets and Space, 69(1), 172. https://doi.org/10.1186/s40623-017-0754-8

Yokota, S., Kasahara, S., Hori, T., Keika, K., Miyoshi, Y., & Shinohara, I. (2018). The MEP-i instrument Level-2 omni-directional flux data of

Exploration of energization and Radiation in Geospace (ERG) Arase satellite. https://doi.org/10.34515/DATA.ERG-03001

Zhou, S., Luan, X., Burch, J. L., Yao, Z., Han, D. S., Tian, C., et. al. (2021). A possible mechanism on the detachment between a subauroral proton arc and the auroral oval. Journal of Geophysical Research: Space Physics, 126, e2020JA028493. https://doi.org/10.1029/2020JA028493

YADAV ET AL.

21 of 21

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る