リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Wurtzite AlP y N1-y : a new III-V compound semiconductor lattice-matched to GaN (0001)」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Wurtzite AlP y N1-y : a new III-V compound semiconductor lattice-matched to GaN (0001)

Pristovsek, Markus van Dinh, Duc Liu, Ting Ikarashi, Nobuyuki 名古屋大学

2020.11

概要

We report on a new member of the III-nitride family, wurtzite AlPyN1−y, tensile strained, or lattice matching (at ≈10.6% P) on (0001) GaN. Unlike lattice-matched AlInN, AlPyN1−y can be grown between 1050 °C to 1250 °C under hydrogen atmosphere in metal-organic vapor phase epitaxy. The transition from GaN to AlPyN1−y is sharp, there is no Ga carry over. Due to the small P content, physical properties like bandgap (around 5.5 eV for lattice match), dielectric function, or polarisation are close to AlN. A first unoptimized AlPN/GaN heterostructure shows a low sheet resistance of 150±50Ω/□, which makes AlPyN1−y promising for electronic applications.

参考文献

[1] J.-F. Carlin, C. Zellweger, J. Dorsaz, S. Nicolay, G. Christmann, E. Feltin, R. Butt´e,

and N. Grandjean, phys. stat. sol. (b) 242, 2326 (2005).

[2] M. Hiroki, Y. Oda, N. Watanabe, N. Maeda, H. Yokoyama, K. Kumakura, and

H. Yamamoto, J. Crystal Growth 382, 36 (2013).

[3] R. Bouveyron and M. Charles, J. Crystal Growth 464, 105 (2017).

[4] K. Zhou, H. Ren, M. Ikeda, J. Liu, Y. Ma, S. Gao, C. Tang, D. Li, L. Zhang, and

H. Yang, Superlattices and Microstructures 101, 323 (2017).

6/8

Appl. Phys. Express

[5] S. Leone, J. Ligl, C. Manz, L. Kirste, T. Fuchs, H. Menner, M. Prescher, J. Wiegert,

A. Zukauskait´

e, R. Quay, and O. Ambacher, phys. stat. solidi (RRL) 14, 1900535

(2020).

[6] J. Ligl, S. Leone, C. Manz, L. Kirste, P. Doering, T. Fuchs, M. Prescher, and

O. Ambacher, J. Appl. Phys. 127, 195704 (2020).

[7] M. Kume, Y. Ban, K. Harafuji, I. Kidoguchi, S. Kamiyama, A. Tsujimura,

R. Miyanaga, A. Ishibashi,

and Y. Hasegawa, “Semiconductor laser device,”

(1999), patent US6466597B1.

[8] K. Iwata, H. Asahi, K. Asami, and S. ichi Gonda, Jap. J. Appl. Phys. 35 Part 2,

L1634 (1996).

[9] R. Kuroiwa, H. Asahi, K. Asami, S.-J. Kim, K. Iwata, and S. Gonda, Appl. Phys.

Lett. 73, 2630 (1998).

[10] T.-Y. Seong, I.-T. Bae, C.-J. Choi, D. Y. Noh, Y. Zhao, and C. W. Tu, J. Appl.

Phys. 85, 3192 (1999).

[11] R. Soni, P. Dobal, R. Katiyar, H. Asahi, H. Tampo, and S. Gonda, MRS Proceedings 618, 321 (2000).

[12] J. Kikawa, S. Yoshida, and Y. Itoh, J. Crystal Growth 229, 48 (2001).

[13] S. Yoshida, J. Li, and Y. Itoh, phys. stat. sol. (c) 0, 2236 (2003).

[14] L. Li-Wu, C. Ting-Jie, S. Bo, W. Jiang-Nong, and G. Wei-Kun, Chin. Phys. Lett.

22, 2081 (2005).

[15] D. Chen, B. Shen, Z. Bi, K. Zhang, S. Gu, R. Zhang, Y. Shi, Y. Zheng, X. Sun,

S. Wan, and Z. Wang, Appl. Phys. A 80, 141 (2005).

[16] K. Fehse, A. Dadgar, P. Veit, J. Blng, and A. Krost, Appl. Phys. A 82, 733 (2006).

[17] S. Assali, I. Zardo, S. Plissard, D. Kriegner, M. A. Verheijen, G. Bauer, A. Meijerink, A. Belabbes, F. Bechstedt, J. E. M. Haverkort, and E. P. A. M. Bakkers,

Nano Letters 13, 1559 (2013).

[18] P. Kurpas, J. J¨onsson, W. Richter, D. Gutsche, M. Pristovsek, and M. Zorn, J.

Crystal Growth 145, 36 (1994).

[19] X.-L. Wang, A. Wakahara, and A. Sasaki, J. Crystal Growth 129, 289 (1993).

[20] F. Oehler, M. E. Vickers, M. J. Kappers, and R. A. Oliver, J. Appl. Phys. 114,

053520 (2013).

[21] K. Persson, “Materials data on AlP (SG:186) by Materials Project,” (2014).

[22] A. B. Kuzmenko, Rev. Sci. Instr. 76, 083108 (2005).

[23] R. Swanepoel, J. Phys. E: Sci. Instr. 16, 1214 (1983).

7/8

Appl. Phys. Express

[24] Z. Ye, S. Nitta, Y. Honda, M. Pristovsek, and H. Amano, Jpn. J. Appl. Phys. 59,

025511 (2020).

[25] A. Ishibashi, H. Takeishi, M. Mannoh, Y. Yabuuchi, and Y. Ban, J. Electronic

Mat. 25, 799 (1996).

[26] N. Watanabe, T. Kimoto, and J. Suda, J. Appl. Phys. 104, 106101 (2008).

¨ urk, M. Kasap, S. Oz¸

¨ celik,

[27] R. T¨

ulek, A. Ilgaz, S. G¨okden, A. Teke, M. K. Ozt¨

E. Arslan, and E. Ozbay,

J. Appl. Phys. 105, 013707 (2009).

[28] Y. Terada, Y. Shimogaki, Y. Nakano, and M. Sugiyama, J. Crystal Growth 312,

1359 (2010).

8/8

Appl. Phys. Express

10

10

PtBP

0.09 Pa

0.27 Pa

1.07 Pa

5.33 Pa

10.8 Pa

18.8 Pa

21.5 Pa

(0002)

AlPN/GaN QW

count/s

10

10

AlPyN1-y

<0.3%

~0.7%

~1.1%

~4%

~10%

bad

bad

10

10

1.1 Pa

5.6 Pa

9.3 Pa

-1

10

10 µm

-2

10

16.5

17.0

17.5

18.0

18.5

 (°)

Fig. 1.

ω − 2Θ measurement of a series of 5× AlPN/GaN quantum wells around the (0002) GaN

reflection. Thicker lines indicate nominally compressively strained layers. Inset shows three Nomarski

microscopy images of 20-45 nm thick AlPN films grown on GaN. Partial pressures were TMAl

0.23 Pa, and NH3 20.5 Pa at 1100°C.

9/8

Appl. Phys. Express

GaN (0006)

GaN (0004)

GaN (0003)

Sapphire (000 12)

GaN (0005)

10

sapphire (000 6)

GaN (0001)

10

GaN (0002)

10

counts/s

10

10

10

10

-1

10

10

20

30

40

50

60

70

 (°)

10

(10-15)

GaN (0002)

10

qz

counts/s

10

10

10

qx

10

-1

10

16

17

18

19

20

 (°)

Fig. 2.

Wide area ω − 2Θ measurement of a nearly lattice matched 60 nm AlPN layer on GaN

(top). The dotted lines indicate all allowed cubic AlP reflections. Bottom is a high resolution ω − 2Θ

measurement around (0002) of the same sample with simulation of a 60 nm AlP10.3 N89.7 layer. The

inset is the (10¯

15) reciprocal space map showing a perfectly strained AlPN layer.

10/8

Appl. Phys. Express

Fig. 3.

Refractive index and extinction coefficient averaged from three AlP0.13 N0.87 layers of

180 nm, 315 nm and 655 nm on GaN-sapphire. The points are from vertical incidence reflection

measurements of a 315 nm (open box) and 655 nm (star) AlPN layer. The inset shows the effective

< 1 > data of a 655 nm AlP0.13 N0.87 layer on 22 µm carbon doped GaN on sapphire, to suppress

GaN FP oscillations.

11/8

Appl. Phys. Express

Fig. 4.

TEM-EDS trace from a 140 nm AlPN layer after storage in air for about 2 months (left).

The Ga signal is reduced by

while N, P, and O signals are multiplied by 2.5. The gradient of the

EDS signal amplitudes towards the surface originates from the wedge shape of the TEM slice. The

vertical line marks the interface to GaN according to TEM. Right side shows the normalised

(1-Ga)/Al ratio (open box) and the Al/P ratio (star).

12/8

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る